Prognostic Impact of Obesity, Cardiometabolic Risk Factors, and Vascular Function Markers on Outcomes in Ischemic Cardiomyopathy
Abstract
1. Introduction
2. Methods
2.1. Study Population
2.2. Assessment of Endothelial Function
2.3. Assessment of Arterial Stiffness
2.4. Echocardiographic Evaluation
2.5. Bioethics
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Comparisons Between BMI Categories
3.3. Comparisons Based on Burden of Cardiometabolic Risk Factors
3.4. Arterial Function, Weight Status and Burden of Cardiometabolic Risk Factors
3.5. Outcomes
4. Discussion
4.1. Obesity and Vascular Function in Ischemic Cardiomyopathy
4.2. Clustering of Cardiometabolic Risk Factors
4.3. Prognostic Value of Flow-Mediated Dilation and Pulse Wave Velocity
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martin, S.S.; Aday, A.W.; Almarzooq, Z.I.; Anderson, C.A.M.; Arora, P.; Avery, C.L.; Baker-Smith, C.M.; Barone Gibbs, B.; Beaton, A.Z.; Boehme, A.K.; et al. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2024, 149, e347–e913. [Google Scholar] [CrossRef] [PubMed]
- Bozkurt, B.; Coats, A.J.S.; Tsutsui, H.; Abdelhamid, C.M.; Adamopoulos, S.; Albert, N.; Anker, S.D.; Atherton, J.; Bohm, M.; Butler, J.; et al. Universal definition and classification of heart failure: A report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure: Endorsed by the Canadian Heart Failure Society, Heart Failure Association of India, Cardiac Society of Australia and New Zealand, and Chinese Heart Failure Association. Eur. J. Heart Fail. 2021, 23, 352–380. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Bohm, M.; Burri, H.; Butler, J.; Celutkiene, J.; Chioncel, O.; et al. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2023, 44, 3627–3639. [Google Scholar] [CrossRef]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022, 145, e895–e1032. [Google Scholar] [CrossRef]
- Gomez, K.A.; Tromp, J.; Figarska, S.M.; Beldhuis, I.E.; Cotter, G.; Davison, B.A.; Felker, G.M.; Gimpelewicz, C.; Greenberg, B.H.; Lam, C.S.P.; et al. Distinct Comorbidity Clusters in Patients With Acute Heart Failure: Data From RELAX-AHF-2. JACC Heart Fail. 2024, 12, 1762–1774. [Google Scholar] [CrossRef] [PubMed]
- Holthuis, E.I.; Visseren, F.L.J.; Bots, M.L.; Peters, S.A.E.; UCC-SMART study group. Risk Factor Clusters and Cardiovascular Disease in High-Risk Patients: The UCC-SMART Study. Glob. Heart 2021, 16, 85. [Google Scholar] [CrossRef]
- Ahmad, F.S.; Ning, H.; Rich, J.D.; Yancy, C.W.; Lloyd-Jones, D.M.; Wilkins, J.T. Hypertension, Obesity, Diabetes, and Heart Failure-Free Survival: The Cardiovascular Disease Lifetime Risk Pooling Project. JACC Heart Fail. 2016, 4, 911–919. [Google Scholar] [CrossRef]
- Horwich, T.B.; Fonarow, G.C.; Clark, A.L. Obesity and the Obesity Paradox in Heart Failure. Prog. Cardiovasc. Dis. 2018, 61, 151–156. [Google Scholar] [CrossRef]
- Padwal, R.; McAlister, F.A.; McMurray, J.J.; Cowie, M.R.; Rich, M.; Pocock, S.; Swedberg, K.; Maggioni, A.; Gamble, G.; Ariti, C.; et al. The obesity paradox in heart failure patients with preserved versus reduced ejection fraction: A meta-analysis of individual patient data. Int. J. Obes. 2014, 38, 1110–1114. [Google Scholar] [CrossRef]
- Dhoot, J.; Tariq, S.; Erande, A.; Amin, A.; Patel, P.; Malik, S. Effect of morbid obesity on in-hospital mortality and coronary revascularization outcomes after acute myocardial infarction in the United States. Am. J. Cardiol. 2013, 111, 1104–1110. [Google Scholar] [CrossRef]
- Esmaeili, Z.; Bahiraie, P.; Vaziri, Z.; Azarboo, A.; Behnoush, A.H.; Khalaji, A.; Bazrgar, A.; Tayebi, P.; Ziaie, N. The association between pulse wave velocity and heart failure: A systematic review and meta-analysis. Front. Cardiovasc. Med. 2024, 11, 1435677. [Google Scholar] [CrossRef] [PubMed]
- Trott, A. Diagnostic modalities in gynecologic and obstetric emergencies. Emerg. Med. Clin. N. Am. 1987, 5, 405–423. [Google Scholar] [CrossRef]
- Klosinska, M.; Rudzinski, T.; Grzelak, P.; Stefanczyk, L.; Drozdz, J.; Krzeminska-Pakula, M. Endothelium-dependent and -independent vasodilation is more attenuated in ischaemic than in non-ischaemic heart failure. Eur. J. Heart Fail. 2009, 11, 765–770. [Google Scholar] [CrossRef] [PubMed]
- Tsigkou, V.; Siasos, G.; Oikonomou, E.; Zaromitidou, M.; Mourouzis, K.; Dimitropoulos, S.; Bletsa, E.; Gouliopoulos, N.; Stampouloglou, P.K.; Panoilia, M.E.; et al. The prognostic role of galectin-3 and endothelial function in patients with heart failure. Cardiol. J. 2023, 30, 725–733. [Google Scholar] [CrossRef]
- Meyer, B.; Mortl, D.; Strecker, K.; Hulsmann, M.; Kulemann, V.; Neunteufl, T.; Pacher, R.; Berger, R. Flow-mediated vasodilation predicts outcome in patients with chronic heart failure: Comparison with B-type natriuretic peptide. J. Am. Coll. Cardiol. 2005, 46, 1011–1018. [Google Scholar] [CrossRef]
- Dohaei, A.; Taghavi, S.; Amin, A.; Rahimi, S.; Naderi, N. Does aortic pulse wave velocity have any prognostic significance in advanced heart failure patients? J. Cardiovasc. Thorac. Res. 2017, 9, 35–40. [Google Scholar] [CrossRef]
- Harris, R.A.; Nishiyama, S.K.; Wray, D.W.; Richardson, R.S. Ultrasound assessment of flow-mediated dilation. Hypertension 2010, 55, 1075–1085. [Google Scholar] [CrossRef]
- Rajzer, M.W.; Wojciechowska, W.; Klocek, M.; Palka, I.; Brzozowska-Kiszka, M.; Kawecka-Jaszcz, K. Comparison of aortic pulse wave velocity measured by three techniques: Complior, SphygmoCor and Arteriograph. J. Hypertens. 2008, 26, 2001–2007. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. Off. Publ. Am. Soc. Echocardiogr. 2015, 28, 1–39.e14. [Google Scholar] [CrossRef]
- The Global Cardiovascular Risk Consortium. Global Effect of Modifiable Risk Factors on Cardiovascular Disease and Mortality. N. Engl. J. Med. 2023, 389, 1273–1285. [Google Scholar] [CrossRef]
- Wienbergen, H.; Gitt, A.K.; Juenger, C.; Schiele, R.; Heer, T.; Towae, F.; Gohlke, H.; Senges, J.; MITRA PLUS study group. Impact of the body mass index on occurrence and outcome of acute ST-elevation myocardial infarction. Clin. Res. Cardiol. 2008, 97, 83–88. [Google Scholar] [CrossRef]
- Kenchaiah, S.; Evans, J.C.; Levy, D.; Wilson, P.W.; Benjamin, E.J.; Larson, M.G.; Kannel, W.B.; Vasan, R.S. Obesity and the risk of heart failure. N. Engl. J. Med. 2002, 347, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Hobbach, A.J.; Feld, J.; Linke, W.A.; Sindermann, J.R.; Droge, P.; Ruhnke, T.; Gunster, C.; Reinecke, H. BMI-Stratified Exploration of the ‘Obesity Paradox’: Heart Failure Perspectives from a Large German Insurance Database. J. Clin. Med. 2024, 13, 2086. [Google Scholar] [CrossRef] [PubMed]
- Held, C.; Hadziosmanovic, N.; Aylward, P.E.; Hagstrom, E.; Hochman, J.S.; Stewart, R.A.H.; White, H.D.; Wallentin, L. Body Mass Index and Association With Cardiovascular Outcomes in Patients With Stable Coronary Heart Disease—A STABILITY Substudy. J. Am. Heart Assoc. 2022, 11, e023667. [Google Scholar] [CrossRef] [PubMed]
- Doehner, W. Critical appraisal of the obesity paradox in cardiovascular disease: How to manage patients with overweight in heart failure? Heart Fail. Rev. 2014, 19, 637–644. [Google Scholar] [CrossRef]
- Kenchaiah, S.; Pocock, S.J.; Wang, D.; Finn, P.V.; Zornoff, L.A.; Skali, H.; Pfeffer, M.A.; Yusuf, S.; Swedberg, K.; Michelson, E.L.; et al. Body mass index and prognosis in patients with chronic heart failure: Insights from the Candesartan in Heart failure: Assessment of Reduction in Mortality and morbidity (CHARM) program. Circulation 2007, 116, 627–636. [Google Scholar] [CrossRef]
- Jones, N.R.; Ordonez-Mena, J.M.; Roalfe, A.K.; Taylor, K.S.; Goyder, C.R.; Hobbs, F.R.; Taylor, C.J. Body mass index and survival in people with heart failure. Heart 2023, 109, 1542–1549. [Google Scholar] [CrossRef]
- Matsuhiro, Y.; Nishino, M.; Ukita, K.; Kawamura, A.; Nakamura, H.; Yasumoto, K.; Tsuda, M.; Okamoto, N.; Tanaka, A.; Matsunaga-Lee, Y.; et al. Underweight Is Associated with Poor Prognosis in Heart Failure with Preserved Ejection Fraction. Int. Heart J. 2021, 62, 1042–1051. [Google Scholar] [CrossRef]
- Wannamethee, S.G.; Shaper, A.G.; Whincup, P.H.; Lennon, L.; Papacosta, O.; Sattar, N. The obesity paradox in men with coronary heart disease and heart failure: The role of muscle mass and leptin. Int. J. Cardiol. 2014, 171, 49–55. [Google Scholar] [CrossRef]
- Abel, E.D.; Litwin, S.E.; Sweeney, G. Cardiac remodeling in obesity. Physiol. Rev. 2008, 88, 389–419. [Google Scholar] [CrossRef]
- Marcks, N.; Aimo, A.; Januzzi, J.L., Jr.; Vergaro, G.; Clerico, A.; Latini, R.; Meessen, J.; Anand, I.S.; Cohn, J.N.; Gravning, J.; et al. Re-appraisal of the obesity paradox in heart failure: A meta-analysis of individual data. Clin. Res. Cardiol. 2021, 110, 1280–1291. [Google Scholar] [CrossRef] [PubMed]
- Cappelletto, C.; Stolfo, D.; Orsini, N.; Benson, L.; Rodolico, D.; Rosano, G.M.C.; Dahlstrom, U.; Sinagra, G.; Lund, L.H.; Savarese, G. Use of and association between heart failure pharmacological treatments and outcomes in obese versus non-obese patients with heart failure with reduced ejection fraction: Data from the Swedish Heart Failure Registry. Eur. J. Heart Fail. 2023, 25, 698–710. [Google Scholar] [CrossRef] [PubMed]
- Arnlov, J.; Sang, Y.; Ballew, S.H.; Vaidya, D.; Michos, E.D.; Jacobs, D.R., Jr.; Lima, J.; Shlipak, M.G.; Bertoni, A.G.; Coresh, J.; et al. Endothelial dysfunction and the risk of heart failure in a community-based study: The Multi-Ethnic Study of Atherosclerosis. ESC Heart Fail 2020, 7, 4231–4240. [Google Scholar] [CrossRef] [PubMed]
- Cohen, K.E.; Katunaric, B.; SenthilKumar, G.; McIntosh, J.J.; Freed, J.K. Vascular endothelial adiponectin signaling across the life span. Am. J. Physiol. Heart Circ. Physiol. 2022, 322, H57–H65. [Google Scholar] [CrossRef]
- Margaritis, M.; Antonopoulos, A.S.; Digby, J.; Lee, R.; Reilly, S.; Coutinho, P.; Shirodaria, C.; Sayeed, R.; Petrou, M.; De Silva, R.; et al. Interactions between vascular wall and perivascular adipose tissue reveal novel roles for adiponectin in the regulation of endothelial nitric oxide synthase function in human vessels. Circulation 2013, 127, 2209–2221. [Google Scholar] [CrossRef]
- Khan, R.S.; Kato, T.S.; Chokshi, A.; Chew, M.; Yu, S.; Wu, C.; Singh, P.; Cheema, F.H.; Takayama, H.; Harris, C.; et al. Adipose tissue inflammation and adiponectin resistance in patients with advanced heart failure: Correction after ventricular assist device implantation. Circ. Heart Fail. 2012, 5, 340–348. [Google Scholar] [CrossRef]
- Spadafora, L.; Pastena, P.; Cacciatore, S.; Betti, M.; Biondi-Zoccai, G.; D’Ascenzo, F.; De Ferrari, G.M.; De Filippo, O.; Versaci, F.; Sciarretta, S.; et al. One-Year Prognostic Differences and Management Strategies between ST-Elevation and Non-ST-Elevation Myocardial Infarction: Insights from the PRAISE Registry. Am. J. Cardiovasc. Drugs 2025, 25, 681–691. [Google Scholar] [CrossRef]
- Takishima, I.; Nakamura, T.; Hirano, M.; Kitta, Y.; Kobayashi, T.; Fujioka, D.; Saito, Y.; Watanabe, K.; Watanabe, Y.; Mishina, H.; et al. Predictive value of serial assessment of endothelial function in chronic heart failure. Int. J. Cardiol. 2012, 158, 417–422. [Google Scholar] [CrossRef]
- Butt, J.H.; Petrie, M.C.; Jhund, P.S.; Sattar, N.; Desai, A.S.; Kober, L.; Rouleau, J.L.; Swedberg, K.; Zile, M.R.; Solomon, S.D.; et al. Anthropometric measures and adverse outcomes in heart failure with reduced ejection fraction: Revisiting the obesity paradox. Eur. Heart J. 2023, 44, 1136–1153. [Google Scholar] [CrossRef]
- Trimarchi, G.; Pizzino, F.; Lilli, A.; De Caterina, A.R.; Esposito, A.; Dalmiani, S.; Mazzone, A.; Di Bella, G.; Berti, S.; Paradossi, U. Advanced Lung Cancer Inflammation Index as Predictor of All-Cause Mortality in ST-Elevation Myocardial Infarction Patients Undergoing Primary Percutaneous Coronary Intervention. J. Clin. Med. 2024, 13, 6059. [Google Scholar] [CrossRef]
Variable | Data |
---|---|
Age (years) | 63 ± 11 |
Male gender—n/N (%) | 502/560 (89.6%) |
Body mass index (kg/m2) | 27.96 ± 3.76 |
Normal weight: 18.5–24.99 kg/m2—n/N (%) | 114/544 (21%) |
Overweight: 25–29.99 kg/m2—n/N (%) | 298/544 (54.8%) |
Obesity—n/N (%) | 132/544 (24.2%) |
Category I: 30–34.99 kg/m2—n/N (%) | 108/544 (20.0%) |
Category II: 35–39.99 kg/m2—n/N (%) | 22/544 (4.0%) |
Category III: ≥40 kg/m2—n/N (%) | 2/544 (0.2%) |
Arterial hypertension—n/N (%) | 421/560 (75.2%) |
Diabetes mellitus—n/N (%) | 153/560 (27.3%) |
Dyslipidemia—n/N (%) | 427/560 (76.3%) |
Cardiometabolic risk factor burden | |
No cardiometabolic risk factors—n/N (%) | 51/560 (9.1%) |
1 cardiometabolic risk factor—n/N (%) | 130/560 (23.2%) |
2 cardiometabolic risk factors—n/N (%) | 266/560 (47.5%) |
3 cardiometabolic risk factors—n/N (%) | 113/560 (20.2%) |
3 cardiometabolic risk factors and obesity—n/N (%) | 30/544 (5.5%) |
History of tobacco use—n/N (%) | 453/560 (80.9%) |
Currents smokers—n/N (%) | 127/560 (22.7%) |
Ex-smokers—n/N (%) | 326/560 (58.2%) |
Family history of coronary artery disease | 153/560 (27.3%) |
Previous myocardial infarction | 264/560 (47.1%) |
Previous CABG | 85/560 (15.2%) |
≥2 vessel disease—n/N (%) | 196/530 (37%) |
Atrial fibrillation | 40/560 (7.1%) |
Flow-mediated dilation (%) | 4.92 ± 2.29 |
Carotid–femoral pulse wave velocity (m/s) | 8.99 ± 2.49 |
Creatinine (mg/dL) | 1.02 ± 0.37 |
LVEF (%) | 50 (43–55) |
Heart failure type | |
HFrEF—n/N (%) | 133/560 (23.8%) |
HFmrEF—n/N (%) | 117/560 (20.9%) |
HFpEF—n/N (%) | 310/560 (55.4%) |
Variable | Normal Weight (n = 114) | Overweight (n = 298) | Obesity (n = 132) | p |
---|---|---|---|---|
Age (years) | 65 ± 12 | 63 ± 11 | 61 ± 10 | 0.03 * (ANOVA) |
Male gender—n/N (%) | 101/114 (88.6%) | 274/298 (91.9%) | 114/132 (86.4%) | 0.18 (chi-square) |
Body mass index (kg/m2) | 23.33 ± 1.56 | 27.51 ± 1.34 | 32.97 ± 2.85 | 0.01 * (ANOVA) |
Arterial hypertension—n/N (%) | 79/114 (69.3%) | 225/298 (75.5%) | 106/132 (80.3%) | 0.14 (chi-square) |
Diabetes mellitus—n/N (%) | 35/114 (30.7%) | 80/298 (26.8%) | 35/132 (26.5%) | 0.70 (chi-square) |
Dyslipidemia—n/N (%) | 82/114 (71.9%) | 223/298 (74.8%) | 108/132 (81.8%) | 0.16 (chi-square) |
Presence of all 3 cardiometabolic factors—n/N (%) | 24/114 (21.1%) | 56/298 (18.8%) | 30/132 (22.7%) | 0.63 (chi-square) |
History of tobacco use—n/N (%) | 84/114 (73.7%) | 252/298 (84.6%) | 104/132 (78.8%) | 0.03 (chi-square) |
Currents smokers—n/N (%) | 26/114 (22.8%) | 60/298 (20.1%) | 37/132 (28%) | 0.20 (chi-square) |
Ex-smokers—n/N (%) | 58/114 (50.8%) | 192/298 (64.4%) | 67/132 (50.8%) | <0.01 (chi-square) |
Family history of coronary artery disease | 30/114 (26.3%) | 70/298 (23.5%) | 46/132 (34.8%) | 0.04 (chi-square) |
Previous myocardial infarction | 53/114 (46.5%) | 134/298 (45.0%) | 60/132 (45.5%) | 0.16 (chi-square) |
Previous CABG | 21/114 (18.4%) | 45/298 (15.1%) | 15/132 (11.4%) | 0.30 (chi-square) |
≥2 vessel disease—n/N (%) | 47/110 (41.7%) | 95/280 (33.9%) | 47/125 (37.6%) | 0.43 (chi-square) |
Atrial fibrillation | ||||
Flow-mediated dilation (%) | 5.18 ± 2.75 | 4.80 ± 2.13 | 5.00 ± 2.24 | 0.32 (ANOVA) |
Pulse wave velocity (m/s) | 9.09 ± 2.85 | 8.74 ± 2.28 | 8.99 ± 2.49 | 0.58 (ANOVA) |
Creatinine (mg/dL) | 1.04 ± 0.35 | 0.99 ± 0.27 | 1.02 ± 0.37 | 0.49 (ANOVA) |
LVEF (%) | 48.5 (40–55) | 50 (45–55) | 50 (45–55) | 0.42 (Kruskal–Wallis) |
Heart failure type | 0.14 (chi-square) | |||
HFpEF—n/N (%) | 57/114 (50.0%) | 167/298 (56%) | 78/132 (59.1%) | 0.35 |
HFmrEF—n/N (%) | 21/114 (18.4%) | 61/298 (20.5%) | 31/132 (23.5%) | 0.61 |
HFrEF—n/N (%) | 36/114 (31.6%) | 70/298 (23.5%) | 23/132 (17.4%) | 0.03 |
Variable | 0–2 Cardiometabolic Risk Factors (n = 447) | 3 Cardiometabolic Risk Factors (n = 113) | p |
---|---|---|---|
Age (years) | 62 ± 11 | 66 ± 10 | ≤0.01 (t-test) |
Male gender—n/N (%) | 399/447 (89.3%) | 103/113 (91.2%) | 0.56 (chi-square) |
Body mass index (kg/m2) | 27.90 ± 3.72 | 28.20 ± 3.92 | 0.44 (t-test) |
Arterial hypertension—n/N (%) | 308/447 (68.9%) | 113/113 (100.0%) | ≤0.01 (chi-square) |
Diabetes mellitus—n/N (%) | 40/447 (8.9%) | 113/113 (100.0%) | ≤0.01 (chi-square) |
Dyslipidemia—n/N (%) | 314/447 (70.2%) | 113/113 (100.0%) | ≤0.01 (chi-square) |
History of tobacco use—n/N (%) | 358/447 (80.1%) | 95/113 (84.1%) | 0.34 |
Currents smokers—n/N (%) | 107/447 (19.9%) | 20/113 (17.7%) | |
Ex-smokers—n/N (%) | 251/447 (56.2%) | 75/113 (66.4%) | |
Family history of coronary artery disease | 128/447 (28.6%) | 25/113 (22.1%) | 0.17 (chi-square) |
Previous myocardial infarction | 203/447 (45.4%) | 60/113 (53.1%) | 0.40 (chi-square) |
Previous CABG | 64/447 (14.3%) | 21/113 (18.6%) | 0.26 (chi-square) |
≥2 vessel disease—n/N (%) | 149/423 (35.2%) | 47/107 (43.9%) | 0.20 (chi-square) |
Atrial fibrillation | 32/447 (7.2%) | 8/113 (7.1%) | 1.00 (Fischer’s test) |
Flow-mediated dilation (%) | 4.98 ± 2.33 | 4.70 ± 2.11 | 0.26 (t-test) |
Pulse wave velocity (m/s) | 8.78 ± 2.30 | 9.77 ± 2.97 | ≤0.01 (t-test) |
Creatinine (mg/dL) | 1.00 ± 0.34 | 1.12 ± 0.43 | 0.01 (t-test) |
LVEF (%) | 50 (43–55) | 47 (43–55) | 0.36 (Mann–Whitney) |
Heart failure type | 0.02 (chi-square) | ||
HFpEF—n/N (%) | 257/447 (57.5%) | 53/447 (46.9%) | <0.01 |
HFmrEF—n/N (%) | 83/447 (18.6%) | 34/113 (30.1%) | 0.01 |
HFrEF—n/N (%) | 107/447 (23.9%) | 26/113 (23.0%) | 0.93 |
Linear Regression Analysis for the Association of FMD (Dependent Variable) with Various Predictors | |||
Variable | b | 95% CI | p Value |
Age (per year) | −0.02 | −0.04–0.01 | 0.23 |
Male gender * | −0.73 | −1.53–0.08 | 0.08 |
History of CABG * | 0.02 | −0.73–0.76 | 0.96 |
History of myocardial infarction * | 0.06 | −0.34–0.46 | 0.78 |
Atrial fibrillation * | 1.02 | 0.6–1.97 | 0.04 |
Pulse wave velocity (per m/s) | −0.02 | −0.12–0.09 | 0.74 |
Creatinine (per mg/dL) | 0.46 | −0.31–0.22 | 0.24 |
Body mass index categories: reference category normal weight | −0.23 | −0.57–0.12 | 0.19 |
Burden of cardiometabolic risk factors: reference category: none | −0.13 | −0.69–0.43 | 0.66 |
Ejection Fraction (per %) | 0.01 | −0.02–0.03 | 0.76 |
Smoking History * | −0.43 | −1.03–0.18 | 0.16 |
≥2 vessel CAD: reference group 1 vessel disease | 0.12 | −0.24–0.48 | 0.51 |
Linear Regression Analysis for the Association of PWV (Dependent Variable) with Various Predictors | |||
Variable | b | 95% CI | p Value |
Age (per year) | 0.10 | 0.08–0.13 | <0.001 |
Male gender * | 0.45 | −0.41–1.31 | 0.30 |
History of CABG * | −0.05 | −0.84–0.75 | 0.91 |
History of myocardial infarction * | −0.24 | −0.67–0.18 | 0.26 |
Atrial fibrillation * | 0.29 | −0.73–1.31 | 0.58 |
Flow-mediated dilation (per %) | −0.02 | −0.14–0.10 | 0.72 |
Creatinine (per mg/dL) | 0.21 | −0.60–1.02 | 0.61 |
Body mass index categories: reference category normal weight | −0.02 | −0.39–0.34 | 0.90 |
Burden of cardiometabolic risk factors: reference category: none | 0.39 | 0.08–0.70 | 0.01 |
Ejection Fraction (per %) | 0.01 | −0.02–0.04 | 0.64 |
Smoking History * | 0.19 | −0.45–0.83 | 0.56 |
≥2 vessel CAD: reference group 1 vessel disease | 0.28 | −0.10–0.66 | 0.15 |
Variable | HR | 95% CI | p Value |
---|---|---|---|
Age (per year) | 1.01 | 0.99–1.02 | 0.35 |
Male gender * | 1.18 | 0.72–1.95 | 0.51 |
Body mass index (per kg/m2) | 0.96 | 0.93–1.00 | 0.06 |
Body mass index categories: reference category normal weight | |||
Overweight (BMI 25–29.99 kg/m2) | 0.88 | 0.63–1.23 | 0.47 |
Obesity (BMI ≥ 30 kg/m2) | 0.59 | 0.38–0.92 | 0.02 |
Arterial Hypertension * | 1.20 | 0.86–1.66 | 0.28 |
Diabetes mellitus * | 1.40 | 1.04–1.89 | 0.03 |
Dyslipidemia * | 1.03 | 0.74–1.44 | 0.85 |
Presence of all three cardiometabolic factors ** | 1.42 | 1.03–1.95 | 0.03 |
Presence of cardiometabolic factors: reference group non-cardiometabolic risk factors | |||
Presence of one cardiometabolic factor | 0.98 | 0.56–1.72 | 0.94 |
Presence of two cardiometabolic factors | 1.05 | 0.63–1.77 | 0.85 |
Presence of three cardiometabolic factors | 1.45 | 0.84–2.52 | 0.18 |
History of tobacco use | 1.00 | 0.69–1.44 | 1.00 |
Family history of coronary artery disease | 1.07 | 0.79–1.46 | 0.66 |
Previous myocardial infarction | 1.04 | 0.79–1.37 | 0.78 |
History of CABG | 1.59 | 1.14–2.12 | 0.01 |
CAD Severity: reference group 1 vessel disease | |||
2-Vessel Disease | 1.29 | 0.91–1.81 | 0.15 |
3-Vessel Disease | 1.57 | 1.08–2.28 | 0.02 |
Atrial fibrillation * | 0.74 | 0.40–1.36 | 0.34 |
Flow-mediated dilation (%) | 0.92 | 0.86–0.98 | 0.01 |
Pulse wave velocity (m/s) | 1.04 | 0.98–1.11 | 0.22 |
Creatinine (mg/dL) | 1.02 | 1.01–1.04 | 0.03 |
LVEF category: reference group LVEF ≥ 50% | 1.01 | 0.99–1.02 | 0.33 |
HFmrEF (LVEF 41–49%) | 1.39 | 0.89–2.17 | 0.15 |
HFrEF (LVEF ≤ 40%) | 1.34 | 0.88–2.06 | 0.17 |
Variable | HR | 95% CI | p Value | |
---|---|---|---|---|
Age (per year) | 1.00 | 0.99–1.02 | 0.80 | |
Male gender * | 0.85 | 0.48–1.50 | 0.56 | |
Body mass index categories: reference category normal weight | ||||
Overweight (BMI 25–29.99 kg/m2) | 0.78 | 0.55–1.12 | 0.19 | |
Obesity (BMI ≥ 30 kg/m2) | 0.50 | 0.32–0.81 | 0.01 | |
Diabetes mellitus * | 1.26 | 0.65–2.45 | 0.50 | |
History of CABG | 1.43 | 0.94–2.17 | 0.10 | |
CAD Severity: reference group 1 vessel disease | ||||
2-Vessel Disease | 1.14 | 0.77–1.68 | 0.51 | |
3-Vessel Disease | 1.34 | 0.84–2.11 | 0.22 | |
Flow-mediated dilation (%) | 0.93 | 0.87–0.99 | 0.03 | |
Creatinine (mg/dL) | 0.72 | 0.41–1.25 | 0.24 | |
Presence of all three cardiometabolic factors ** | 1.30 | 0.65–2.59 | 0.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mourouzis, K.; Tsigkou, V.; Siasos, G.; Oikonomou, E.; Zaromitidou, M.; Bletsa, E.; Gouliopoulos, N.; Stampouloglou, P.K.; Tsioufis, K.; Vavuranakis, M.; et al. Prognostic Impact of Obesity, Cardiometabolic Risk Factors, and Vascular Function Markers on Outcomes in Ischemic Cardiomyopathy. J. Clin. Med. 2025, 14, 7397. https://doi.org/10.3390/jcm14207397
Mourouzis K, Tsigkou V, Siasos G, Oikonomou E, Zaromitidou M, Bletsa E, Gouliopoulos N, Stampouloglou PK, Tsioufis K, Vavuranakis M, et al. Prognostic Impact of Obesity, Cardiometabolic Risk Factors, and Vascular Function Markers on Outcomes in Ischemic Cardiomyopathy. Journal of Clinical Medicine. 2025; 14(20):7397. https://doi.org/10.3390/jcm14207397
Chicago/Turabian StyleMourouzis, Konstantinos, Vasiliki Tsigkou, Gerasimos Siasos, Evangelos Oikonomou, Marina Zaromitidou, Evanthia Bletsa, Nikolaos Gouliopoulos, Panagiota K. Stampouloglou, Konstantinos Tsioufis, Manolis Vavuranakis, and et al. 2025. "Prognostic Impact of Obesity, Cardiometabolic Risk Factors, and Vascular Function Markers on Outcomes in Ischemic Cardiomyopathy" Journal of Clinical Medicine 14, no. 20: 7397. https://doi.org/10.3390/jcm14207397
APA StyleMourouzis, K., Tsigkou, V., Siasos, G., Oikonomou, E., Zaromitidou, M., Bletsa, E., Gouliopoulos, N., Stampouloglou, P. K., Tsioufis, K., Vavuranakis, M., & Tousoulis, D. (2025). Prognostic Impact of Obesity, Cardiometabolic Risk Factors, and Vascular Function Markers on Outcomes in Ischemic Cardiomyopathy. Journal of Clinical Medicine, 14(20), 7397. https://doi.org/10.3390/jcm14207397