From Intracoronary Physiology to Endotype-Based Treatment: Quality of Life Improvement for INOCA Patients
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. The Interventional Diagnostic Procedure
2.3. Diagnostic Criteria for INOCA Endotypes
2.4. Outcomes
2.5. Statistical Analysis
3. Results
3.1. Clinical Characteristics, Symptoms and Risk Factors
3.2. Referral Pattern and Previous Examination Tool Analysis
3.3. Interventional Diagnostic Procedure
3.4. Medical Treatment Changes After the Intracoronary Physiology Testing
3.5. The Follow-Up and Quality of Life Assessment
4. Discussion
4.1. Clinical Implications
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ACEI | angiotensin-converting enzyme inhibitor |
| ARB | angiotensin receptor blocker |
| BB | beta blocker |
| CAD | coronary artery disease |
| CCB | calcium channel blocker |
| CCTA | cardiac computed tomography angiography |
| CFR | coronary flow reserve |
| CMD | coronary microvascular dysfunction |
| COVADIS | Coronary Vasomotor Disorders International Study |
| ECG | electrocardiogram |
| ESC | European Society of Cardiology |
| FFR | fractional flow reserve |
| ICA | invasive coronary angiography |
| IDP | interventional diagnostic procedure |
| IMR | index of microvascular resistance |
| INOCA | ischemia with non-obstructive coronary arteries |
| MVA | microvascular angina |
| QoL | quality of life |
| SAQ-7 | Seattle Angina Questionnaire 7 |
| VSA | vasospastic angina |
References
- Monizzi, G.; Di Lenarda, F.; Gallinoro, E.; Bartorelli, A.L. Myocardial Ischemia: Differentiating between Epicardial Coronary Artery Atherosclerosis, Microvascular Dysfunction and Vasospasm in the Catheterization Laboratory. J. Clin. Med. 2024, 13, 4172. [Google Scholar] [CrossRef]
- Patel, M.R.; Peterson, E.D.; Dai, D.; Brennan, J.M.; Redberg, R.F.; Anderson, H.V.; Brindis, R.G.; Douglas, P.S. Low Diagnostic Yield of Elective Coronary Angiography. N. Engl. J. Med. 2010, 362, 886–895. [Google Scholar] [CrossRef]
- Alam, S.; Pepine, C.J. Physiology and functional significance of the coronary microcirculation: An overview of its implications in health and disease. Am. Heart J. Plus 2024, 40, 100381. [Google Scholar] [CrossRef]
- Sinha, A.; Rahman, H.; Perera, D. Coronary microvascular disease: Current concepts of pathophysiology, diagnosis and management. Cardiovasc. Endocrinol. Metab. 2020, 10, 22–30. [Google Scholar] [CrossRef]
- Taqueti, V.R.; Di Carli, M.F. Coronary Microvascular Disease Pathogenic Mechanisms and Therapeutic Options: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2018, 72, 2625–2641. [Google Scholar] [CrossRef]
- Kunadian, V.; Chieffo, A.; Camici, P.G.; Berry, C.; Escaned, J.; Maas, A.H.E.M.; Prescott, E.; Karam, N.; Appelman, Y.; Fraccaro, C.; et al. An EAPCI Expert Consensus Document on Ischaemia with Non-Obstructive Coronary Arteries in Collaboration with European Society of Cardiology Working Group on Coronary Pathophysiology & Microcirculation Endorsed by Coronary Vasomotor Disorders International Study Group. EuroIntervention 2021, 16, 1049–1069. [Google Scholar] [CrossRef]
- Ong, P.; Camici, P.G.; Beltrame, J.F.; Crea, F.; Shimokawa, H.; Sechtem, U.; Kaski, J.C.; Bairey Merz, C.N.; Coronary Vasomotion Disorders International Study Group (COVADIS). International standardization of diagnostic criteria for microvascular angina. Int. J. Cardiol. 2018, 250, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Vrints, C.; Andreotti, F.; Koskinas, K.C.; Rossello, X.; Adamo, M.; Ainslie, J.; Banning, A.P.; Budaj, A.; Buechel, R.R.; Chiariello, G.A.; et al. 2024 ESC Guidelines for the management of chronic coronary syndromes. Eur. Heart J. 2024, 45, 3415–3537. [Google Scholar] [CrossRef] [PubMed]
- Schumann, C.L.; Mathew, R.C.; Dean, J.-H.L.; Yang, Y.; Balfour Jr, P.C.; Shaw, P.W.; Robinson, A.A.; Salerno, M.; Kramer, C.M.; Bourque, J.M.; et al. Functional and Economic Impact of INOCA and Influence of Coronary Microvascular Dysfunction. J. Am. Coll. Cardiol. Imaging 2021, 14, 1369–1379. [Google Scholar] [CrossRef]
- Hansen, B.; Holtzman, J.N.; Juszczynski, C.; Khan, N.; Kaur, G.; Varma, B.; Gulati, M. Ischemia with No Obstructive Arteries (INOCA): A Review of the Prevalence, Diagnosis and Management. Curr. Probl. Cardiol. 2023, 48, 101420. [Google Scholar] [CrossRef] [PubMed]
- Jespersen, L.; Hvelplund, A.; Abildstrom, S.Z.; Pedersen, F.; Galatius, S.; Madsen, J.K.; Jorgensen, E.; Kelbaek, H.; Prescott, E. Stable Angina Pectoris with No Obstructive Coronary Artery Disease Is Associated with Increased Risks of Major Adverse Cardiovascular Events. Eur. Heart J. 2012, 33, 734–744. [Google Scholar] [CrossRef]
- Johnson, B.D. Persistent Chest Pain Predicts Cardiovascular Events in Women without Obstructive Coronary Artery Disease: Results from the NIH-NHLBI-Sponsored Women’s Ischaemia Syndrome Evaluation (WISE) Study. Eur. Heart J. 2005, 27, 1408–1415. [Google Scholar] [CrossRef]
- Bairey Merz, C.N.; Pepine, C.J.; Walsh, M.N.; Fleg, J.L.; Camici, P.G.; Chilian, W.M.; Clayton, J.A.; Cooper, L.S.; Crea, F.; Di Carli, M.; et al. Ischemia and No Obstructive Coronary Artery Disease (INOCA): Developing Evidence-Based Therapies and Research Agenda for the Next Decade. Circulation 2017, 135, 1075–1092. [Google Scholar] [CrossRef]
- Ford, T.J.; Stanley, B.; Good, R.; Rocchiccioli, P.; McEntegart, M.; Watkins, S.; Eteiba, H.; Shaukat, A.; Lindsay, M.; Robertson, K.; et al. Stratified Medical Therapy Using Invasive Coronary Function Testing in Angina. J. Am. Coll. Cardiol. 2018, 72, 2841–2855. [Google Scholar] [CrossRef]
- Wei, J.; Mehta, P.K.; Johnson, B.D.; Samuels, B.; Kar, S.; Anderson, R.D.; Azarbal, B.; Petersen, J.; Sharaf, B.; Handberg, E.; et al. Safety of Coronary Reactivity Testing in Women with No Obstructive Coronary Artery Disease. JACC Cardiovasc. Interv. 2012, 5, 646–653. [Google Scholar] [CrossRef] [PubMed]
- Ranasinghe, S.; Merz, C.N.B.; Khan, N.; Wei, J.; George, M.; Berry, C.; Chieffo, A.; Camici, P.G.; Crea, F.; Kaski, J.C.; et al. Sex Differences in Quality of Life in Patients with Ischemia with No Obstructive Coronary Artery Disease (INOCA): A Patient Self-Report Retrospective Survey from INOCA International. J. Clin. Med. 2023, 12, 5646. [Google Scholar] [CrossRef]
- Thomas, M.; Jones, P.G.; Arnold, S.V.; Spertus, J.A. Interpretation of the Seattle Angina Questionnaire as an Outcome Measure in Clinical Trials and Clinical Care: A Review. JAMA Cardiol. 2021, 6, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Beltrame, J.F.; Crea, F.; Kaski, J.C.; Ogawa, H.; Ong, P.; Sechtem, U.; Shimokawa, H.; Bairey Merz, C.N.; Coronary Vasomotion Disorders International Study Group (COVADIS). International standardization of diagnostic criteria for vasospastic angina. Eur. Heart J. 2017, 38, 2565–2568. [Google Scholar] [CrossRef] [PubMed]
- Pepine, C.J.; Anderson, R.D.; Sharaf, B.L.; Reis, S.E.; Smith, K.M.; Handberg, E.M.; Johnson, B.D.; Sopko, G.; Bairey Merz, C.N. Coronary microvascular reactivity to adenosine predicts adverse outcome in women evaluated for suspected ischemia results from the National Heart, Lung and Blood Institute WISE (Women’s Ischemia Syndrome Evaluation) study. J. Am. Coll. Cardiol. 2010, 55, 2825–2832. [Google Scholar] [CrossRef]
- Mygind, N.D.; Michelsen, M.M.; Pena, A.; Frestad, D.; Dose, N.; Aziz, A.; Faber, R.; Host, N.; Gustafsson, I.; Hansen, P.R.; et al. Coronary microvascular function and cardiovascular risk factors in women with angina pectoris and no obstructive coronary artery disease: The iPOWER study. J. Am. Heart Assoc. 2016, 5, e003064. [Google Scholar] [CrossRef]
- Taha, Y.K.; Dungan, J.R.; Weaver, M.T.; Xu, K.; Handberg, E.M.; Pepine, C.J.; Bairey Merz, C.N. Symptom Presentation among Women with Suspected Ischemia and No Obstructive Coronary Artery Disease (INOCA). J. Clin. Med. 2023, 12, 5836. [Google Scholar] [CrossRef]
- Gulati, M.; Khan, N.; George, M.; Berry, C.; Chieffo, A.; Camici, P.G.; Crea, F.; Kaski, J.C.; Marzilli, M.; Merz, C.N.B. Ischemia with no obstructive coronary artery disease (INOCA): A patient self-report quality of life survey from INOCA international. Int. J. Cardiol. 2023, 371, 28–39. [Google Scholar] [CrossRef]
- Van Schalkwijk, D.L.; Widdershoven, J.; Magro, M.; Smaardijk, V.; Bekendam, M.; Vermeltfoort, I.; Mommersteeg, P. Clinical and psychological characteristics of patients with ischemia and non-obstructive coronary arteries (INOCA) and obstructive coronary artery disease. Am. Heart J. Plus 2023, 27, 100282. [Google Scholar] [CrossRef]
- The Centre for Disease Prevention and Control of Latvia. Psihiskā Veselība Latvijā 2015–2021 Gadā. Available online: https://www.spkc.gov.lv/lv/media/18384/download?attachment (accessed on 10 September 2025).
- Van der Meer, R.E.; Maas, A.H. The role of mental stress in ischaemia with no obstructive coronary artery disease and coronary vasomotor disorders. Eur. Cardiol. 2021, 16, e37. [Google Scholar] [CrossRef]
- Hohls, J.K.; König, H.H.; Quirke, E.; Hajek, A. Anxiety, Depression and Quality of Life-A Systematic Review of Evidence from Longitudinal Observational Studies. Int. J. Environ. Res. Public Health 2021, 18, 12022. [Google Scholar] [CrossRef] [PubMed]
- Ford, T.J.; Berry, C. How to Diagnose and Manage Angina Without Obstructive Coronary Artery Disease: Lessons from the British Heart Foundation CorMicA Trial. Interv. Cardiol. 2019, 14, 76–82. [Google Scholar] [CrossRef]
- Ong, P.; Athanasiadis, A.; Sechtem, U. Intracoronary Acetylcholine Provocation Testing for Assessment of Coronary Vasomotor Disorders. J. Vis. Exp. 2016, 114, 54295. [Google Scholar] [CrossRef]
- Fitzgerald, B.T.; Scalia, W.M.; Scalia, G.M. Female False Positive Exercise Stress ECG Testing—Fact Versus Fiction. Heart Lung Circ. 2019, 28, 735–741. [Google Scholar] [CrossRef] [PubMed]
- Sinha, A.; Dutta, U.; Demir, O.M.; De Silva, K.; Ellis, H.; Belford, S.; Ogden, M.; Li Kam Wa, M.; Morgan, H.P.; Shah, A.M.; et al. Rethinking False Positive Exercise Electrocardiographic Stress Tests by Assessing Coronary Microvascular Function. J. Am. Coll. Cardiol. 2024, 83, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Sykes, R.; Morrow, A.J.; Stanley, B.; Ang, D.; Roditi, G.; Stobo, D.; Corcoran, D.; Lang, N.N.; Mahrous, A.; Young, R.; et al. Exercise electrocardiography stress testing in suspected angina and non-obstructive coronary arteries. Eur. Heart J. 2025, 46, 2920–2923. [Google Scholar] [CrossRef]
- Ong, P.; Safdar, B.; Seitz, A.; Hubert, A.; Beltrame, J.F.; Prescott, E. Diagnosis of coronary microvascular dysfunction in the clinic. Cardiovasc. Res. 2020, 116, 841–855. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Dai, N.; Yin, G.; Zhang, W.; Mohammed, A.Q.; Xu, S.; Lv, X.; Shi, T.; Feng, C.; Mohammed, A.A.; et al. Prognostic value of combined coronary angiography-derived IMR and myocardial perfusion imaging by CZT SPECT in INOCA. J. Nucl. Cardiol. 2023, 30, 684–701. [Google Scholar] [CrossRef] [PubMed]
- Dimitriadis, K.; Pyrpyris, N.; Sakalidis, A.; Dri, E.; Iliakis, P.; Tsioufis, P.; Tatakis, F.; Beneki, E.; Fragkoulis, C.; Aznaouridis, K.; et al. ANOCA updated: From pathophysiology to modern clinical practice. Cardiovasc. Revasc. Med. 2025, 71, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Nishimiya, K.; Suda, A.; Fukui, K.; Hao, K.; Takahashi, J.; Matsumoto, Y.; Mitsuishi, K.; Watanabe, T.; Ohyama, K.; Sugisawa, J.; et al. Prognostic Links Between OCT-Delineated Coronary Morphologies and Coronary Functional Abnormalities in Patients with INOCA. JACC Cardiovasc. Interv. 2021, 14, 606–618. [Google Scholar] [CrossRef]
- Takahashi, T.; Samuels, B.A.; Li, W.; Parikh, M.A.; Wei, J.; Moses, J.W.; Fearon, W.F.; Henry, T.D.; Tremmel, J.A.; Kobayashi, Y. Safety of Provocative Testing with Intracoronary Acetylcholine and Implications for Standard Protocols. J. Am. Coll. Cardiol. 2022, 79, 2367–2378. [Google Scholar] [CrossRef]
- Vaz Ferreira, V.; Ramos, R.; Castelo, A.; Mendonça, T.; Almeida-Morais, L.; Pereira-da-Silva, T.; Oliveira, E.; Viegas, J.; Garcia Brás, P.; Grazina, A.; et al. Initial single-center experience of a standardized protocol for invasive assessment of ischemia and non-obstructive coronary artery disease. Rev. Port. Cardiol. 2023, 42, 455–465, (English, Portuguese). [Google Scholar] [CrossRef]
- Godo, S.; Takahashi, J.; Shiroto, T.; Yasuda, S.; Shimokawa, H. Coronary Microvascular Spasm: Clinical Presentation and Diagnosis. Eur. Cardiol. 2023, 18, e07. [Google Scholar] [CrossRef]
- Pepine, C.J.; Handberg, E. Women’s Ischemia Trial to Reduce Events in Non-Obstructive CAD–WARRIOR. In Proceedings of the American College of Cardiology Annual Scientific Session (ACC.25), Chicago, IL, USA, 29 March 2025. [Google Scholar]
- Szolc, P.; Guzik, B.; Niewiara, Ł.; Kleczyński, P.; Bernacik, A.; Diachyshyn, M.; Stąpór, M.; Żmudka, K.; Legutko, J. Tailored treatment of specific diagnosis improves symptoms and quality of life in patients with myocardial Ischemia and Non-obstructive Coronary Arteries. Sci. Rep. 2025, 15, 18968. [Google Scholar] [CrossRef] [PubMed]
- Berry, C.; Ang, D. iCorMicA: Stratified Medicine in Angina [Internet]. ClinicalTrials.gov Identifier: NCT04674449. Available online: https://clinicaltrials.gov/study/NCT04674449 (accessed on 9 October 2025).
| Parameter | Total (n = 35) | MVA (n = 19) | VSA (n = 9) | Combination of MVA & VSA (n = 3) | Non-Cardiac (n = 4) | p-Value |
|---|---|---|---|---|---|---|
| Age (years) | 61.00 (54.00; 69.00) | 66.00 (57.00; 73.00) | 54 (50.50; 60.00) | 62.00 (58–66) | 47.50 (45–73) | 0.048 |
| Sex (women) | 28 (80.0%) | 17 (89.5%) | 6 (66.7%) | 3 (100) | 2 (50.0%) | 0.16 |
| Body mass index (kg/m2) | 27.44 (23.89; 30.67) | 27.99 (25.40; 30.86) | 26.06 (23.10; 31.36) | 26.03 (23.53–29.40) | 22.34 (21.61–29.72) | 0.20 |
| Comorbidities (n, %) | ||||||
| Arterial hypertension | 30 (85.7%) | 17 (89.5%) | 8 (88.9%) | 2 (66.7%) | 3 (75%) | 0.67 |
| Atrial fibrillation | 2 (5.7%) | 0 | 1 (11.1%) | 1 (33.3%) | 0 | 0.08 |
| Chronic heart failure | 1 (2.9%) | 0 | 1 (11.1%) | 0 | 0 | 0.46 |
| Dyslipidemia | 35 (100%) | 19 (100%) | 9 (100%) | 3 (100%) | 4 (100%) | NS |
| Diabetes Mellitus (Type 1 and 2) | 6 (17.1%) | 2 (10.5%) | 2 (22.2%) | 1 (33.3%) | 1 (25%) | 0.69 |
| Thyroid disorders | 3 (8.6%) | 1 (5.3%) | 0 | 0 | 2 (50%) | 0.090 |
| Raynaud’s phenomenon | 2 (5.7%) | 1 (5.3%) | 1 (11.1%) | 0 | 0 | NS |
| Autoimmune disorder | 3 (8.6%) | 2 (10.5%) | 0 | 0 | 1 (25%) | 0.62 |
| Migraines | 4 (11.4%) | 2 (10.5%) | 1 (11.1%) | 0 | 1 (25%) | 0.83 |
| Depression/anxiety | 12 (34.3%) | 6 (31.6%) | 3 (33.3%) | 2 (66.7%) | 1 (25%) | 0.66 |
| Smoking or ex-smoker | 5 (14.3%) | 0 | 4 (44.4%) † | 0 | 1 (25%) | 0.014 |
| Laboratory data | ||||||
| Total cholesterol (mmol/L) | 4.06 (3.25; 5.03) | 4.40 (3.73; 5.17) | 3.61 (3.03; 5.16) | 3.74 (2.52–4.58) | 3.64 (2.94–4.42) | 0.3 |
| Low-density lipoprotein cholesterol (mmol/L) | 1.92 (1.49; 3.11) | 2.14 (1.50; 3.53) | 1.92 (1.69; 3.16) | 1.37 (0.91–2.60) | 1.54 (1.31–2.39) | 0.29 |
| High-density lipoprotein cholesterol (mmol/L) | 1.53 (1.32; 1.8) | 1.59 (1.44; 1.81) | 1.28 (1.00; 1.52) | 1.81 (1.11–2.13) | 1.48 (1.34–2.03) | 0.07 |
| Non-high-density lipoprotein cholesterol (mmol/L) | 2.45 (1.81; 3.42) | 2.59 (2.13; 3.83) | 2.09 (1.91; 3.69) | 1.61 (1.41–1.61) | 1.96 (1.52–2.89) | 0.22 |
| Triglycerides (mmol/L) | 1.18 (1.02; 1.55) | 1.23 (1.03; 1.67) | 1.02 (0.9; 1.21) | 2.39 (0.7–2.39) | 1.29 (0.84–2.04) | 0.31 |
| Glucose (mmol/L) | 5.5 (5.2; 5.7) | 5.5 (5.2; 5.7) | 5.5 (5.25; 6.15) | 5.6 (4.5–7.2) | 5.55 (4.6–6.7) | 0.99 |
| Glycated hemoglobin (%) | 5.8 (5.5; 6.0) | 5.8 (5.5; 5.9) | 5.8 (5.75; 6.15) | 5.5 (5.5–6.7) | 5.55 (5.3–6.2) | 0.55 |
| Hemoglobin (g/L) | 135 (129; 142) | 136 (129; 143) | 133 (124.5; 145) | 132 (128–132) | 134 (131–147) | 0.89 |
| Creatinine (µmol/L) | 74 (66; 83) | 73 (66; 82) | 77 (69.5; 87) | 76 (60–86) | 70 (46–94) | 0.74 |
| Uric acid (mmol/L) | 311 (236; 359) | 340 (241; 362) | 285 (231; 368) | 278 (214–300) | 234 (234–394) | 0.60 |
| Alanine transaminase (U/L) | 28 (21; 37) | 25 (19; 36) | 32 (25; 50) | 28 (21–28) | 42 (24–66) | 0.26 |
| Thyroid-stimulating hormone (mU/L) | 1.36 (0.81; 1.94) | 1.756 (0.876; 2.180) | 0.785 (0.53; 1.91) | 1.322 (1.31–1.69) | 1.130 (0.82–2.42) | 0.22 |
| Free thyroxine (µg/dL) | 1.23 (1.1; 1.56) | 1.23 (1.03; 1.56) | 1.34 (1.09; 1.59) | 1.37 (1.15–1.57) | 1.14 (1.09–1.46) | 0.79 |
| Brain natriuretic peptide (pg/mL) | 21.7 (15.36; 42.7) | 24.12 (16.16; 46.25) | 27.23 (15.12; 69.62) | 37.56 (8.85–68.7) | 15.24 (8.9–34.6) | 0.52 |
| Symptoms (n, %) | ||||||
| Chest pain/discomfort/pressure | 32 (91.4%) | 17 (89.5%) | 9 (100%) | 3 (100%) | 3 (75%) | 0.62 |
| Rest angina | 11 (31.4%) | 2 (10.5%) | 8 (88.9%) † | 1 (33.3%) | 0 | <0.001 |
| Shortness of breath | 28 (80%) | 16 (84.2%) | 7 (77.8%) | 3 (100%) | 2 (50%) | 0.39 |
| Tachycardia/palpitations | 8 (22.9%) | 4 (21.1%) | 1 (11.1%) | 2 (66.7%) | 1 (25%) | 0.26 |
| Fatigue/exhaustion | 23 (65.7%) | 14 (73.7%) | 5 (55.6%) | 3 (100%) | 1 (25%) | 0.16 |
| Excessive sweating | 10 (28.6%) | 6 (31.6%) | 3 (33.3%) | 1 (33.3%) | 0 | 0.74 |
| Headaches | 14 (40.0%) | 9 (47.4%) | 3 (33.3%) | 2 (66.7%) | 0 | 0.27 |
| Sleep–wake disorders | 4 (11.4%) | 2 (10.5%) | 1 (11.1%) | 1 (33.3%) | 0 | 0.60 |
| Depression and anxiety | 9 (25.7%) | 5 (26.3%) | 3 (33.3%) | 1 (33.3%) | 0 | 0.76 |
| Years with INOCA Symptoms (n, %) | n = 35 |
|---|---|
| <1 year | 9 (25.7%) |
| 1–3 years | 19 (54.3%) |
| years | 3 (8.6%) |
| >5 years | 4 (11.4%) |
| Clinical Assessment of Symptoms (n, %) | |
| Explained that symptoms were not cardiac | 30 (85.7%) |
| Referred to a psychiatrist for symptoms | 18 (51.4%) |
| Total visits of cardiologist due to symptoms (n, %) | |
| 1 | 5 (14.3%) |
| 2–3 | 23 (65.7%) |
| >3 | 8 (22.9%) |
| Total visits of emergency department (n, %) | |
| 1 | 12 (34.3%) |
| 2–3 | 4 (11.4%) |
| >3 | 1 (2.9%) |
| Age at INOCA diagnosis (years) (n, %) | |
| <40 | 0 (0%) |
| 41–50 | 5 (16.1%) |
| 51–60 | 8 (25.8%) |
| 61–70 | 11 (35.4%) |
| >70 | 7 (22.6%) |
| Previous investigation tools (n, %) | |
| ECG | 35 (100%) |
| Ischemic ECG during the last year | 5 (14.3%) |
| Exercise stress test | 35 (100%) |
| Echocardiography | 35 (100%) |
| Stress echocardiography | 3 (8.8%) |
| CCTA | 12 (34.3%) |
| Cardiac magnetic resonance imaging | 5 (14.3%) |
| Cardiac SPECT or PET | 4 (11.4%) |
| Invasive coronary angiography | 30 (85.7%) |
| ≥2 ICA for evaluation of symptoms | 17 (48.6%) |
| Parameter | Total (n = 35) | MVA (n = 19) | VSA (n = 9) | Combination of MVA & VSA (n = 3) | Non-Cardiac (n = 4) | p-Value |
|---|---|---|---|---|---|---|
| Coronary angiography | ||||||
| No lesions | 30 (85.6%) | 18 (94.7%) | 7 (77.8%) | 2 (66.7%) | 3 (75%) | NS |
| Stenosis 20–50% | 5 (14.3%) | 1 (5.3%) | 2 (22.2%) | 1 (33.3%) | 1 (25%) | NS |
| Microcirculation measures | ||||||
| FFR | 0.90 (0.88; 0.92) | 0.90 (0.88; 0.92) | 0.89 (0.84; 0.93) | 0.90 (0.90–0.90) | 0.90 (0.83–0.92) | 0.66 |
| CFR | 2.1 (1.8; 3.1) | 1.90 (1.70; 2.60) | 3.10 (2.85; 3.75) † | 2.00 (0.9–2.00) * | 2.65 (2.00–3.80) | 0.003 |
| CFR ≤ 2.5 | 19 (54.3%) | 14 (73.7%) | 0 † | 3 (100%) * | 2 (50%) | <0.001 |
| IMR | 27 (18; 39) | 38 (27; 40) | 20 (16; 24) † | 38 (19–38) | 23.50 (15.00–34.00) | 0.025 |
| IMR ≥ 25 | 20 (57.1%) | 15 (78.9%) | 1 (11.1%) † | 2 (66.7%) | 2 (50%) | 0.009 |
| Acetylcholine provocation test | ||||||
| Acetylcholine maximal dose (μg) | 100 | 100 | 100 | 100 | NS | |
| Diffuse epicardial spasm | 7 (20%) | 0 | 5 (55.6%) † | 2 (66.7%) | 0 | <0.001 |
| Focal epicardial spasm | 4 (11.4%) | 0 | 4 (100%) † | 0 | 0 | 0.009 |
| Microvascular spasm | 4 (11.4%) | 3 (15.8%) | 0 | 1 (33.3%) | 0 | 0.36 |
| Transient bradycardia | 12 (34.29%) | 8 (42.1%) | 3 (33.3%) | 0 | 1 (25%) | 0.70 |
| Second-degree atrioventricular block | 2 (5.71%) | 0 | 0 | 0 | 2 (10.5%) | NS |
| Parameter (n, %) | Total Baseline (n = 35) | Total Follow-Up (n = 35) | p-Value | MVA Baseline (n = 19) | MVA Follow-Up (n = 19) | p-Value | VSA Baseline (n = 9) | VSA Follow-Up (n = 9) | p-Value | Combined MVA & VSA Baseline (n = 3) | Combined MVA & VSA Follow-up (n = 3) | p-Value | Non- Cardiac Baseline (n = 4) | Non- Cardiac Follow-Up (n = 4) | p- Value |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Aspirin | 9 (25.7%) | 9 (25.7%) | NS | 5 (26.3%) | 4 (21.2%) | NS | 3 (33.3%) | 3 (33.3%) | NS | 1 (33.3%) | 1 (33.3%) | NS | 0 | 1 (25%) | NS |
| ACEI | 15 (42.9%) | 17 (48.6%) | 0.63 | 8 (42.1%) | 11 (57.9%) | 0.52 | 3 (33.3%) | 2 (22.2%) | NS | 1 (33.3%) | 1 (33.3%) | NS | 3 (75%) | 3 (75%) | NS |
| ARB | 6 (17.1%) | 4 (11.4%) | 0.5 | 3 (15.8%) | 3 (15.8%) | NS | 2 (22.2%) | 1 (11.1%) | NS | 1 (33.3%) | 0 | NS | 0 | 0 | - |
| BB | 18 (51.4%) | 18 (51.4%) | NS | 8 (42.1%) | 14 (73.7%) | 0.099 | 8 (88.8%) | 2 (22.2%) | 0.015 | 1 (33.3%) | 1 (33.3%) | NS | 1 (25%) | 1 (25%) | NS |
| CCB | 13 (37.1%) | 32 (91.4%) | <0.001 | 5 (26.3%) | 18 (94.7%) | <0.001 | 4 (44.4%) | 9 (100%) | 0.029 | 1 (33.3%) | 3 (100%) | 0.4 | 3 (75%) | 2 (50%) | NS |
| Indapamide | 4 (11.4%) | 4 (11.4%) | NS | 2 (10.5%) | 3 (15.8%) | NS | 1 (11.1%) | 0 | NS | 1 (33.3%) | 1 (33.3%) | NS | 4 (100%) | 4 (100%) | - |
| LANs | 0 | 9 (25.7%) | 0.004 | 0 | 2 (10.5%) | 0.49 | 0 | 7 (77.8%) | 0.002 | 0 | 0 | - | 0 | 0 | - |
| AAT | 3 (8.6%) | 22 (6.9%) | <0.001 | 3 (15.8%) | 18 (94.7%) | <0.001 | 9 (100%) | 9 (100%) | - | 0 | 3 (100%) | 0.1 | 0 | 1 (25%) | NS |
| Statins | 22 (62.9%) | 35 (100%) | <0.001 | 13 (68.4%) | 19 (100%) | 0.02 | 5 (55.6%) | 9 (100%) | 0.08 | 2 (66.7%) | 3 (100%) | NS | 2 (50%) | 4 (100%) | 0.43 |
| Parameter (n, %) | Total Baseline (n = 35) | Total Follow-Up (n = 35) | p-Value | MVA Baseline (n = 19) | MVA Follow-Up (n = 19) | p-Value | VSA Baseline (n = 9) | VSA Follow-Up (n = 9) | p-Value | Combined MVA & VSA Baseline (n = 3) | Combined MVA & VSA Follow-Up (n = 3) | p-Value | Non- Cardiac Baseline (n = 4) | Non- Cardiac Follow-Up (n = 4) | p- Value |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Total SAQ | 71.43 (68.57; 71.43) | 82.86 (80; 82.86) | <0.001 | 50 (50; 60) | 71.41 (68.57; 74.29) | <0.001 | 50 (50; 60) | 71.43 (68.57; 74.29 | 0.007 | 68.57 (60–71.43) | 80 (77.14–82.86) | 0.11 | 64.29 (60–71.43) | 78.57 (74.29–80) | 0.11 |
| SAQ physical limitation | 86.67 (80; 86.67) | 93.33 (86.67; 93.33) | <0.001 | 86.67 (86.67; 86.67) | 93.33 (86.67; 100) | <0.001 | 86.67 (80; 86.67) | 93.33 (86.67; 100) | 0.016 | 86.67 (66.67–86.67) | 86.67 (86.67–93.33) | 0.32 | 76.67 (60–86.67) | 86.67 (86.67–93.33) | 0.066 |
| SAQ angina frequency | 80 (80; 80) | 100 (90; 100) | <0.001 | 80 (80; 90) | 100 (90; 100) | 0.001 | 80 (80; 90) | 100 (90; 100) | 0.014 | 80 (80–80) | 100 (90–100) | 0.102 | 80 (70–90) | 90 (80–90) | 0.083 |
| SAQ QoL | 40 (30; 40) | 50 (50; 50) | <0.001 | 40 (30; 40) | 100 (90; 100) | <0.001 | 40 (35; 40) | 60 (50; 60) | 0.006 | 30 (30–40) | 50 (50–50) | 0.102 | 40 (20–40) | 50 (50–60) | 0.066 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vitola, B.; Caunite, L.; Trusinskis, K.; Mintale, I.; Erglis, A. From Intracoronary Physiology to Endotype-Based Treatment: Quality of Life Improvement for INOCA Patients. J. Clin. Med. 2025, 14, 7192. https://doi.org/10.3390/jcm14207192
Vitola B, Caunite L, Trusinskis K, Mintale I, Erglis A. From Intracoronary Physiology to Endotype-Based Treatment: Quality of Life Improvement for INOCA Patients. Journal of Clinical Medicine. 2025; 14(20):7192. https://doi.org/10.3390/jcm14207192
Chicago/Turabian StyleVitola, Barbara, Laima Caunite, Karlis Trusinskis, Iveta Mintale, and Andrejs Erglis. 2025. "From Intracoronary Physiology to Endotype-Based Treatment: Quality of Life Improvement for INOCA Patients" Journal of Clinical Medicine 14, no. 20: 7192. https://doi.org/10.3390/jcm14207192
APA StyleVitola, B., Caunite, L., Trusinskis, K., Mintale, I., & Erglis, A. (2025). From Intracoronary Physiology to Endotype-Based Treatment: Quality of Life Improvement for INOCA Patients. Journal of Clinical Medicine, 14(20), 7192. https://doi.org/10.3390/jcm14207192

