κ-Opioid Receptor Agonists as Robust Pain-Modulating Agents: Mechanisms and Therapeutic Potential in Pain Modulation
Abstract
1. Introduction
2. Insights into κ-Opioid Receptors and Their Role in Pain Modulation
2.1. Spatial Expression Patterns Within the CNS and PNS
2.2. Molecular Cascades Triggered by KOR Stimulation
2.3. Neurobiological Roles in Pain Processing
2.3.1. Inhibition of Excitatory Neurotransmitter Release
2.3.2. Suppression of Ascending and Descending Nociceptive Transmission
2.4. Alterations in KOR Expression and Signaling in Chronic Pain States
3. Classical KOR Agonists in Pain Modulation
3.1. Therapeutic Potential of Classical KOR Agonists in Experimental Pain
3.2. Human Trials of KOR-Selective Compounds
3.3. Safety and Tolerability Compared with MOR Agonists
4. Recent Advances in KOR Agonist Development
4.1. Biased Agonism and Pathway-Selective Signaling
4.2. Region-Specific Targeting and Delivery Strategies
5. Challenges and Future Perspectives
5.1. Clinical Translation and Integration into Pain Management Practice
5.2. Potential Synergy with Other Analgesic Approaches
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AC | Adenylyl cyclase |
ACC | Anterior cingulate cortex |
AMPA | α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid |
BCP | Bone cancer pain |
Ca2+ | Calcium ion |
cAMP | Cyclic adenosine monophosphate |
CB1 | Cannabinoid receptor type 1 |
CB2 | Cannabinoid receptor type 2 |
CFA | Complete Freund’s Adjuvant |
CGRP | Calcitonin gene-related peptide |
CIPN | Chemotherapy-induced peripheral neuropathy |
CNS | Central nervous system |
CO2 | Carbon dioxide |
CRF | Corticotropin-releasing factor |
CR845 | Difelikefalin |
CRD | Colorectal distension |
CREB | cAMP response element-binding protein |
cryo-EM | Cryogenic electron microscopy |
CSF | Cerebrospinal fluid |
CSSEP | Chemo-somatosensory event-related potential |
DOR | Delta opioid receptor |
DREADD | Designer receptors exclusively activated by designer drug |
DRG | Dorsal root ganglion |
EMBASE | Excerpta medica dataBASE |
EMD-61753 | Asimadolíne |
ERK1/2 | Extracellular signal-regulated kinases 1/2 |
GABA | Gamma-aminobutyric acid |
Gi | G-protein, inhibitory alpha subunit |
GIRK | G protein-coupled inwardly rectifying potassium channel |
Go | G-protein alpha subunit o |
GPCR | G-protein-coupled receptor |
GRK | G protein-coupled receptor kinase |
Gβγ | G-protein beta-gamma subunits |
HPA | Hypothalamic–pituitary–adrenal |
HSK21542 | Anrikefon |
i.t. | Intrathecal injection |
i.v. | Intravenous injection |
IASP | International Association for the Study of Pain |
IBS | Irritable bowel syndrome |
IBS-D | Diarrhea-predominant irritable bowel syndrome |
ICL2 | Intracellular loop 2 |
ICL3 | Intracellular loop 3 |
IL-10 | Interleukin 10 |
IPSP | Inhibitory postsynaptic potential |
K+ | Potassium ion |
KOR | Kappa opioid receptor |
Kv | Voltage-gated potassium channel |
MAPK | Mitogen-activated protein kinase |
MEDLINE | Medical literature analysis and retrieval system online |
MOR | Mu opioid receptor |
Nav1.7 | Voltage-gated sodium channel type 1.7 |
Nav1.8 | Voltage-gated sodium channel type 1.8 |
Nav1.9 | Voltage-gated sodium channel type 1.9 |
NCP | 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6β-{[4′-(2′-cyanopyridyl)]carboxamido}morphinan |
NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
NMDA | N-methyl-D-aspartate |
NMR | Nuclear magnetic resonance |
NPY | Neuropeptide Y |
NSAID | Non-steroidal anti-inflammatory drug |
P2X3 | Purinergic receptor P2X, ligand-gated ion channel, 3 |
P2X7 | Purinergic receptor P2X, ligand-gated ion channel, 7 |
p38 MAPK | p38 mitogen-activated protein kinase |
PAG | Periaqueductal gray |
PEG | Polyethylene glycol |
PI3K | Phosphoinositide 3-kinase |
PKA | Protein kinase A |
PKB/Akt | Protein kinase B |
PNS | Peripheral nervous system |
RP 60180 | Apadoline |
RVM | Rostral ventromedial medulla |
s.c. | Subcutaneous injection |
SAR | Structure-activity relationship |
SNAP-25 | Synaptosomal-associated protein of 25 kDa |
SNARE | Soluble NSF attachment protein receptor |
SNL | Spinal nerve ligation |
TM3 | Transmembrane helix 3 |
TM5 | Transmembrane helix 5 |
TM6 | Transmembrane helix 6 |
TM7 | Transmembrane helix 7 |
TRK-820 | Nalfurafine |
TRP | Transient receptor potential |
TRPA1 | Transient receptor potential ankyrin 1 |
TRPV1 | Transient receptor potential vanilloid 1 |
VAMP | Vesicle-associated membrane protein (also called synaptobrevin) |
VGCC | Voltage-gated calcium channel |
VGSC | Voltage-gated sodium channel |
VTA | Ventral tegmental area |
References
- Raja, S.N.; Carr, D.B.; Cohen, M.; Finnerup, N.B.; Flor, H.; Gibson, S.; Keefe, F.J.; Mogil, J.S.; Ringkamp, M.; Sluka, K.A.; et al. The revised International Association for the Study of Pain definition of pain: Concepts, challenges, and compromises. Pain 2020, 161, 1976–1982. [Google Scholar] [CrossRef] [PubMed]
- Vader, K.; Bostick, G.P.; Carlesso, L.C.; Hunter, J.; Mesaroli, G.; Perreault, K.; Tousignant-Laflamme, Y.; Tupper, S.; Walton, D.M.; Wideman, T.H.; et al. The Revised IASP Definition of Pain and Accompanying Notes: Considerations for the Physiotherapy Profession. Physiother. Can. 2021, 73, 103–106. [Google Scholar] [CrossRef]
- Vallath, N.; Salins, N.; Kumar, M. Unpleasant subjective emotional experiencing of pain. Indian J. Palliat. Care 2013, 19, 12–19. [Google Scholar] [CrossRef]
- Hoegh, M.; Purcell, C.; Møller, M.; Wilson, F.; O’Sullivan, K. Not All Pain Is Caused by Tissue Damage in Sports. Should Management Change? J. Orthop. Sports Phys. Ther. 2024, 54, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Jungquist, C.R.; Vallerand, A.H.; Sicoutris, C.; Kwon, K.N.; Polomano, R.C. Assessing and Managing Acute Pain: A Call to Action. Am. J. Nurs. 2017, 117, S4–S11. [Google Scholar] [CrossRef]
- Mills, S.E.E.; Nicolson, K.P.; Smith, B.H. Chronic pain: A review of its epidemiology and associated factors in population-based studies. Br. J. Anaesth. 2019, 123, e273–e283. [Google Scholar] [CrossRef]
- Phillips, K.; Clauw, D.J. Central pain mechanisms in chronic pain states--maybe it is all in their head. Best Pract. Res. Clin. Rheumatol. 2011, 25, 141–154. [Google Scholar] [CrossRef]
- Zheng, Q.; Dong, X.; Green, D.P.; Dong, X. Peripheral mechanisms of chronic pain. Med. Rev. 2022, 2, 251–270. [Google Scholar] [CrossRef]
- Goldberg, D.S.; McGee, S.J. Pain as a global public health priority. BMC Public Health 2011, 11, 770. [Google Scholar] [CrossRef]
- Rometsch, C.; Martin, A.; Junne, F.; Cosci, F. Chronic pain in European adult populations: A systematic review of prevalence and associated clinical features. Pain 2025, 166, 719–731. [Google Scholar] [CrossRef] [PubMed]
- Moisset, X. Neuropathic pain: Evidence based recommendations. Presse. Med. 2024, 53, 104232. [Google Scholar] [CrossRef] [PubMed]
- Varrassi, G.; Alon, E.; Bagnasco, M.; Lanata, L.; Mayoral-Rojals, V.; Paladini, A.; Pergolizzi, J.V.; Perrot, S.; Scarpignato, C.; Tölle, T. Towards an Effective and Safe Treatment of Inflammatory Pain: A Delphi-Guided Expert Consensus. Adv. Ther. 2019, 36, 2618–2637. [Google Scholar] [CrossRef] [PubMed]
- Stevens, E.B.; Stephens, G.J. Recent advances in targeting ion channels to treat chronic pain. Br. J. Pharmacol. 2018, 175, 2133–2137. [Google Scholar] [CrossRef] [PubMed]
- Su, P.P.; Zhang, L.; He, L.; Zhao, N.; Guan, Z. The Role of Neuro-Immune Interactions in Chronic Pain: Implications for Clinical Practice. J. Pain Res. 2022, 15, 2223–2248. [Google Scholar] [CrossRef]
- Curatolo, M. Central Sensitization and Pain: Pathophysiologic and Clinical Insights. Curr. Neuropharmacol. 2024, 22, 15–22. [Google Scholar] [CrossRef]
- Higginbotham, J.A.; Markovic, T.; Massaly, N.; Morón, J.A. Endogenous opioid systems alterations in pain and opioid use disorder. Front. Syst. Neurosci. 2022, 16, 1014768. [Google Scholar] [CrossRef]
- García-Domínguez, M. Enkephalins and Pain Modulation: Mechanisms of Action and Therapeutic Perspectives. Biomolecules 2024, 14, 926. [Google Scholar] [CrossRef]
- Lu, H.C.; Mackie, K. Review of the Endocannabinoid System. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2021, 6, 607–615. [Google Scholar] [CrossRef]
- García-Domínguez, M. Role of the Endocannabinoid System in Fibromyalgia. Curr. Issues Mol. Biol. 2025, 47, 230. [Google Scholar] [CrossRef]
- Paul, A.K.; Smith, C.M.; Rahmatullah, M.; Nissapatorn, V.; Wilairatana, P.; Spetea, M.; Gueven, N.; Dietis, N. Opioid Analgesia and Opioid-Induced Adverse Effects: A Review. Pharmaceuticals 2021, 14, 1091. [Google Scholar] [CrossRef]
- Che, T.; Roth, B.L. Molecular basis of opioid receptor signaling. Cell 2023, 186, 5203–5219. [Google Scholar] [CrossRef]
- Swingler, M.; Donadoni, M.; Unterwald, E.M.; Maggirwar, S.B.; Sariyer, I.K. Molecular and cellular basis of mu-opioid receptor signaling: Mechanisms underlying tolerance and dependence development. Front. Neurosci. 2025, 19, 1597922. [Google Scholar] [CrossRef]
- Reeves, K.C.; Shah, N.; Muñoz, B.; Atwood, B.K. Opioid Receptor-Mediated Regulation of Neurotransmission in the Brain. Front. Mol. Neurosci. 2022, 15, 919773. [Google Scholar] [CrossRef]
- Christie, M.J. Cellular neuroadaptations to chronic opioids: Tolerance, withdrawal and addiction. Br. J. Pharmacol. 2008, 154, 384–396. [Google Scholar] [CrossRef]
- Adhikary, S.; Williams, J.T. Cellular Tolerance Induced by Chronic Opioids in the Central Nervous System. Front. Syst. Neurosci. 2022, 16, 937126. [Google Scholar] [CrossRef]
- Strickland, J.C.; Gipson, C.D.; Dunn, K.E. Dopamine Supersensitivity: A Novel Hypothesis of Opioid-Induced Neurobiological Mechanisms Underlying Opioid-Stimulant Co-use and Opioid Relapse. Front. Psychiatry 2022, 13, 835816. [Google Scholar] [CrossRef] [PubMed]
- Pagare, P.P.; Flammia, R.; Zhang, Y. IUPHAR review: Recent progress in the development of Mu opioid receptor modulators to treat opioid use disorders. Pharmacol. Res. 2024, 199, 107023. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Huang, R.; Xia, M.; Chang, N.; Guo, W.; Liu, J.; Dong, F.; Liu, B.; Varghese, A.; Aslam, A.; et al. Decoding the κ Opioid Receptor (KOR): Advancements in Structural Understanding and Implications for Opioid Analgesic Development. Molecules 2024, 29, 2635. [Google Scholar] [CrossRef]
- Snyder, L.M.; Chiang, M.C.; Loeza-Alcocer, E.; Omori, Y.; Hachisuka, J.; Sheahan, T.D.; Gale, J.R.; Adelman, P.C.; Sypek, E.I.; Fulton, S.A.; et al. Kappa Opioid Receptor Distribution and Function in Primary Afferents. Neuron 2018, 99, 1274–1288.e6. [Google Scholar] [CrossRef]
- Valentino, R.J.; Volkow, N.D. Untangling the complexity of opioid receptor function. Neuropsychopharmacology 2018, 43, 2514–2520. [Google Scholar] [CrossRef] [PubMed]
- Mansour, A.; Hoversten, M.T.; Taylor, L.P.; Watson, S.J.; Akil, H. The cloned mu, delta and kappa receptors and their endogenous ligands: Evidence for two opioid peptide recognition cores. Brain Res. 1995, 700, 89–98. [Google Scholar] [CrossRef]
- Dalefield, M.L.; Scouller, B.; Bibi, R.; Kivell, B.M. The Kappa Opioid Receptor: A Promising Therapeutic Target for Multiple Pathologies. Front. Pharmacol. 2022, 13, 837671. [Google Scholar] [CrossRef] [PubMed]
- Velázquez-Marrero, C.M.; Marrero, H.G.; Lemos, J.R. Voltage-dependent kappa-opioid modulation of action potential waveform-elicited calcium currents in neurohypophysial terminals. J. Cell Physiol. 2010, 225, 223–232. [Google Scholar] [CrossRef]
- Lemos, J.C.; Roth, C.A.; Messinger, D.I.; Gill, H.K.; Phillips, P.E.M.; Chavkin, C. Repeated Stress Dysregulates κ-Opioid Receptor Signaling in the Dorsal Raphe through a p38α MAPK-Dependent Mechanism. J. Neurosci. 2012, 32, 12325–12336. [Google Scholar] [CrossRef]
- Ji, M.J.; Yang, J.; Gao, Z.Q.; Zhang, L.; Liu, C. The Role of the Kappa Opioid System in Comorbid Pain and Psychiatric Disorders: Function and Implications. Front. Neurosci. 2021, 15, 642493. [Google Scholar] [CrossRef]
- Nguyen, E.; Smith, K.M.; Cramer, N.; Holland, R.A.; Bleimeister, I.H.; Flores-Felix, K.; Silberberg, H.; Keller, A.; Le Pichon, C.E.; Ross, S.E. Medullary kappa-opioid receptor neurons inhibit pain and itch through a descending circuit. Brain 2022, 145, 2586–2601. [Google Scholar] [CrossRef]
- Otsu, Y.; Aubrey, K.R. Kappa opioids inhibit the GABA/glycine terminals of rostral ventromedial medulla projections in the superficial dorsal horn of the spinal cord. J. Physiol. 2022, 600, 4187–4205. [Google Scholar] [CrossRef]
- Huang, P.; Chen, C.; Cao, D.; Huang, M.; Liu-Chen, L.Y. Agonist-promoted kappa opioid receptor (KOR) phosphorylation has behavioral endpoint-dependent and sex-specific effects. Neuropharmacology 2022, 202, 108860. [Google Scholar] [CrossRef]
- Huang, B.; Pagare, P.P.; Townsend, E.A.; Poklis, J.L.; Halquist, M.S.; Banks, M.; Zhang, Y.; Liu-Chen, L.Y. NCP, a Dual Kappa and Mu Opioid Receptor Agonist, Is a Potent Analgesic Against Inflammatory Pain without Reinforcing or Aversive Properties. J. Pharmacol. Exp. Ther. 2024, 389, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Brust, A.; Croker, D.E.; Colless, B.; Ragnarsson, L.; Andersson, Å.; Jain, K.; Garcia-Caraballo, S.; Castro, J.; Brierley, S.M.; Alewood, P.F.; et al. Conopeptide-Derived κ-Opioid Agonists (Conorphins): Potent, Selective, and Metabolic Stable Dynorphin A Mimetics with Antinociceptive Properties. J. Med. Chem. 2016, 59, 2381–2395. [Google Scholar] [CrossRef] [PubMed]
- Bileviciute-Ljungar, I.; Saxne, T.; Spetea, M. Anti-inflammatory effects of contralateral administration of the kappa-opioid agonist U-50,488H in rats with unilaterally induced adjuvant arthritis. Rheumatology 2006, 45, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Bruijnzeel, A.W. kappa-Opioid receptor signaling and brain reward function. Brain Res. Rev. 2009, 62, 127–146. [Google Scholar] [CrossRef]
- Khan, M.I.H.; Sawyer, B.J.; Akins, N.S.; Le, H.V. A systematic review on the kappa opioid receptor and its ligands: New directions for the treatment of pain, anxiety, depression, and drug abuse. Eur. J. Med. Chem. 2022, 243, 114785. [Google Scholar] [CrossRef]
- Cahill, C.M.; Taylor, A.M.; Cook, C.; Ong, E.; Morón, J.A.; Evans, C.J. Does the kappa opioid receptor system contribute to pain aversion? Front. Pharmacol. 2014, 5, 253. [Google Scholar] [CrossRef]
- Santino, F.; Gentilucci, L. Design of κ-Opioid Receptor Agonists for the Development of Potential Treatments of Pain with Reduced Side Effects. Molecules 2023, 28, 346. [Google Scholar] [CrossRef]
- Puls, K.; Olivé-Marti, A.L.; Hongnak, S.; Lamp, D.; Spetea, M.; Wolber, G. Discovery of Novel, Selective, and Nonbasic Agonists for the Kappa-Opioid Receptor Determined by Salvinorin A-Based Virtual Screening. J. Med. Chem. 2024, 67, 13788–13801. [Google Scholar] [CrossRef]
- Brust, T.F. Biased Ligands at the Kappa Opioid Receptor: Fine-Tuning Receptor Pharmacology. Handb. Exp. Pharmacol. 2022, 271, 115–135. [Google Scholar]
- Henriksen, G.; Willoch, F. Imaging of opioid receptors in the central nervous system. Brain 2008, 131, 1171–1196. [Google Scholar] [CrossRef]
- Maggi, R.; Limonta, P.; Dondi, D.; Martini, L.; Piva, F. Distribution of kappa opioid receptors in the brain of young and old male rats. Life Sci. 1989, 45, 2085–2092. [Google Scholar] [CrossRef] [PubMed]
- Mansour, A.; Fox, C.A.; Burke, S.; Meng, F.; Thompson, R.C.; Akil, H.; Watson, S.J. Mu, delta, and kappa opioid receptor mRNA expression in the rat CNS: An in situ hybridization study. J. Comp. Neurol. 1994, 350, 412–438. [Google Scholar] [CrossRef] [PubMed]
- Simonin, F.; Gavériaux-Ruff, C.; Befort, K.; Matthes, H.; Lannes, B.; Micheletti, G.; Mattéi, M.G.; Charron, G.; Bloch, B.; Kieffer, B. kappa-Opioid receptor in humans: cDNA and genomic cloning, chromosomal assignment, functional expression, pharmacology, and expression pattern in the central nervous system. Proc. Natl. Acad. Sci. USA 1995, 92, 7006–7010. [Google Scholar] [CrossRef] [PubMed]
- Peckys, D.; Landwehrmeyer, G.B. Expression of mu, kappa, and delta opioid receptor messenger RNA in the human CNS: A 33P in situ hybridization study. Neuroscience 1999, 88, 1093–1135. [Google Scholar] [CrossRef] [PubMed]
- Gray, A.C.; Coupar, I.M.; White, P.J. Comparison of opioid receptor distributions in the rat central nervous system. Life Sci. 2006, 79, 674–685. [Google Scholar] [CrossRef] [PubMed]
- Machelska, H.; Celik, M.Ö. Opioid Receptors in Immune and Glial Cells-Implications for Pain Control. Front. Immunol. 2020, 11, 300. [Google Scholar] [CrossRef]
- Mousa, S.A.; Shaqura, M.; Schäper, J.; Huang, W.; Treskatsch, S.; Habazettl, H.; Abdul-Khaliq, H.; Schäfer, M. Identification of mu- and kappa-opioid receptors as potential targets to regulate parasympathetic, sympathetic, and sensory neurons within rat intracardiac ganglia. J. Comp. Neurol. 2010, 518, 3836–3847. [Google Scholar] [CrossRef]
- Rivière, P.J. Peripheral kappa-opioid agonists for visceral pain. Br. J. Pharmacol. 2004, 141, 1331–1334. [Google Scholar] [CrossRef]
- Headrick, J.P.; See Hoe, L.E.; Du Toit, E.F.; Peart, J.N. Opioid receptors and cardioprotection—‘Opioidergic conditioning’ of the heart. Br. J. Pharmacol. 2015, 172, 2026–2050. [Google Scholar] [CrossRef]
- Zeng, S.; Zhong, Y.; Xiao, J.; Ji, J.; Xi, J.; Wei, X.; Liu, R. Kappa Opioid Receptor on Pulmonary Macrophages and Immune Function. Transl. Perioper. Pain Med. 2020, 7, 225–233. [Google Scholar] [CrossRef]
- Didik, S.; Golosova, D.; Zietara, A.; Bohovyk, R.; Ahrari, A.; Levchenko, V.; Kravtsova, O.; Taneja, K.; Khedr, S.; Semenikhina, M.; et al. Renal Implications of Kappa Opioid Receptor Signaling in Sprague-Dawley Rats. Function 2025, 6, zqaf028. [Google Scholar] [CrossRef]
- Olabarrieta, E.; Totorikaguena, L.; Romero-Aguirregomezcorta, J.; Agirregoitia, N.; Agirregoitia, E. Delta and kappa opioid receptors on mouse sperm cells: Expression, localization and involvement on in vitro fertilization. Reprod. Toxicol. 2020, 93, 211–218. [Google Scholar] [CrossRef]
- Olabarrieta, E.; Totorikaguena, L.; Matorras, R.; Agirregoitia, E.; Agirregoitia, N. Delta and kappa opioid receptors in human endometrium during the menstrual cycle: Expression and localization. Eur. J. Obstet. Gynecol. Reprod. Biol. 2023, 283, 68–73. [Google Scholar] [CrossRef]
- Rogers, T.J. Kappa Opioid Receptor Expression and Function in Cells of the Immune System. Handb. Exp. Pharmacol. 2022, 271, 419–433. [Google Scholar]
- Szczepaniak, A.; Machelak, W.; Fichna, J.; Zielińska, M. The role of kappa opioid receptors in immune system—An overview. Eur. J. Pharmacol. 2022, 933, 175214. [Google Scholar] [CrossRef] [PubMed]
- Liu-Chen, L.Y.; Huang, P. Signaling underlying kappa opioid receptor-mediated behaviors in rodents. Front. Neurosci. 2022, 16, 964724. [Google Scholar] [CrossRef]
- Wu, H.; Wacker, D.; Mileni, M.; Katritch, V.; Han, G.W.; Vardy, E.; Liu, W.; Thompson, A.A.; Huang, X.P.; Carroll, F.I.; et al. Structure of the human κ-opioid receptor in complex with JDTic. Nature 2012, 485, 327–332. [Google Scholar] [CrossRef]
- Zhang, W.W.; Cao, H.; Li, Y.; Fu, X.J.; Zhang, Y.Q. Peripheral ablation of type III adenylyl cyclase induces hyperalgesia and eliminates KOR-mediated analgesia in mice. JCI Insight. 2022, 7, e153191. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.M.; Lun, M.H.; Du, W.; Ma, F.; Huang, Z.Q. The κ-Opioid Receptor Agonist U50488H Ameliorates Neuropathic Pain Through the Ca2+/CaMKII/CREB Pathway in Rats. J. Inflamm. Res. 2022, 15, 3039–3051. [Google Scholar] [CrossRef] [PubMed]
- Hassan, B.; Ruiz-Velasco, V. The κ-opioid receptor agonist U-50488 blocks Ca2+ channels in a voltage- and G protein-independent manner in sensory neurons. Reg. Anesth. Pain Med. 2013, 38, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Berecki, G.; Motin, L.; Adams, D.J. Voltage-Gated R-Type Calcium Channel Inhibition via Human μ-, δ-, and κ-opioid Receptors Is Voltage-Independently Mediated by Gβγ Protein Subunits. Mol. Pharmacol. 2016, 89, 187–196. [Google Scholar] [CrossRef]
- El Daibani, A.; Paggi, J.M.; Kim, K.; Laloudakis, Y.D.; Popov, P.; Bernhard, S.M.; Krumm, B.E.; Olsen, R.H.J.; Diberto, J.; Carroll, F.I.; et al. Molecular mechanism of biased signaling at the kappa opioid receptor. Nat. Commun. 2023, 14, 1338. [Google Scholar] [CrossRef]
- McLennan, G.P.; Kiss, A.; Miyatake, M.; Belcheva, M.M.; Chambers, K.T.; Pozek, J.J.; Mohabbat, Y.; Moyer, R.A.; Bohn, L.M.; Coscia, C.J. Kappa opioids promote the proliferation of astrocytes via Gbetagamma and beta-arrestin 2-dependent MAPK-mediated pathways. J. Neurochem. 2008, 107, 1753–1765. [Google Scholar] [CrossRef]
- Chen, Y.L.; Law, P.Y.; Loh, H.H. Nuclear factor kappaB signaling in opioid functions and receptor gene expression. J. Neuroimmune Pharmacol. 2006, 1, 270–279. [Google Scholar] [CrossRef]
- Naser, P.V.; Kuner, R. Peripheral Kappa Opioid Receptor Signaling Takes on a Central Role. Neuron 2018, 99, 1102–1104. [Google Scholar] [CrossRef] [PubMed]
- Semizoglou, E.; Gentry, C.; Vastani, N.; Stucky, C.L.; Andersson, D.A.; Bevan, S. TRPA1 analgesia is mediated by kappa opioid receptors. bioRxiv 2022, 506151. [Google Scholar] [CrossRef]
- Tucker, W.C.; Chapman, E.R. Role of synaptotagmin in Ca2+-triggered exocytosis. Biochem. J. 2002, 366, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Xue, R.; Meng, H.; Yin, J.; Xia, J.; Hu, Z.; Liu, H. The Role of Calmodulin vs. Synaptotagmin in Exocytosis. Front. Mol. Neurosci. 2021, 14, 691363. [Google Scholar] [CrossRef]
- Bardoni, R. Role of presynaptic glutamate receptors in pain transmission at the spinal cord level. Curr. Neuropharmacol. 2013, 11, 477–483. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.; Gou, J.; Deng, J.; Li, M.; Zhu, Y.; Wu, Z. Role of neuropeptides in orofacial pain: A literature review. J. Oral Rehabil. 2024, 51, 898–908. [Google Scholar] [CrossRef]
- Manz, K.M.; Zepeda, J.C.; Zurawski, Z.; Hamm, H.E.; Grueter, B.A. SNAP25 differentially contributes to Gi/o-coupled receptor function at glutamatergic synapses in the nucleus accumbens. Front. Cell Neurosci. 2023, 17, 1165261. [Google Scholar] [CrossRef]
- Zurawski, Z.; Page, B.; Chicka, M.C.; Brindley, R.L.; Wells, C.A.; Preininger, A.M.; Hyde, K.; Gilbert, J.A.; Cruz-Rodriguez, O.; Currie, K.P.M.; et al. Gβγ directly modulates vesicle fusion by competing with synaptotagmin for binding to neuronal SNARE proteins embedded in membranes. J. Biol. Chem. 2017, 292, 12165–12177. [Google Scholar] [CrossRef]
- Ulens, C.; Daenens, P.; Tytgat, J. The dual modulation of GIRK1/GIRK2 channels by opioid receptor ligands. Eur. J. Pharmacol. 1999, 385, 239–245. [Google Scholar] [CrossRef]
- Tsantoulas, C.; McMahon, S.B. Opening paths to novel analgesics: The role of potassium channels in chronic pain. Trends Neurosci. 2014, 37, 146–158. [Google Scholar] [CrossRef]
- Macdonald, R.L.; Werz, M.A. Dynorphin A decreases voltage-dependent calcium conductance of mouse dorsal root ganglion neurones. J. Physiol. 1986, 377, 237–249. [Google Scholar] [CrossRef]
- Wiley, J.W.; Moises, H.C.; Gross, R.A.; MacDonald, R.L. Dynorphin A-mediated reduction in multiple calcium currents involves a G(o) alpha-subtype G protein in rat primary afferent neurons. J. Neurophysiol. 1997, 77, 1338–1348. [Google Scholar] [CrossRef]
- Ma, W.; Sapio, M.R.; Manalo, A.P.; Maric, D.; Dougherty, M.K.; Goto, T.; Mannes, A.J.; Iadarola, M.J. Anatomical Analysis of Transient Potential Vanilloid Receptor 1 (Trpv1+) and Mu-Opioid Receptor (Oprm1+) Co-expression in Rat Dorsal Root Ganglion Neurons. Front. Mol. Neurosci. 2022, 15, 926596. [Google Scholar] [CrossRef]
- Zachariou, V.; Goldstein, B.D. Kappa-opioid receptor modulation of the release of substance P in the dorsal horn. Brain Res. 1996, 706, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Arconada, I.; Baccei, M.L.; López-García, J.A.; Bardoni, R. An electrophysiologist’s guide to dorsal horn excitability and pain. Front. Cell Neurosci. 2025, 19, 1548252. [Google Scholar] [CrossRef] [PubMed]
- Gouardères, C.; Cros, J.; Quirion, R. Autoradiographic localization of mu, delta and kappa opioid receptor binding sites in rat and guinea pig spinal cord. Neuropeptides 1985, 6, 331–342. [Google Scholar] [CrossRef]
- Sheahan, T.D.; Warwick, C.A.; Cui, A.Y.; Baranger, D.A.A.; Perry, V.J.; Smith, K.M.; Manalo, A.P.; Nguyen, E.K.; Koerber, H.R.; Ross, S.E. Kappa opioids inhibit spinal output neurons to suppress itch. Sci. Adv. 2024, 10, eadp6038. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zheng, M.Q.; Naganawa, M.; Kim, S.; Gao, H.; Kapinos, M.; Labaree, D.; Huang, Y. Development and In Vivo Evaluation of a κ-Opioid Receptor Agonist as a PET Radiotracer with Superior Imaging Characteristics. J. Nucl. Med. 2019, 60, 1023–1030. [Google Scholar] [CrossRef]
- Al-Khater, K.M.; Kerr, R.; Todd, A.J. A quantitative study of spinothalamic neurons in laminae I, III, and IV in lumbar and cervical segments of the rat spinal cord. J. Comp. Neurol. 2008, 511, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Allard, J. Physiological properties of the lamina I spinoparabrachial neurons in the mouse. J. Physiol. 2019, 597, 2097–2113. [Google Scholar] [CrossRef] [PubMed]
- Yasaka, T.; Tiong, S.Y.X.; Hughes, D.I.; Riddell, J.S.; Todd, A.J. Populations of inhibitory and excitatory interneurons in lamina II of the adult rat spinal dorsal horn revealed by a combined electrophysiological and anatomical approach. Pain 2010, 151, 475–488. [Google Scholar] [CrossRef]
- Harris, J.A.; Chang, P.C.; Drake, C.T. Kappa opioid receptors in rat spinal cord: Sex-linked distribution differences. Neuroscience 2004, 124, 879–890. [Google Scholar] [CrossRef]
- Nahin, R.L.; Hylden, J.L.K.; Humphrey, E. Demonstration of dynorphin A 1-8 immunoreactive axons contacting spinal cord projection neurons in a rat model of peripheral inflammation and hyperalgesia. Pain 1992, 51, 135–143. [Google Scholar] [CrossRef]
- Pina, M.M.; Pati, D.; Hwa, L.S.; Wu, S.Y.; Mahoney, A.A.; Omenyi, C.G.; Navarro, M.; Kash, T.L. The kappa opioid receptor modulates GABA neuron excitability and synaptic transmission in midbrainprojections from the insular cortex. Neuropharmacology 2020, 165, 107831. [Google Scholar] [CrossRef]
- De Preter, C.C.; Heinricher, M.M. The ‘in’s and out’s’ of descending pain modulation from the rostral ventromedial medulla. Trends Neurosci. 2024, 47, 447–460. [Google Scholar] [CrossRef]
- Marinelli, S.; Vaughan, C.W.; Schnell, S.A.; Wessendorf, M.W.; Christie, M.J. Rostral ventromedial medulla neurons that project to the spinal cord express multiple opioid receptor phenotypes. J. Neurosci. 2002, 22, 10847–10855. [Google Scholar] [CrossRef]
- Coutens, B.; Ingram, S.L. Key differences in regulation of opioid receptors localized to presynaptic terminals compared to somas: Relevance for novel therapeutics. Neuropharmacology 2023, 226, 109408. [Google Scholar] [CrossRef]
- Bagley, E.E.; Ingram, S.L. Endogenous opioid peptides in the descending pain modulatory circuit. Neuropharmacology 2020, 173, 108131. [Google Scholar] [CrossRef] [PubMed]
- Hein, M.; Ji, G.; Tidwell, D.; D’Souza, P.; Kiritoshi, T.; Yakhnitsa, V.; Navratilova, E.; Porreca, F.; Neugebauer, V. Kappa opioid receptor activation in the amygdala disinhibits CRF neurons to generate pain-like behaviors. Neuropharmacology 2021, 185, 108456. [Google Scholar] [CrossRef]
- Li, L.; Chen, J.; Li, Y.-Q. The Downregulation of Opioid Receptors and Neuropathic Pain. Int. J. Mol. Sci. 2023, 24, 5981. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Y.; Sun, L.; He, J.; Chen, Z.L.; Zhou, F.; Liu, X.Y.; Liu, R.S. The kappa-opioid receptor is upregulated in the spinal cord and locus ceruleus but downregulated in the dorsal root ganglia of morphine tolerant rats. Brain Res. 2010, 1326, 30–39. [Google Scholar] [CrossRef]
- Ehrich, J.M.; Messinger, D.I.; Knakal, C.R.; Kuhar, J.R.; Schattauer, S.S.; Bruchas, M.R.; Zweifel, L.S.; Kieffer, B.L.; Phillips, P.E.; Chavkin, C. Kappa Opioid Receptor-Induced Aversion Requires p38 MAPK Activation in VTA Dopamine Neurons. J. Neurosci. 2015, 35, 12917–12931. [Google Scholar] [CrossRef]
- Mann, A.; Liebetrau, S.; Klima, M.; Dasgupta, P.; Massotte, D.; Schulz, S. Agonist-induced phosphorylation bar code and differential post-activation signaling of the delta opioid receptor revealed by phosphosite-specific antibodies. Sci. Rep. 2020, 10, 8585. [Google Scholar] [CrossRef]
- Sun, L.; Zhao, J.Y.; Gu, X.; Liang, L.; Wu, S.; Mo, K.; Feng, J.; Guo, W.; Zhang, J.; Bekker, A.; et al. Nerve injury-induced epigenetic silencing of opioid receptors controlled by DNMT3a in primary afferent neurons. Pain 2017, 158, 1153–1165. [Google Scholar] [CrossRef]
- Byrne, L.S.; Peng, J.; Sarkar, S.; Chang, S.L. Interleukin-1 beta-induced up-regulation of opioid receptors in the untreated and morphine-desensitized U87 MG human astrocytoma cells. J. Neuroinflammation 2012, 9, 252. [Google Scholar] [CrossRef] [PubMed]
- Finley, M.J.; Happel, C.M.; Kaminsky, D.E.; Rogers, T.J. Opioid and nociceptin receptors regulate cytokine and cytokine receptor expression. Cell Immunol. 2008, 252, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.N.; Loh, H.H. Transcriptional and epigenetic regulation of opioid receptor genes: Present and future. Annu. Rev. Pharmacol. Toxicol. 2011, 51, 75–97. [Google Scholar] [CrossRef]
- Morgan, M.; Heffernan, A.; Benhabib, F.; Wagner, S.; Hewavitharana, A.K.; Shaw, P.N.; Cabot, P.J. The efficacy of Dynorphin fragments at the κ, μ and δ opioid receptor in transfected HEK cells and in an animal model of unilateral peripheral inflammation. Peptides 2017, 89, 9–16. [Google Scholar] [CrossRef]
- Kitamura, T.; Ogawa, M.; Yamada, Y. The individual and combined effects of U50,488, and flurbiprofen axetil on visceral pain in conscious rats. Anesth. Analg. 2009, 108, 1964–1966. [Google Scholar] [CrossRef]
- Schepers, R.J.; Mahoney, J.L.; Shippenberg, T.S. Inflammation-induced changes in rostral ventromedial medulla mu and kappa opioid receptor mediated antinociception. Pain 2008, 136, 320–330. [Google Scholar] [CrossRef]
- Endoh, T.; Tajima, A.; Suzuki, T.; Kamei, J.; Narita, M.; Tseng, L.; Nagase, H. Characterization of the antinociceptive effects of TRK-820 in the rat. Eur. J. Pharmacol. 2000, 387, 133–140. [Google Scholar] [CrossRef]
- Ulker, E.; Toma, W.; White, A.; Uprety, R.; Majumdar, S.; Damaj, M.I. The antinociceptive effects of a dual kappa-delta opioid receptor agonist in the mouse formalin test. Behav. Pharmacol. 2020, 31, 174–178. [Google Scholar] [CrossRef]
- Binder, W.; Carmody, J.; Walker, J. Effect of gender on anti-inflammatory and analgesic actions of two kappa-opioids. J. Pharmacol Exp. Ther. 2000, 292, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Rogers, H.; Birch, P.J.; Harrison, S.M.; Palmer, E.; Manchee, G.R.; Judd, D.B.; Naylor, A.; Scopes, D.I.; Hayes, A.G. GR94839, a kappa-opioid agonist with limited access to the central nervous system, has antinociceptive activity. Br. J. Pharmacol. 1992, 106, 783–789. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gou, X.; Yu, X.; Bai, D.; Tan, B.; Cao, P.; Qian, M.; Zheng, X.; Wang, H.; Tang, P.; et al. Antinociceptive and Antipruritic Effects of HSK21542, a Peripherally-Restricted Kappa Opioid Receptor Agonist, in Animal Models of Pain and Itch. Front. Pharmacol. 2021, 12, 773204. [Google Scholar] [CrossRef]
- Xu, K.; Zhang, M.; Chen, D.; Xu, B.; Hu, X.; Zhang, Q.; Zhang, R.; Zhang, N.; Li, N.; Fang, Q. Conorphin-66 produces peripherally restricted antinociception via the kappa-opioid receptor with limited side effects. Neuropharmacology 2024, 261, 110157. [Google Scholar] [CrossRef] [PubMed]
- Stefanucci, A.; Della Valle, A.; Scioli, G.; Marinaccio, L.; Pieretti, S.; Minosi, P.; Szucs, E.; Benyhe, S.; Masci, D.; Tanguturi, P.; et al. Discovery of κ Opioid Receptor (KOR)-Selective d-Tetrapeptides with Improved In Vivo Antinociceptive Effect after Peripheral Administration. ACS Med. Chem. Lett. 2022, 13, 1707–1714. [Google Scholar] [CrossRef]
- Langlois, A.; Diop, L.; Rivière, P.J.; Pascaud, X.; Junien, J.L. Effect of fedotozine on the cardiovascular pain reflex induced by distension of the irritated colon in the anesthetized rat. Eur. J. Pharmacol. 1994, 271, 245–251. [Google Scholar] [CrossRef]
- Muratspahić, E.; Tomašević, N.; Koehbach, J.; Duerrauer, L.; Hadžić, S.; Castro, J.; Schober, G.; Sideromenos, S.; Clark, R.J.; Brierley, S.M.; et al. Design of a Stable Cyclic Peptide Analgesic Derived from Sunflower Seeds that Targets the κ-Opioid Receptor for the Treatment of Chronic Abdominal Pain. J. Med. Chem. 2021, 64, 9042–9055. [Google Scholar] [CrossRef]
- Hartrick, C.T.; Poulin, D.; Molenaar, R.; Hartrick, A. Dual-Acting Peripherally Restricted Delta/Kappa Opioid (CAV1001) Produces Antinociception in Animal Models of Sub-Acute and Chronic Pain. J. Pain Res. 2020, 13, 2461–2474. [Google Scholar] [CrossRef] [PubMed]
- van de Wetering, R.; Vu, L.Y.; Kornberger, L.D.; Luo, D.; Scouller, B.; Hong, S.; Paton, K.; Prisinzano, T.E.; Kivell, B.M. Effects of Biased Analogues of the Kappa Opioid Receptor Agonist, U50,488, in Preclinical Models of Pain and Side Effects. Molecules 2025, 30, 604. [Google Scholar] [CrossRef] [PubMed]
- Catheline, G.; Guilbaud, G.; Kayser, V. Peripheral component in the enhanced antinociceptive effect of systemic U-69,593, a kappa-opioid receptor agonist in mononeuropathic rats. Eur. J. Pharmacol. 1998, 357, 171–178. [Google Scholar] [CrossRef]
- Jung, Y.H.; Kim, Y.O.; Han, J.H.; Kim, Y.C.; Yoon, M.H. Isobolographic Analysis of Drug Combinations with Intrathecal BRL52537 (κ-Opioid Agonist), Pregabalin (Calcium Channel Modulator), AF 353 (P2X3 Receptor Antagonist), and A804598 (P2X7 Receptor Antagonist) in Neuropathic Rats. Anesth. Analg. 2017, 125, 670–677. [Google Scholar] [CrossRef]
- Atigari, D.V.; Paton, K.F.; Uprety, R.; Váradi, A.; Alder, A.F.; Scouller, B.; Miller, J.H.; Majumdar, S.; Kivell, B.M. The mixed kappa and delta opioid receptor agonist, MP1104, attenuates chemotherapy-induced neuropathic pain. Neuropharmacology 2021, 185, 108445. [Google Scholar] [CrossRef]
- Caram-Salas, N.L.; Reyes-García, G.; Bartoszyk, G.D.; Araiza-Saldaña, C.I.; Ambriz-Tututi, M.; Rocha-González, H.I.; Arreola-Espino, R.; Cruz, S.L.; Granados-Soto, V. Subcutaneous, intrathecal and periaqueductal grey administration of asimadoline and ICI-204448 reduces tactile allodynia in the rat. Eur. J. Pharmacol. 2007, 573, 75–83. [Google Scholar] [CrossRef]
- Bedini, A.; Di Cesare Mannelli, L.; Micheli, L.; Baiula, M.; Vaca, G.; De Marco, R.; Gentilucci, L.; Ghelardini, C.; Spampinato, S. Functional Selectivity and Antinociceptive Effects of a Novel KOPr Agonist. Front. Pharmacol. 2020, 11, 188. [Google Scholar] [CrossRef]
- Edwards, K.A.; Havelin, J.J.; Mcintosh, M.I.; Ciccone, H.A.; Pangilinan, K.; Imbert, I.; Largent-Milnes, T.M.; King, T.; Vanderah, T.W.; Streicher, J.M. A Kappa Opioid Receptor Agonist Blocks Bone Cancer Pain Without Altering Bone Loss, Tumor Size, or Cancer Cell Proliferation in a Mouse Model of Cancer-Induced Bone Pain. J. Pain 2018, 19, 612–625. [Google Scholar] [CrossRef]
- Baamonde, A.; Lastra, A.; Juárez, L.; García, V.; Hidalgo, A.; Menéndez, L. Effects of the local administration of selective mu-, delta-and kappa-opioid receptor agonists on osteosarcoma-induced hyperalgesia. Naunyn Schmiedebergs Arch. Pharmacol. 2005, 372, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.M.; Jeong, C.W.; Lee, S.H.; Kim, Y.O.; Cui, J.H.; Yoon, M.H. The intrathecally administered kappa-2 opioid agonist GR89696 and interleukin-10 attenuate bone cancer-induced pain through synergistic interaction. Anesth. Analg. 2011, 113, 934–940. [Google Scholar] [CrossRef] [PubMed]
- Crowley, N.A.; Kash, T.L. Kappa opioid receptor signaling in the brain: Circuitry and implications for treatment. Prog. Neuropsychopharmacol. Biol. Psychiatry 2015, 62, 51–60. [Google Scholar] [CrossRef] [PubMed]
- French, A.R.; van Rijn, R.M. An updated assessment of the translational promise of G-protein-biased kappa opioid receptor agonists to treat pain and other indications without debilitating adverse effects. Pharmacol. Res. 2022, 177, 106091. [Google Scholar] [CrossRef] [PubMed]
- Chavkin, C. The therapeutic potential of κ-opioids for treatment of pain and addiction. Neuropsychopharmacology 2011, 36, 369–370. [Google Scholar] [CrossRef]
- Mouraux, A.; Bannister, K.; Becker, S.; Finn, D.P.; Pickering, G.; Pogatzki-Zahn, E.; Graven-Nielsen, T. Challenges and opportunities in translational pain research—An opinion paper of the working group on translational pain research of the European pain federation (EFIC). Eur. J. Pain 2021, 25, 731–756. [Google Scholar] [CrossRef]
- Zhong, Y.; Wang, H.; Yan, M.; Yang, M.; Zhang, J.; Nan, L.; Wang, Z.; Yang, J.; Wu, J.; Guo, Q.; et al. Efficacy and safety of peripherally-restricted κ-opioid receptor agonist-HSK21542 for postoperative analgesia in patients undergoing laparoscopic abdominal surgery: A randomized, placebo-controlled phase 2 trial. Front. Med. 2025, 12, 1604790. [Google Scholar] [CrossRef]
- Zhong, Y.; Xu, Y.; Lei, Q.; Yang, M.; Wang, S.; Hu, X.; Xie, H.; Li, Y.; Qin, Z.; Gu, Z.; et al. HSK21542 in patients with postoperative pain: Two phase 3, multicentre, double-blind, randomized, controlled trials. Nat. Commun. 2025, 16, 4830. [Google Scholar] [CrossRef]
- Deeks, E.D. Difelikefalin: First Approval. Drugs 2021, 81, 1937–1944. [Google Scholar] [CrossRef]
- Kim, B.S.; Bissonnette, R.; Nograles, K.; Munera, C.; Shah, N.; Jebara, A.; Cirulli, J.; Goncalves, J.; Lebwohl, M. KOMFORT Trial Investigators. Phase 2 Trial of Difelikefalin in Notalgia Paresthetica. N. Engl. J. Med. 2023, 388, 511–517. [Google Scholar]
- Eisenach, J.C.; Carpenter, R.; Curry, R. Analgesia from a peripherally active kappa-opioid receptor agonist in patients with chronic pancreatitis. Pain 2003, 101, 89–95. [Google Scholar] [CrossRef]
- Mangel, A.W.; Bornstein, J.D.; Hamm, L.R.; Buda, J.; Wang, J.; Irish, W.; Urso, D. Clinical trial: Asimadoline in the treatment of patients with irritable bowel syndrome. Aliment. Pharmacol. Ther. 2008, 28, 239–249. [Google Scholar] [CrossRef]
- Camilleri, M. Novel pharmacology: Asimadoline, a kappa-opioid agonist, and visceral sensation. Neurogastroenterol. Motil. 2008, 20, 971–979. [Google Scholar] [CrossRef]
- Delvaux, M.; Louvel, D.; Lagier, E.; Scherrer, B.; Abitbol, J.L.; Frexinos, J. The kappa agonist fedotozine relieves hypersensitivity to colonic distention in patients with irritable bowel syndrome. Gastroenterology 1999, 116, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Arendt-Nielsen, L.; Olesen, A.E.; Staahl, C.; Menzaghi, F.; Kell, S.; Wong, G.Y.; Drewes, A.M. Analgesic efficacy of peripheral kappa-opioid receptor agonist CR665 compared to oxycodone in a multi-modal, multi-tissue experimental human pain model: Selective effect on visceral pain. Anesthesiology 2009, 111, 616–624. [Google Scholar] [CrossRef]
- Lötsch, J.; Ditterich, W.; Hummel, T.; Kobal, G. Antinociceptive effects of the kappa-opioid receptor agonist RP 60180 compared with pentazocine in an experimental human pain model. Clin. Neuropharmacol. 1997, 20, 224–233. [Google Scholar] [CrossRef]
- Mysels, D.; Sullivan, M.A. The kappa-opiate receptor impacts the pathophysiology and behavior of substance use. Am. J. Addict. 2009, 18, 272–276. [Google Scholar] [CrossRef]
- Carr, G.V.; Mague, S.D. p38: The link between the kappa-opioid receptor and dysphoria. J. Neurosci. 2008, 28, 2299–2300. [Google Scholar] [CrossRef] [PubMed]
- Cameron, C.M.; Nieto, S.; Bosler, L.; Wong, M.; Bishop, I.; Mooney, L.; Cahill, C.M. Mechanisms Underlying the Anti-Suicidal Treatment Potential of Buprenorphine. Adv. Drug Alcohol Res. 2021, 1, 10009. [Google Scholar] [CrossRef] [PubMed]
- Varastehmoradi, B.; Smith, K.L.; Müller, H.K.; Elfving, B.; Sanchez, C.; Wegener, G. Kappa opioid activation changes protein profiles in different regions of the brain relevant to depression. Eur. Neuropsychopharmacol. 2023, 72, 9–17. [Google Scholar] [CrossRef]
- Laman-Maharg, A.R.; Copeland, T.; Sanchez, E.O.; Campi, K.L.; Trainor, B.C. The long-term effects of stress and kappa opioid receptor activation on conditioned place aversion in male and female California mice. Behav. Brain Res. 2017, 332, 299–307. [Google Scholar] [CrossRef]
- Abraham, A.D.; Fontaine, H.M.; Song, A.J.; Andrews, M.M.; Baird, M.A.; Kieffer, B.L.; Land, B.B.; Chavkin, C. κ-Opioid Receptor Activation in Dopamine Neurons Disrupts Behavioral Inhibition. Neuropsychopharmacology 2018, 43, 362–372. [Google Scholar] [CrossRef]
- Allouche, S.; Noble, F.; Marie, N. Opioid receptor desensitization: Mechanisms and its link to tolerance. Front. Pharmacol. 2014, 5, 280. [Google Scholar] [CrossRef]
- Van’t Veer, A.; Carlezon, W.A., Jr. Role of kappa-opioid receptors in stress and anxiety-related behavior. Psychopharmacology 2013, 229, 435–452. [Google Scholar] [CrossRef]
- El Daibani, A.; Madasu, M.K.; Al-Hasani, R.; Che, T. Limitations and potential of κOR biased agonists for pain and itch management. Neuropharmacology 2024, 258, 110061. [Google Scholar] [CrossRef]
- Sturaro, C.; Malfacini, D.; Argentieri, M.; Djeujo, F.M.; Marzola, E.; Albanese, V.; Ruzza, C.; Guerrini, R.; Calo’, G.; Molinari, P. Pharmacology of Kappa Opioid Receptors: Novel Assays and Ligands. Front. Pharmacol. 2022, 13, 873082. [Google Scholar] [CrossRef]
- Li, G.; Nieman, A.N.; Mian, M.Y.; Zahn, N.M.; Mikulsky, B.N.; Poe, M.M.; Methuku, K.R.; Liu, Y.; Cook, J.M.; Stafford, D.C.; et al. A Structure-Activity Relationship Comparison of Imidazodiazepines Binding at Kappa, Mu, and Delta Opioid Receptors and the GABAA Receptor. Molecules 2020, 25, 3864. [Google Scholar] [CrossRef]
- Vardy, E.; Mosier, P.D.; Frankowski, K.J.; Wu, H.; Katritch, V.; Westkaemper, R.B.; Aubé, J.; Stevens, R.C.; Roth, B.L. Chemotype-selective modes of action of κ-opioid receptor agonists. J. Biol. Chem. 2013, 288, 34470–34483. [Google Scholar] [CrossRef]
- Han, J.; Zhang, J.; Nazarova, A.L.; Bernhard, S.M.; Krumm, B.E.; Zhao, L.; Lam, J.H.; Rangari, V.A.; Majumdar, S.; Nichols, D.E.; et al. Ligand and G-protein selectivity in the κ-opioid receptor. Nature 2023, 617, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Mafi, A.; Kim, S.K.; Goddard, W.A. 3rd. The atomistic level structure for the activated human κ-opioid receptor bound to the full Gi protein and the MP1104 agonist. Proc. Natl. Acad. Sci. USA 2020, 117, 5836–5843. [Google Scholar] [CrossRef] [PubMed]
- Che, T.; Majumdar, S.; Zaidi, S.A.; Ondachi, P.; McCorvy, J.D.; Wang, S.; Mosier, P.D.; Uprety, R.; Vardy, E.; Krumm, B.E.; et al. Structure of the Nanobody-Stabilized Active State of the Kappa Opioid Receptor. Cell 2018, 172, 55–67.e15. [Google Scholar] [CrossRef] [PubMed]
- Kaski, S.W.; White, A.N.; Gross, J.D.; Siderovski, D.P. Potential for Kappa-Opioid Receptor Agonists to Engineer Nonaddictive Analgesics: A Narrative Review. Anesth. Analg. 2021, 132, 406–419. [Google Scholar] [CrossRef]
- Li, Z.; Guo, L.; Ye, C.; Zhang, D. U50488 inhibits outwardly rectifying potassium channel in PC12 cells via pertussis toxin-sensitive G-protein. Biochem. Biophys. Res. Commun. 2006, 340, 1184–1191. [Google Scholar] [CrossRef]
- Belcheva, M.M.; Vogel, Z.; Ignatova, E.; Avidor-Reiss, T.; Zippel, R.; Levy, R.; Young, E.C.; Barg, J.; Coscia, C.J. Opioid modulation of extracellular signal-regulated protein kinase activity is ras-dependent and involves Gbetagamma subunits. J. Neurochem. 1998, 70, 635–645. [Google Scholar] [CrossRef] [PubMed]
- French, A.R.; Gutridge, A.M.; Yuan, J.; Royer, Q.H.; van Rijn, R.M. Sex- and β-arrestin-dependent effects of kappa opioid receptor-mediated ethanol consumption. Pharmacol. Biochem. Behav. 2022, 216, 173377. [Google Scholar] [CrossRef]
- Lovell, K.M.; Frankowski, K.J.; Stahl, E.L.; Slauson, S.R.; Yoo, E.; Prisinzano, T.E.; Aubé, J.; Bohn, L.M. Structure-activity relationship studies of functionally selective kappa opioid receptor agonists that modulate ERK 1/2 phosphorylation while preserving G protein over βarrestin2 signaling bias. ACS Chem. Neurosci. 2015, 6, 1411–1419. [Google Scholar] [CrossRef]
- Faunce, K.E.; Banks, M.L. Effects of repeated kappa-opioid receptor agonist U-50488 treatment and subsequent termination on intracranial self-stimulation in male and female rats. Exp. Clin. Psychopharmacol. 2020, 28, 44–54. [Google Scholar] [CrossRef]
- del Pilar Escobar, A.; Cornejo, F.A.; Andrés, M.E.; Fuentealba, J.A. Repeated treatment with the kappa opioid receptor agonist U69593 reverses enhanced K+ induced dopamine release in the nucleus accumbens, but not the expression of locomotor sensitization in amphetamine-sensitized rats. Neurochem. Int. 2012, 60, 344–349. [Google Scholar] [CrossRef]
- Kozono, H.; Yoshitani, H.; Nakano, R. Post-marketing surveillance study of the safety and efficacy of nalfurafine hydrochloride (Remitch® capsules 2.5 μg) in 3762 hemodialysis patients with intractable pruritus. Int. J. Nephrol. Renovasc. Dis. 2018, 11, 9–24. [Google Scholar] [CrossRef]
- Kamimura, K.; Yokoo, T.; Kamimura, H.; Sakamaki, A.; Abe, S.; Tsuchiya, A.; Takamura, M.; Kawai, H.; Yamagiwa, S.; Terai, S. Long-term efficacy and safety of nalfurafine hydrochloride on pruritus in chronic liver disease patients: Patient-reported outcome based analyses. PLoS ONE 2017, 12, e0178991. [Google Scholar] [CrossRef] [PubMed]
- Inui, S. Nalfurafine hydrochloride to treat pruritus: A review. Clin. Cosmet. Investig. Dermatol. 2015, 8, 249–255. [Google Scholar] [CrossRef] [PubMed]
- White, K.L.; Robinson, J.E.; Zhu, H.; DiBerto, J.F.; Polepally, P.R.; Zjawiony, J.K.; Nichols, D.E.; Malanga, C.J.; Roth, B.L. The G protein-biased κ-opioid receptor agonist RB-64 is analgesic with a unique spectrum of activities in vivo. J. Pharmacol. Exp. Ther. 2015, 352, 98–109. [Google Scholar] [CrossRef]
- Guerrieri, E.; Mallareddy, J.R.; Tóth, G.; Schmidhammer, H.; Spetea, M. Synthesis and pharmacological evaluation of [(3)H]HS665, a novel, highly selective radioligand for the kappa opioid receptor. ACS Chem. Neurosci. 2015, 6, 456–463. [Google Scholar] [CrossRef]
- Roach, J.J.; Shenvi, R.A. A review of salvinorin analogs and their kappa-opioid receptor activity. Bioorg. Med. Chem. Lett. 2018, 28, 1436–1445. [Google Scholar] [CrossRef] [PubMed]
- Trojniak, A.E.; Dang, V.Q.; Czekner, K.M.; Russo, R.J.; Mather, L.M.; Stahl, E.L.; Cameron, M.D.; Bohn, L.M.; Aubé, J. Synthesis and evaluation of 3,4,5-trisubstituted triazoles as G protein-biased kappa opioid receptor agonists. Eur. J. Med. Chem. 2024, 276, 116627. [Google Scholar] [CrossRef] [PubMed]
- Livingston, K.E.; Traynor, J.R. Allostery at opioid receptors: Modulation with small molecule ligands. Br. J. Pharmacol. 2018, 175, 2846–2856. [Google Scholar] [CrossRef]
- Livingston, K.E.; Stanczyk, M.A.; Burford, N.T.; Alt, A.; Canals, M.; Traynor, J.R. Pharmacologic Evidence for a Putative Conserved Allosteric Site on Opioid Receptors. Mol. Pharmacol. 2018, 93, 157–167. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, S.; Yan, L.; Li, X.; Ju, Y.; Wu, B.; Wang, H.; Wang, J.; Sun, Y. Supraspinal kappa-opioid receptors: New therapeutic strategies for pain, pruritus, and negative emotions. Exp. Brain Res. 2025, 243, 116. [Google Scholar] [CrossRef] [PubMed]
- Mititelu Tartau, L.; Bogdan, M.; Buca, B.R.; Pauna, A.M.; Tartau, C.G.; Dijmarescu, L.A.; Popa, E.G. Evaluation of Antinociceptive Effects of Chitosan-Coated Liposomes Entrapping the Selective Kappa Opioid Receptor Agonist U50,488 in Mice. Medicina 2021, 57, 138. [Google Scholar] [CrossRef]
- Ness, T.J. Kappa opioid receptor agonists differentially inhibit two classes of rat spinal neurons excited by colorectal distention. Gastroenterology 1999, 117, 388–394. [Google Scholar] [CrossRef]
- Paton, K.F.; Robichon, K.; Templeton, N.; Denny, L.; Al Abadey, A.; Luo, D.; Prisinzano, T.E.; La Flamme, A.C.; Kivell, B.M. The Salvinorin Analogue, Ethoxymethyl Ether Salvinorin B, Promotes Remyelination in Preclinical Models of Multiple Sclerosis. Front. Neurol. 2021, 12, 782190. [Google Scholar] [CrossRef]
- Muratspahić, E.; Deibler, K.; Han, J.; Tomašević, N.; Jadhav, K.B.; Olivé-Marti, A.L.; Hochrainer, N.; Hellinger, R.; Koehbach, J.; Fay, J.F.; et al. Design and structural validation of peptide-drug conjugate ligands of the kappa-opioid receptor. Nat. Commun. 2023, 14, 8064. [Google Scholar] [CrossRef]
- Dean, T.T.; Jelú-Reyes, J.; Allen, A.C.; Moore, T.W. Peptide-Drug Conjugates: An Emerging Direction for the Next Generation of Peptide Therapeutics. J. Med. Chem. 2024, 67, 1641–1661. [Google Scholar] [CrossRef]
- Marchant, N.J.; Whitaker, L.R.; Bossert, J.M.; Harvey, B.K.; Hope, B.T.; Kaganovsky, K.; Adhikary, S.; Prisinzano, T.E.; Vardy, E.; Roth, B.L.; et al. Behavioral and Physiological Effects of a Novel Kappa-Opioid Receptor-Based DREADD in Rats. Neuropsychopharmacology 2016, 41, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Al-Hasani, R.; McCall, J.G.; Foshage, A.M.; Bruchas, M.R. Locus coeruleus kappa-opioid receptors modulate reinstatement of cocaine place preference through a noradrenergic mechanism. Neuropsychopharmacology 2013, 38, 2484–2497. [Google Scholar] [CrossRef]
- Wang, T.; Zhu, X.; Yi, H.; Gu, J.; Liu, S.; Izenwasser, S.; Lemmon, V.P.; Roy, S.; Hao, S. Viral vector-mediated gene therapy for opioid use disorders. Exp. Neurol. 2021, 341, 113710. [Google Scholar] [CrossRef]
- Beck, T.C.; Hapstack, M.A.; Beck, K.R.; Dix, T.A. Therapeutic Potential of Kappa Opioid Agonists. Pharmaceuticals 2019, 12, 95. [Google Scholar] [CrossRef]
- Lambert, D.G.; Mincer, J.S. Targeting the kappa opioid receptor for analgesia and antitumour effects. Br. J. Anaesth. 2025, 134, 646–648. [Google Scholar] [CrossRef]
- Beck, T.C.; Dix, T.A. Targeting peripheral ϰ-opioid receptors for the non-addictive treatment of pain. Future Drug Discov. 2019, 1, FDD17. [Google Scholar] [CrossRef] [PubMed]
- Albert-Vartanian, A.; Boyd, M.R.; Hall, A.L.; Morgado, S.J.; Nguyen, E.; Nguyen, V.P.; Patel, S.P.; Russo, L.J.; Shao, A.J.; Raffa, R.B. Will peripherally restricted kappa-opioid receptor agonists (pKORAs) relieve pain with less opioid adverse effects and abuse potential? J. Clin. Pharm. Ther. 2016, 41, 371–382. [Google Scholar] [CrossRef]
- Alorfi, N.M. Pharmacological Methods of Pain Management: Narrative Review of Medication Used. Int. J. Gen. Med. 2023, 16, 3247–3256. [Google Scholar] [CrossRef] [PubMed]
- Knopp-Sihota, J.A.; MacGregor, T.; Reeves, J.T.H.; Kennedy, M.; Saleem, A. Management of Chronic Pain in Long-Term Care: A Systematic Review and Meta-Analysis. J. Am. Med. Dir. Assoc. 2022, 23, 1507–1516.e0. [Google Scholar] [CrossRef]
- Ferreira do Couto, M.L.; Fonseca, S.; Pozza, D.H. Pharmacogenetic Approaches in Personalized Medicine for Postoperative Pain Management. Biomedicines 2024, 12, 729. [Google Scholar] [CrossRef]
- Lozano, P.M.; Allen, C.L.; Barnes, K.A.; Peck, M.; Mogk, J.M. Persistent pain, long-term opioids, and restoring trust in the patient-clinician relationship. J. Pain 2025, 27, 104694. [Google Scholar] [CrossRef]
- Davis, C.S.; Lieberman, A.J.; Hernandez-Delgado, H.; Suba, C. Laws limiting the prescribing or dispensing of opioids for acute pain in the United States: A national systematic legal review. Drug Alcohol Depend. 2019, 194, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Briggs, S.L.; Rech, R.H. Antinociceptive interactions of micro- and kappa-opioid agonists in the colorectal distension assay in rats. Pharmacol. Biochem. Behav. 2009, 92, 343–350. [Google Scholar] [CrossRef]
- Checa-Peñalver, A.; Lírio-Romero, C.; Luiz Ferreira, E.A.; Hernandes-Iglesias, S.; García-Valdivieso, I.; Pérez-Pozuelo, J.M.; Gómez-Cantarino, S. Effectiveness of Non-Pharmacological Interventions in the Management of Pediatric Chronic Pain: A Systematic Review. Children 2024, 11, 1420. [Google Scholar] [CrossRef] [PubMed]
- Holmes, A.; Chang, Y.P. Non-pharmacological management of neuropathic pain in older adults: A systematic review. Pain Med. 2024, 25, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Li, Y.H.; Huang, Y.H.; Deng, Q.C.; Huang, Y.X.; Peng, Y.H.; Li, D. Effectiveness of non-pharmacological interventions for pain management in patients with cancer:a protocol for systematic review and network meta-analysis. BMJ Open 2024, 14, e084500. [Google Scholar] [CrossRef]
- Wang, Y.; Aaron, R.; Attal, N.; Colloca, L. An update on non-pharmacological interventions for pain relief. Cell Rep. Med. 2025, 6, 101940. [Google Scholar] [CrossRef]
- Edinoff, A.N.; Kaplan, L.A.; Khan, S.; Petersen, M.; Sauce, E.; Causey, C.D.; Cornett, E.M.; Imani, F.; Moradi Moghadam, O.; Kaye, A.M.; et al. Full Opioid Agonists and Tramadol: Pharmacological and Clinical Considerations. Anesth. Pain Med. 2021, 11, e119156. [Google Scholar] [CrossRef]
- Davis, C.S.; Carr, D.H. Legal and policy changes urgently needed to increase access to opioid agonist therapy in the United States. Int. J. Drug Policy 2019, 73, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Evans, W.; Meslin, E.M.; Kai, J.; Qureshi, N. Precision Medicine—Are We There Yet? A Narrative Review of Precision Medicine’s Applicability in Primary Care. J. Pers. Med. 2024, 14, 418. [Google Scholar] [CrossRef] [PubMed]
- Magarbeh, L.; Gorbovskaya, I.; Le Foll, B.; Jhirad, R.; Müller, D.J. Reviewing pharmacogenetics to advance precision medicine for opioids. Biomed. Pharmacother. 2021, 142, 112060. [Google Scholar] [CrossRef] [PubMed]
Pain Type | Pain Model | Compound | Effects | References |
---|---|---|---|---|
Inflammatory pain | CFA | Dynorphin A (1-7) | Dynorphin 1-7 administration significantly increased paw pressure | [110] |
CRD-induced visceral pain | U-50488 | Combined with the NSAID flurbiprofen axetil, U50,488 elicited potent visceral antinociception without CNS side effects | [111] | |
CFA | U-69593 | RVM infusion of U-69593 attenuated CFA-evoked thermal and tactile allodynia | [112] | |
Formalin test | TRK-820 (Nalfurafine) | ICI-199441 and TRK-820 produced analgesic effects in the formalin test (much potent TRK-820 than ICI-199441) | [113] | |
ICI-199441 | ||||
Formalin test | MP-1104 | MP-1104 reduced pain-like behaviors in both phases of the formalin test, effects abolished by KOR (norbinaltorphimine) and DOR (naltrindole) antagonists | [114] | |
Adjuvant- induced arthritis | PNU-50488H | Both drugs had equally powerful anti-inflammatory effects | [115] | |
EMD-61753 (Asimadoline) | ||||
Formalin test | GR-94839 | GR-94839 produced antinociception in inflammatory pain at doses with minimal CNS effects | [116] | |
Writhing test | HSK21542 (Anrikefon) | HSK21542 dose-dependently inhibited the acetic acid-induced writhing response | [117] | |
Formalin test Acetic acid- induced visceral pain | Conorphin-66 | Conorphin-66 elicited potent antinociception with minimal CNS effects | [118] | |
Formalin test | FE200041 | FE200041 exhibited robust antinociception in vivo after i.v. and s.c. administration in the formalin test | [119] | |
Acetic acid- induced visceral pain | Fedotozine | Fedotozine and PD-117,302 attenuated visceral hypersensitivity | [120] | |
PD-117,302 | ||||
CRD-induced visceral pain | Helianorphin-19 | Helianorphin-19 produced peripheral analgesia in CRD-induced visceral pain model without eliciting sedative impairments | [121] | |
Formalin test CFA | CAV1001 | CAV1001 exhibited significant antinociceptive activity in formalin- and CFA-induced pain models | [122] | |
Neuropathic pain | (CIPN) Paclitaxel | U-50488 and three analogues | All KOR agonists effectively reversed paclitaxel- induced neuropathic pain without the development of tolerance | [123] |
Unilateral peripheral mononeuropathy | U-69593 | Antinociceptive effects evoked by U-69593 | [124] | |
SNL | BRL-52537 | Antiallodynic effects in SNL rats | [125] | |
(CIPN) Paclitaxel | MP-1104 | MP1104 reduced mechanical and cold allodynia | [126] | |
SNL | EMD-61753 (Asimadoline) | Both drugs dose-dependently reduced tactile allodynia | [127] | |
ICI-204448 | ||||
(CIPN) Oxaliplatin | LOR17 | LOR17 significantly attenuated thermal hypersensitivity | [128] | |
Cancer pain | BCP | U-50488 | U-50488 inhibited BCP without affecting tumor-induced bone loss or tumor progression | [129] |
U-50488 exhibited antihyperalgesic effects in a BCP model | [130] | |||
GR-89696 | GR-89696 (in combination with IL-10) attenuated nociception | [131] | ||
CAV1001 | Both drugs demonstrated efficacy against BCP | [122] | ||
ICI-204448 |
Compound | Clinical Status | Main Indication | Effects | References |
---|---|---|---|---|
HSK21542 | Phase 2 clinical trial | Postoperative pain | HSK21542 demonstrated a safety and tolerability profile comparable to placebo across all dose regimens in patients undergoing laparoscopic abdominal surgery | [136] |
Phase 3 clinical trial | Postoperative pain | HSK21542 provided strong analgesia with good tolerability in postoperative abdominal surgery patients | [137] | |
CR845 (Difelikefalin) | Approved | Pruritus | Effective for treating moderate-to-severe pruritus in adults with chronic kidney disease undergoing hemodialysis | [138] |
Phase 2 clinical trial | Osteoarthritis | Oral CR845 provided dose-dependent pain relief in osteoarthritis patients | [NCT02524197] | |
Notalgia paresthetica | Oral difelikefalin produced modestly greater reductions in itch intensity compared with placebo over 8 weeks | [139] | ||
ADL 10-0101 | Phase 2 clinical trial | Persistent visceral pain | ADL 10-0101 reduced pain scores from 63 ± 7.6 at baseline to 23 ± 15 at 4 h post-infusion | [140] |
EMD-61753 (Asimadoline) | Randomized double-blind and randomized trial | IBS-related abdominal pain | In IBS-D patients with moderate baseline pain, asimadoline significantly improved pain relief, pain scores, pain-free days, urgency, and stool frequency | [141] |
Phase 2 clinical trial | IBS-related abdominal pain | In a 12-week trial of 596 IBS patients, asimadoline improved pain scores, increased pain-free days, and provided adequate relief of pain and discomfort | [142] | |
IBS-related abdominal pain | In IBS-D patients with moderate baseline pain, asimadoline showed significant improvements in pain scores, pain-free days, and urgency and stool frequency | [NCT00955994] | ||
Fedotozine | Randomized double-blind and randomized trial | IBS-related abdominal pain | Fedotozine raised colonic distension thresholds in IBS patients without affecting compliance | [143] |
CR665 | Randomized double-blind and randomized trial | Persistent visceral pain | Compared with placebo, CR665 elevated the pain threshold to esophageal distension while lowering tolerance to cutaneous pinch pain | [144] |
RP 60180 (Apadoline) | The study was conducted in healthy volunteers. Pain was elicited using brief pulses of gaseous CO2 applied to the nasal mucosa. CSSEPs and subjective pain ratings were recorded in response to these stimuli. RP 60180 reduced pain-related CSSERP amplitudes by 40% | [145] |
Pain Type | Pain Model | Compounds | Effects | References |
---|---|---|---|---|
Inflammatory pain | CRD-induced visceral pain | Fentanyl (MOR agonist) Spiradoline (KOR agonist) | Each agent produced complete antinociception when administered alone, while co-administration of fentanyl and spiradoline yielded additive effects at low doses and supra-additive interactions at higher doses | [195] |
Formalin test | NCP (dual MOR and KOR agonist) | NCP exerts potent KOR-mediated analgesia with constipation as the only reported side effect | [39] | |
Neuropathic pain | SNL | BRL52537 (KOR agonist) Pregabalin (VGCC inhibitor) AF-353 (P2X3 receptor antagonist) A804598 (P2X7 receptor antagonist) | I.t. combination of BRL52537, pregabalin, AF-353, and A804598 synergistically or additively attenuated allodynia evoked by SNL | [125] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Domínguez, M. κ-Opioid Receptor Agonists as Robust Pain-Modulating Agents: Mechanisms and Therapeutic Potential in Pain Modulation. J. Clin. Med. 2025, 14, 7263. https://doi.org/10.3390/jcm14207263
García-Domínguez M. κ-Opioid Receptor Agonists as Robust Pain-Modulating Agents: Mechanisms and Therapeutic Potential in Pain Modulation. Journal of Clinical Medicine. 2025; 14(20):7263. https://doi.org/10.3390/jcm14207263
Chicago/Turabian StyleGarcía-Domínguez, Mario. 2025. "κ-Opioid Receptor Agonists as Robust Pain-Modulating Agents: Mechanisms and Therapeutic Potential in Pain Modulation" Journal of Clinical Medicine 14, no. 20: 7263. https://doi.org/10.3390/jcm14207263
APA StyleGarcía-Domínguez, M. (2025). κ-Opioid Receptor Agonists as Robust Pain-Modulating Agents: Mechanisms and Therapeutic Potential in Pain Modulation. Journal of Clinical Medicine, 14(20), 7263. https://doi.org/10.3390/jcm14207263