Impact of Serum Uric Acid Levels on the Diagnosis of Coronary Vasospastic Angina
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population and Design
2.2. Acetylcholine Provocation Test
2.3. Endpoint and Statistical Analysis
3. Results
4. Discussion
4.1. Factors Associated with Coronary Vasospasm
4.2. Impact of Uric Acid on Coronary Spasm
4.3. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACh | Acetylcholine |
ALDH2 | Aldehyde dehydrogenase 2 |
AUC | Area under the curve |
NO | Nitric oxide |
HDL | High-density lipoprotein |
ROC | Receiver operating characteristics |
SUA | Serum uric acid |
VSA | Vasospastic angina |
XOR | Xanthine oxidoreductase |
References
- Ong, P.; Aziz, A.; Hansen, H.S.; Prescott, E.; Athanasiadis, A.; Sechtem, U. Structural and Functional Coronary Artery Abnormalities in Patients With Vasospastic Angina Pectoris. Circ. J. 2015, 79, 1431–1438. [Google Scholar] [CrossRef] [PubMed]
- Hokimoto, S.; Kaikita, K.; Yasuda, S.; Tsujita, K.; Ishihara, M.; Matoba, T.; Matsuzawa, Y.; Mitsutake, Y.; Mitani, Y.; Murohara, T.; et al. JCS/CVIT/JCC 2023 Guideline Focused Update on Diagnosis and Treatment of Vasospastic Angina (Coronary Spastic Angina) and Coronary Microvascular Dysfunction. Circ. J. 2023, 87, 879–936. [Google Scholar] [CrossRef]
- Hubert, A.; Seitz, A.; Pereyra, V.M.; Bekeredjian, R.; Sechtem, U.; Ong, P. Coronary Artery Spasm: The Interplay Between Endothelial Dysfunction and Vascular Smooth Muscle Cell Hyperreactivity. Eur. Cardiol. 2020, 15, e12. [Google Scholar] [CrossRef]
- Saito, Y.; Saito, Y.; Kato, K.; Kobayashi, Y. Gender differences in factors associated with vasospastic angina. Int. J. Cardiol. 2022, 349, 7–11. [Google Scholar] [CrossRef]
- Mizuno, Y.; Harada, E.; Morita, S.; Kinoshita, K.; Hayashida, M.; Shono, M.; Morikawa, Y.; Murohara, T.; Nakayama, M.; Yoshimura, M.; et al. East asian variant of aldehyde dehydrogenase 2 is associated with coronary spastic angina: Possible roles of reactive aldehydes and implications of alcohol flushing syndrome. Circulation 2015, 131, 1665–1673. [Google Scholar] [CrossRef]
- Yamamoto, K.; Saito, Y.; Tateishi, K.; Kato, K.; Kitahara, H.; Kobayashi, Y. Relation between previously implanted coronary stents and vasospasm: Patient- and vessel-level analysis. Int. J. Cardiol. 2025, 431, 133248. [Google Scholar] [CrossRef]
- Shinozaki, K.; Hattori, Y.; Suzuki, M.; Hara, Y.; Kanazawa, A.; Takaki, H.; Tsushima, M.; Harano, Y. Insulin resistance as an independent risk factor for carotid artery wall intima media thickening in vasospastic angina. Arterioscler. Thromb. Vasc. Biol. 1997, 17, 3302–3310. [Google Scholar] [CrossRef]
- Biscaglia, S.; Ceconi, C.; Malagù, M.; Pavasini, R.; Ferrari, R. Uric acid and coronary artery disease: An elusive link deserving further attention. Int. J. Cardiol. 2016, 213, 28–32. [Google Scholar] [CrossRef]
- Saito, Y.; Tanaka, A.; Node, K.; Kobayashi, Y. Uric acid and cardiovascular disease: A clinical review. J. Cardiol. 2021, 78, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Maruhashi, T.; Hisatome, I.; Kihara, Y.; Higashi, Y. Hyperuricemia and endothelial function: From molecular background to clinical perspectives. Atherosclerosis 2018, 278, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Nishino, M.; Mori, N.; Yoshimura, T.; Nakamura, D.; Lee, Y.; Taniike, M.; Makino, N.; Kato, H.; Egami, Y.; Shutta, R.; et al. Higher serum uric acid and lipoprotein(a) are correlated with coronary spasm. Heart Vessel. 2014, 29, 186–190. [Google Scholar] [CrossRef]
- Kario, K.; Kai, H.; Rakugi, H.; Hoshide, S.; Node, K.; Maekawa, Y.; Tsutsui, H.; Sakata, Y.; Aoki, J.; Nanto, S.; et al. Consensus statement on renal denervation by the Joint Committee of Japanese Society of Hypertension (JSH), Japanese Association of Cardiovascular Intervention and Therapeutics (CVIT), and the Japanese Circulation Society (JCS). Cardiovasc. Interv. Ther. 2024, 39, 376–385. [Google Scholar] [CrossRef]
- Kosmas, C.E.; Rodriguez Polanco, S.; Bousvarou, M.D.; Papakonstantinou, E.J.; Peña Genao, E.; Guzman, E.; Kostara, C.E. The Triglyceride/High-Density Lipoprotein Cholesterol (TG/HDL-C) Ratio as a Risk Marker for Metabolic Syndrome and Cardiovascular Disease. Diagnostics 2023, 13, 929. [Google Scholar] [CrossRef]
- Ohnaga, Y.; Saito, Y.; Kato, K.; Tateishi, K.; Kitahara, H.; Kobayashi, Y. Differential Impact of Diagnostic Criteria of Intracoronary Acetylcholine Provocation Testing on Clinical Characteristics and Outcomes. Circ. J. 2025, 89, 1087–1093. [Google Scholar] [CrossRef] [PubMed]
- Day, G.S.; Cruchaga, C.; Wingo, T.; Schindler, S.E.; Coble, D.; Morris, J.C. Association of Acquired and Heritable Factors With Intergenerational Differences in Age at Symptomatic Onset of Alzheimer Disease Between Offspring and Parents With Dementia. JAMA Netw. Open. 2019, 2, e1913491. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, R.; Colucci, M.; Torre, I.; Ausiello, D.; Bonanni, A.; Basile, M.; Salzillo, C.; Sanna, T.; Liuzzo, G.; Leone, A.M.; et al. Predicting the response to acetylcholine in ischemia or infarction with non-obstructive coronary arteries: The ABCD score. Atherosclerosis 2024, 391, 117503. [Google Scholar] [CrossRef]
- Ohnaga, Y.; Saito, Y.; Mori, Y.; Kato, K.; Tateishi, K.; Kitahara, H.; Kobayashi, Y. Scoring System-Based Approach for Positive Intracoronary Acetylcholine Provocation Tests: The Original and Modified ABCD Scores. JACC Adv. 2025, 4 Pt 1, 101790. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.W.; Choi, B.G.; Rha, S.W. Impact of Insulin Resistance on Acetylcholine-Induced Coronary Artery Spasm in Non-Diabetic Patients. Yonsei Med. J. 2018, 59, 1057–1063. [Google Scholar] [CrossRef]
- Opie, L.H. Metabolic syndrome. Circulation 2007, 115, e32–e35. [Google Scholar] [CrossRef]
- Itoh, T.; Mizuno, Y.; Harada, E.; Yoshimura, M.; Ogawa, H.; Yasue, H. Coronary spasm is associated with chronic low-grade inflammation. Circ. J. 2007, 71, 1074–1078. [Google Scholar] [CrossRef]
- Sharaf El Din, U.A.A.; Salem, M.M.; Abdulazim, D.O. Uric acid in the pathogenesis of metabolic, renal, and cardiovascular diseases: A review. J. Adv. Res. 2017, 8, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Rajendra, N.S.; Ireland, S.; George, J.; Belch, J.J.; Lang, C.C.; Struthers, A.D. Mechanistic insights into the therapeutic use of high-dose allopurinol in angina pectoris. J. Am. Coll. Cardiol. 2011, 58, 820–828. [Google Scholar] [CrossRef]
- Watanabe, K.; Watanabe, T.; Otaki, Y.; Murase, T.; Nakamura, T.; Kato, S.; Tamura, H.; Nishiyama, S.; Takahashi, H.; Arimoto, T.; et al. Gender Differences in the Impact of Plasma Xanthine Oxidoreductase Activity on Coronary Artery Spasm. J. Clin. Med. 2021, 10, 5550. [Google Scholar] [CrossRef] [PubMed]
- Pinxterhuis, T.H.; Ploumen, E.H.; Kok, M.M.; Schotborgh, C.E.; Anthonio, R.L.; Roguin, A.; Danse, P.W.; Benit, E.; Aminian, A.; Hartmann, M.; et al. Clinical outcome after bleeding events following coronary stenting in patients with and without comorbid peripheral arterial disease. Cardiovasc. Interv. Ther. 2025, 40, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Kawamoto, T.; Otsuki, H.; Arashi, H.; Jujo, K.; Oka, T.; Mori, F.; Tanaka, H.; Sakamoto, T.; Ishii, Y.; Terajima, Y.; et al. Adverse clinical events after percutaneous coronary intervention in very elderly patients with acute coronary syndrome. Cardiovasc. Interv. Ther. 2024, 39, 438–447. [Google Scholar] [CrossRef]
- Takamizawa, K.; Gohbara, M.; Hanajima, Y.; Tsutsumi, K.; Kirigaya, H.; Kirigaya, J.; Nakahashi, H.; Minamimoto, Y.; Kimura, Y.; Kawaura, N.; et al. Long-term outcomes and operators’ experience in primary percutaneous coronary intervention for ST-segment elevation myocardial infarction. Cardiovasc. Interv. Ther. 2025, 40, 57–67. [Google Scholar] [CrossRef]
- Shishido, K.; Ando, K.; Ito, Y.; Takamisawa, I.; Yajima, J.; Kimura, T.; Kadota, K.; Saito, S. Five-year clinical outcomes of a 2.25 mm sirolimus-eluting stent in Japanese patients with very small coronary artery disease: Final results of the CENTURY JSV study. Cardiovasc. Interv. Ther. 2023, 38, 194–201. [Google Scholar] [CrossRef]
- Takahashi, T.; Samuels, B.A.; Li, W.; Parikh, M.A.; Wei, J.; Moses, J.W.; Fearon, W.F.; Henry, T.D.; Tremmel, J.A.; Kobayashi, Y.; et al. Safety of Provocative Testing With Intracoronary Acetylcholine and Implications for Standard Protocols. J. Am. Coll. Cardiol. 2022, 79, 2367–2378. [Google Scholar] [CrossRef]
Variable | All (n = 947) | Positive ACh (n = 497) | Negative ACh (n = 450) | p-Value |
---|---|---|---|---|
Age (years) | 63.0 ± 13.1 | 62.8 ± 12.6 | 63.2 ± 13.7 | 0.638 |
Men | 488 (51.5%) | 288 (57.9%) | 200 (44.4%) | <0.001 |
Body mass index (kg/m2) | 23.6 ± 3.8 | 23.7 ± 3.7 | 23.4 ± 4.0 | 0.215 |
Hypertension | 525 (55.4%) | 273 (54.9%) | 252 (56.0%) | 0.791 |
Diabetes | 171 (18.1%) | 86 (17.3%) | 85 (18.9%) | 0.583 |
Dyslipidemia | 624 (65.9%) | 320 (64.4%) | 304 (67.6%) | 0.378 |
Current smoker | 169 (17.8%) | 113 (22.7%) | 56 (12.4%) | <0.001 |
Prior myocardial infarction | 77 (8.1%) | 46 (9.2%) | 31 (6.9%) | 0.255 |
Previous PCI | 152 (16.1%) | 90 (18.1%) | 62 (13.8%) | 0.085 |
Serum uric acid (mg/dL) | 5.3 ± 1.5 | 5.4 ± 1.6 | 5.2 ± 1.5 | 0.039 |
eGFR (mL/min/1.73 m2) | 75.4 ± 18.3 | 75.5 ± 17.6 | 75.2 ± 19.1 | 0.857 |
LDL cholesterol (mg/dL) | 112.5 ± 33.1 | 111.7 ± 34.0 | 113.3 ± 32.1 | 0.473 |
HDL cholesterol (mg/dL) | 61.6 ± 18.5 | 60.1 ± 17.9 | 63.4 ± 19.0 | 0.008 |
Triglyceride (mg/dL) | 137.9 ± 95.8 | 139.0 ± 102.0 | 136.6 ± 88.9 | 0.711 |
Triglyceride/HDL cholesterol | 2.7 ± 3.0 | 2.8 ± 3.3 | 2.6 ± 2.6 | 0.383 |
Glycated hemoglobin (%) | 5.9 ± 0.9 | 5.9 ± 0.8 | 5.9 ± 0.9 | 0.986 |
Medical treatment | ||||
Calcium channel blocker | 397 (41.9%) | 208 (41.9%) | 189 (42.0%) | 1.000 |
Long-acting nitrate | 145 (15.3%) | 95 (19.1%) | 50 (11.1%) | <0.001 |
Antiplatelet | 271 (28.6%) | 164 (33.0%) | 107 (23.8%) | 0.002 |
Statin | 356 (37.6%) | 189 (38.0%) | 167 (37.1%) | 0.823 |
ACE-I or ARB | 272 (28.7%) | 151 (30.4%) | 121 (26.9%) | 0.265 |
β-blocker | 141 (14.9%) | 74 (14.9%) | 67 (14.9%) | 1.000 |
ACh provocation test findings | ||||
Elective tests | 727 (76.8%) | 375 (75.5%) | 352 (78.2%) | 0.318 |
Number of spasm vessels | 0.98 ± 0.98 | 1.69 ± 0.73 | 0.19 ± 0.50 | <0.001 |
Multivessel spasm | 291 (30.7%) | 273 (54.9%) | 18 (4.0%) | <0.001 |
Signs of ischemia | ||||
Chest symptoms | 549 (58.0%) | 448 (90.1%) | 101 (22.4%) | <0.001 |
ECG changes | 443 (46.8%) | 384 (77.3%) | 59 (13.1%) | <0.001 |
ST-segment elevation | 144 (15.2%) | 140 (28.2%) | 4 (0.9%) | <0.001 |
Variable | Univariable | Multivariable | ||
---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
Age (years) | 1.00 (0.99–1.01) | 0.638 | ||
Men | 1.72 (1.33–2.23) | <0.001 | 1.48 (1.10–1.99) | 0.009 |
Body mass index (kg/m2) | 1.02 (0.99–1.06) | 0.215 | ||
Hypertension | 0.96 (0.74–1.24) | 0.741 | ||
Diabetes | 0.90 (0.65–1.25) | 0.527 | ||
Dyslipidemia | 0.87 (0.66–1.14) | 0.304 | ||
Current smoker | 2.08 (1.47–2.95) | <0.001 | 1.84 (1.27–2.68) | 0.001 |
Prior myocardial infarction | 1.35 (0.84–2.18) | 0.210 | ||
Previous PCI (%) | 1.38 (0.97–1.97) | 0.068 | ||
Serum uric acid (mg/dL) | 1.09 (1.00–1.19) | 0.040 | 1.00 (0.91–1.10) | 0.959 |
eGFR (mL/min/1.73 m2) | 1.00 (0.99–1.01) | 0.857 | ||
LDL cholesterol (mg/dL) | 1.00 (0.99–1.00) | 0.473 | ||
HDL cholesterol (mg/dL) | 0.99 (0.98–1.00) | 0.009 | 0.99 (0.99–1.00) | 0.143 |
Triglyceride (mg/dL) | 1.00 (1.00–1.00) | 0.711 | ||
Triglyceride/HDL cholesterol | 1.02 (0.97–1.07) | 0.385 | ||
Glycated hemoglobin (%) | 1.00 (0.86–1.17) | 0.986 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamura, N.; Saito, Y.; Tateishi, K.; Kato, K.; Kitahara, H.; Kobayashi, Y. Impact of Serum Uric Acid Levels on the Diagnosis of Coronary Vasospastic Angina. J. Clin. Med. 2025, 14, 7200. https://doi.org/10.3390/jcm14207200
Tamura N, Saito Y, Tateishi K, Kato K, Kitahara H, Kobayashi Y. Impact of Serum Uric Acid Levels on the Diagnosis of Coronary Vasospastic Angina. Journal of Clinical Medicine. 2025; 14(20):7200. https://doi.org/10.3390/jcm14207200
Chicago/Turabian StyleTamura, Nao, Yuichi Saito, Kazuya Tateishi, Ken Kato, Hideki Kitahara, and Yoshio Kobayashi. 2025. "Impact of Serum Uric Acid Levels on the Diagnosis of Coronary Vasospastic Angina" Journal of Clinical Medicine 14, no. 20: 7200. https://doi.org/10.3390/jcm14207200
APA StyleTamura, N., Saito, Y., Tateishi, K., Kato, K., Kitahara, H., & Kobayashi, Y. (2025). Impact of Serum Uric Acid Levels on the Diagnosis of Coronary Vasospastic Angina. Journal of Clinical Medicine, 14(20), 7200. https://doi.org/10.3390/jcm14207200