Reduced Native T1 Values of Wrist Tissues in Transthyretin Cardiac Amyloidosis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Image Acquisition
2.4. Image Analysis
2.5. Statistical Analysis
3. Results
3.1. Population Characteristics
3.2. Image Analysis
3.3. Receiver Operating Characteristic Curve Analysis
3.4. Correlations with Clinical, Biological, and Imaging Parameters
3.5. Reproducibility
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ATTR-CA | transthyretin cardiac amyloidosis |
ECV | extracellular volume |
GCW | global contouring of the wrist |
HFpEF | heart failure with preserved ejection fraction |
MN | median nerve |
MTE | muscle of the thenar eminence |
SCF | subcutaneous fat of the wrist |
SFCT | sheaths of the flexor carpi tendons |
TCL | transverse carpal ligament |
References
- Gonzalez-Lopez, E.; Gallego-Delgado, M.; Guzzo-Merello, G.; de Haro-Del Moral, F.J.; Cobo-Marcos, M.; Robles, C.; Bornstein, B.; Salas, C.; Lara-Pezzi, E.; Alonso-Pulpon, L.; et al. Wild-type transthyretin amyloidosis as a cause of heart failure with preserved ejection fraction. Eur. Heart J. 2015, 36, 2585–2594. [Google Scholar] [CrossRef]
- Kittleson, M.M.; Maurer, M.S.; Ambardekar, A.V.; Bullock-Palmer, R.P.; Chang, P.P.; Eisen, H.J.; Nair, A.P.; Nativi-Nicolau, J.; Ruberg, F.L.; on behalf of the American Heart Association Heart Failure; et al. Cardiac Amyloidosis: Evolving Diagnosis and Management: A Scientific Statement From the American Heart Association. Circulation 2020, 142, e7–e22. [Google Scholar] [CrossRef] [PubMed]
- Griffin, J.M.; Rosenblum, H.; Maurer, M.S. Pathophysiology and Therapeutic Approaches to Cardiac Amyloidosis. Circ. Res. 2021, 128, 1554–1575. [Google Scholar] [CrossRef] [PubMed]
- Ruberg, F.L.; Maurer, M.S. Cardiac Amyloidosis Due to Transthyretin Protein: A Review. JAMA 2024, 331, 778–791. [Google Scholar] [CrossRef]
- Fazlinezhad, A.; Naqvi, T.Z. Cardiac Amyloidosis: Mimics, Multimodality Imaging Diagnosis, and Treatment. JACC Cardiovasc. Imaging 2020, 13, 1384–1391. [Google Scholar] [CrossRef] [PubMed]
- Fontana, M.; Chacko, L.A.; Martinez-Naharro, A. Detailed Understating of Cardiac Amyloidosis by CMR: Towards Personalized Medicine. JACC Cardiovasc. Imaging 2020, 13, 1311–1313. [Google Scholar] [CrossRef]
- Pan, J.A.; Kerwin, M.J.; Salerno, M. Native T1 Mapping, Extracellular Volume Mapping, and Late Gadolinium Enhancement in Cardiac Amyloidosis: A Meta-Analysis. JACC Cardiovasc. Imaging 2020, 13, 1299–1310. [Google Scholar] [CrossRef]
- Razvi, Y.; Patel, R.K.; Fontana, M.; Gillmore, J.D. Cardiac Amyloidosis: A Review of Current Imaging Techniques. Front. Cardiovasc. Med. 2021, 8, 751293. [Google Scholar] [CrossRef]
- Cianci, V.; Cianci, A.; Sapienza, D.; Craco, A.; Germana, A.; Ieni, A.; Gualniera, P.; Asmundo, A.; Mondello, C. Epidemiological Changes in Transthyretin Cardiac Amyloidosis: Evidence from In Vivo Data and Autoptic Series. J. Clin. Med. 2024, 13, 5140. [Google Scholar] [CrossRef]
- Aimo, A.; Merlo, M.; Porcari, A.; Georgiopoulos, G.; Pagura, L.; Vergaro, G.; Sinagra, G.; Emdin, M.; Rapezzi, C. Redefining the epidemiology of cardiac amyloidosis. A systematic review and meta-analysis of screening studies. Eur. J. Heart Fail. 2022, 24, 2342–2351. [Google Scholar] [CrossRef]
- Nakagawa, M.; Sekijima, Y.; Yazaki, M.; Tojo, K.; Yoshinaga, T.; Doden, T.; Koyama, J.; Yanagisawa, S.; Ikeda, S.-I. Carpal tunnel syndrome: A common initial symptom of systemic wild-type ATTR (ATTRwt) amyloidosis. Amyloid 2016, 23, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Gray, A.M.; Patel, A.C.; Kaplan, F.T.D.; Merrell, G.A.; Greenberg, J.A. Occult Amyloid Deposition in Older Patients Presenting with Bilateral Carpal Tunnel Syndrome or Multiple Trigger Digits. J. Hand Surg. Am. 2023, 50, 102. [Google Scholar] [CrossRef]
- Westin, O.; Fosbol, E.L.; Maurer, M.S.; Leicht, B.P.; Hasbak, P.; Mylin, A.K.; Rørvig, S.; Lindkær, T.H.; Johannesen, H.H.; Gustafsson, F. Screening for Cardiac Amyloidosis 5 to 15 Years After Surgery for Bilateral Carpal Tunnel Syndrome. J. Am. Coll. Cardiol. 2022, 80, 967–977. [Google Scholar] [CrossRef]
- Fosbol, E.L.; Rorth, R.; Leicht, B.P.; Schou, M.; Maurer, M.S.; Kristensen, S.L.; Kober, L.; Gustafsson, F. Association of Carpal Tunnel Syndrome with Amyloidosis, Heart Failure, and Adverse Cardiovascular Outcomes. J. Am. Coll. Cardiol. 2019, 74, 15–23. [Google Scholar] [CrossRef]
- Ton, V.K.; Patel, S.; Gottlieb, S.S. Carpal Tunnel Syndrome and Future Amyloidosis: Time to Heed the Warning Sign. J. Am. Coll. Cardiol. 2019, 74, 24–25. [Google Scholar] [CrossRef]
- Darden, F.K.; Patel, A.; Merrell, G. Being a Better Starfish Thrower, Carpal Tunnel Syndrome, and Cardiac Amyloidosis: The Hand Surgeon’s Opportunity to Make a Profound Difference. J. Hand Surg. Am. 2024, 49, 373–376. [Google Scholar] [CrossRef]
- Donnelly, J.P.; Hanna, M.; Sperry, B.W.; Seitz, W.H.J. Carpal Tunnel Syndrome: A Potential Early, Red-Flag Sign of Amyloidosis. J. Hand Surg. Am. 2019, 44, 868–876. [Google Scholar] [CrossRef]
- Fernandez Fuertes, J.; Rodriguez Vicente, O.; Sanchez Herraez, S.; Ramos Pascua, L.R. Early diagnosis of systemic amyloidosis by means of a transverse carpal ligament biopsy carried out during carpal tunnel syndrome surgery. Med. Clin. (Barc.) 2017, 148, 211–214. [Google Scholar] [CrossRef] [PubMed]
- Dolan, R.S.; Stillman, A.E.; Davarpanah, A.H. Feasibility of Hepatic T1-Mapping and Extracellular Volume Quantification on Routine Cardiac Magnetic Resonance Imaging in Patients with Infiltrative and Systemic Disorders. Acad. Radiol. 2022, 29 (Suppl. S4), S100–S109. [Google Scholar] [CrossRef] [PubMed]
- Peker, E.; Erden, A. T1 mapping and magnetic resonance elastography: Potential new techniques for quantification of parenchymal changes in hepatic amyloidosis. Diagn. Interv. Radiol. 2017, 23, 478. [Google Scholar] [CrossRef] [PubMed]
- Chacko, L.; Boldrini, M.; Martone, R.; Law, S.; Martinez-Naharrro, A.; Hutt, D.F.; Kotecha, T.; Patel, R.K.; Razvi, Y.; Rezk, T.; et al. Cardiac Magnetic Resonance-Derived Extracellular Volume Mapping for the Quantification of Hepatic and Splenic Amyloid. Circ. Cardiovasc. Imaging 2021, 14, e012506. [Google Scholar] [CrossRef]
- Lama, N.; Briasoulis, A.; Karavasilis, E.; Stamatelopoulos, K.; Chasouraki, A.; Alexopoulou, E.; Spiliopoulos, S.; Theodorakakou, F.; Dimopoulos, M.A.; Kastritis, E.; et al. The utility of splenic imaging parameters in cardiac magnetic resonance for the diagnosis of immunoglobulin light-chain amyloidosis. Insights Imaging 2022, 13, 55. [Google Scholar] [CrossRef] [PubMed]
- Cobby, M.J.; Adler, R.S.; Swartz, R.; Martel, W. Dialysis-related amyloid arthropathy: MR findings in four patients. AJR Am. J. Roentgenol. 1991, 157, 1023–1027. [Google Scholar] [CrossRef] [PubMed]
- Mochizuki, T.; Mitobe, M.; Mifune, N.; Takahashi, M. Usefulness of magnetic resonance imaging of the wrist for the early diagnosis of dialysis-related amyloidosis. Nihon Jinzo Gakkai Shi 1999, 41, 14–20. [Google Scholar] [PubMed]
- Fram, E.K.; Herfkens, R.J.; Johnson, G.A.; Glover, G.H.; Karis, J.P.; Shimakawa, A.; Perkins, T.G.; Pelc, N.J. Rapid calculation of T1 using variable flip angle gradient refocused imaging. Magn. Reson. Imaging 1987, 5, 201–208. [Google Scholar] [CrossRef]
- Sun, X.; Ando, Y.; Haraoka, K.; Katsuragi, S.; Yamashita, T.; Yamashita, S.; Okajima, M.; Terazaki, H.; Okabe, H. Role of VLDL/chylomicron in amyloid formation in familial amyloidotic polyneuropathy. Biochem. Biophys. Res. Commun. 2003, 311, 344–350. [Google Scholar] [CrossRef]
- Sun, X.; Ueda, M.; Yamashita, T.; Nakamura, M.; Bergstrom, J.; Zeledon Ramirez, M.E.; Okajima, M.; Misumi, S.; Shoji, S.; Motomiya, Y.; et al. Lipid droplets are present in amyloid deposits in familial amyloidotic polyneuropathy and dialysis related amyloidosis. Amyloid 2006, 13, 23. [Google Scholar] [CrossRef]
- Sanderson, J.M. The association of lipids with amyloid fibrils. J. Biol. Chem. 2022, 298, 102108. [Google Scholar] [CrossRef]
- Niu, Z.; Zhang, Z.; Zhao, W.; Yang, J. Interactions between amyloid beta peptide and lipid membranes. Biochim. Biophys. Acta Biomembr. 2018, 1860, 1663–1669. [Google Scholar] [CrossRef]
- Tempra, C.; Scollo, F.; Pannuzzo, M.; Lolicato, F.; La Rosa, C. A unifying framework for amyloid-mediated membrane damage: The lipid-chaperone hypothesis. Biochim. Biophys. Acta Proteins Proteom. 2022, 1870, 140767. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–270. [Google Scholar] [CrossRef] [PubMed]
- Tsang, T.S.; Barnes, M.E.; Gersh, B.J.; Bailey, K.R.; Seward, J.B. Left atrial volume as a morphophysiologic expression of left ventricular diastolic dysfunction and relation to cardiovascular risk burden. Am. J. Cardiol. 2002, 90, 1284–1289. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Naharro, A.; Treibel, T.A.; Abdel-Gadir, A.; Bulluck, H.; Zumbo, G.; Knight, D.S.; Kotecha, T.; Francis, R.; Hutt, D.F.; Rezk, T.; et al. Magnetic Resonance in Transthyretin Cardiac Amyloidosis. J. Am. Coll. Cardiol. 2017, 70, 466–477. [Google Scholar] [CrossRef]
- Ruberg, F.L.; Berk, J.L. Transthyretin (TTR) cardiac amyloidosis. Circulation 2012, 126, 1286–1300. [Google Scholar] [CrossRef] [PubMed]
- Anderson, L.J.; Holden, S.; Davis, B.; Prescott, E.; Charrier, C.C.; Bunce, N.H.; Firmin, D.; Wonke, B.; Porter, J.; Walker, J.; et al. Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur. Heart J. 2001, 22, 2171–2179. [Google Scholar] [CrossRef]
- Wood, J.C. Impact of iron assessment by MRI. Hematol. Am. Soc. Hematol. Educ. Program 2011, 2011, 443–450. [Google Scholar] [CrossRef]
- Leung, N.; Nasr, S.H. 2024 Update on Classification, Etiology, and Typing of Renal Amyloidosis. Am. J. Kidney Dis. 2024, 84, 361–373. [Google Scholar] [CrossRef]
CA (n = 36) | Controls (n = 69) | p | |
---|---|---|---|
Males | 32 (89) | 24 (35) | <0.001 |
Age (y) | 78 ± 9 | 43 ± 14 | <0.001 |
Body mass index (kg/m2) | 25 ± 4 | 26 ± 4 | 0.89 |
Cardiovascular risk factors | |||
Diabetes | 7 (19) | 0 | <0.001 |
Hypertension | 26 (72) | 0 | <0.001 |
Dyslipidemia | 12 (33) | 0 | <0.001 |
NYHA class: I, II, III, IV, n | 8/20/6/2 | 69/0/0/0 | |
Carpal tunnel syndrome | 16 (44) | 0 | <0.001 |
Surgery for carpal tunnel syndrome * | 7 (19) | 0 | <0.001 |
Treatment with tafamidis | 8 (22) | 0 | <0.001 |
Laboratory parameters | |||
Troponin us (ng/L) | 47 (31–66) | ||
NT-pro BNP (ng/L) | 3140 (605–3170) | ||
CRP (mg/L) | 3.1 (0.6–5.6) | ||
Blood creatinine (μmol/L) | 95 (81–111) | ||
Echocardiography | |||
LVEF (%) | 49 ± 12 | ||
IVS thickness (mm) | 17 ± 3 | ||
Left atrial volume (mL/m2) | 49 ± 12 | ||
Cardiac MRI | |||
LVEF (%) | 51 ± 11 | ||
LV mass (g/m2) | 78 ± 23 | ||
Native myocardial T1 (ms) | 1115 ± 76 | ||
ECV (%) | 47 ± 10 | ||
Cardiac scintigraphy | |||
Grade of uptake | 2.9 ± 0.5 | ||
Ratio Heart/Mediastinum | 1.4 ± 0.3 |
T1 Values (ms) | CA (n = 36) | Controls (n = 69) | p | Adjusted p * |
---|---|---|---|---|
TCL | 829 (725–928) | 994 (926–1085) | <0.001 | 0.002 |
MN | 1234 (1130–1333) | 1406 (1289–1528) | <0.001 | 0.04 |
SFCT | 1030 (924–1122) | 1175 (1104–1287) | <0.001 | <0.001 |
SCF | 989 (876–1142) | 1165 (1014–1295) | 0.003 | 0.02 |
MTE | 185 (143–272) | 205 (165–293) | 0.40 | 0.26 |
GCW | 934 (865–1025) | 1111 (1029–1174) | <0.001 | 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deux, J.-F.; Brugières, P.; Kharoubi, M.; Zaroui, A.; Oghina, S.; Damy, T.; Cosson, R. Reduced Native T1 Values of Wrist Tissues in Transthyretin Cardiac Amyloidosis. J. Clin. Med. 2025, 14, 7374. https://doi.org/10.3390/jcm14207374
Deux J-F, Brugières P, Kharoubi M, Zaroui A, Oghina S, Damy T, Cosson R. Reduced Native T1 Values of Wrist Tissues in Transthyretin Cardiac Amyloidosis. Journal of Clinical Medicine. 2025; 14(20):7374. https://doi.org/10.3390/jcm14207374
Chicago/Turabian StyleDeux, Jean-François, Pierre Brugières, Mounira Kharoubi, Amira Zaroui, Silvia Oghina, Thibaud Damy, and Ruxandra Cosson. 2025. "Reduced Native T1 Values of Wrist Tissues in Transthyretin Cardiac Amyloidosis" Journal of Clinical Medicine 14, no. 20: 7374. https://doi.org/10.3390/jcm14207374
APA StyleDeux, J.-F., Brugières, P., Kharoubi, M., Zaroui, A., Oghina, S., Damy, T., & Cosson, R. (2025). Reduced Native T1 Values of Wrist Tissues in Transthyretin Cardiac Amyloidosis. Journal of Clinical Medicine, 14(20), 7374. https://doi.org/10.3390/jcm14207374