Strategies for Early Keratoconus Diagnosis: A Narrative Review of Evaluating Affordable and Effective Detection Techniques
Abstract
1. Introduction
2. Materials and Methods
2.1. Method of Literature Review
2.2. Definitions
3. Results
3.1. Instruments in Secondary and Tertiary Clinics
Technique | Cost | Need for Clinical Skills to Perform | Need of Clinical Interpretation Skills | Patient Cooperation (Interaction) | Study | Sensitivity and Specificity | Community Screening |
---|---|---|---|---|---|---|---|
Corneal tomography | High | Trained technician [40] | Medium [55,56] | High [35,57] | [41,45,49,50,52,58,59,60,61,62,63,64,65,66] | Range: 57–98%/29–100% Specific values: Sib: 67.7–82%/85–100% [50,52,67,68] light backscatter: 90%/95% [61] KVb: 74%/72% [52] ThkMin: 92%/45% [52] CCT: 91%/46% [52] BAD-D: 70–98%/32–85% [60,61,63,64,67,68,69] BCVb: 64.5%/97.7% [68] BAD-Dt: 87%/29% [60] BAD-Da: 74.3–80%/35% [60] BAD-PImax: 93%/47% [60] SDP: 57–89%/81–86% [49] PRFI: 71.7–97.4%/84.7–87.9% [47,67] Combination of morpho-geometric, volumetric and clinical parameters: 96.8%/94.5% [41] PPI min + CH: 80%/80% [64] ARTmax: 83.3%/74.3% [70] CKI: 0.27–77.3%/41.3–97.7% [65] IHD: 75–83.3%/60.3–88.6% [65,68] PE: 53–95.5%/66.7–95.4% [65,68] RMS, and RMS/A KVb and the apex front curvature: Showed high sensitivity for differentiating early KC [71] Combined parameters (I-S, SteepK-OppK, PostKmax-Position Y, Pr/Ar, PTI2): 99%/99% [72] RMS HOA: 70%/69.77% [69] B-Ele-Thin: 70%/70.54% [69] PPI avg: 73.33–77.4%/70.4–73.64% [68,69] Da: 70–73.6%/70.54–88.3% [69,73] TPpach. 87.0%/71.4% [70] | No |
Corneal topography | High | Trained technician [40] | Low [40] | High [53] | [38,45,46,48,49,50,51,52,58] | Range: 11–100%/5–100% Specific values: AAI: 77–94%/67–97% [49] CSI: 22–97%/5–100% [50] DSI: 54.1%/69.8% [48] IHA 67–83.3%/0.5–86.3% [65,68] I-S: 11–81%/79–91% [48,49,51] ISV: 74.5–100%/61.8–96% [48,50,65] IVA: 10.8%/95% [48] KISA%: 60%/100% [38] Kavg: 63–85%/52–74% [45,52] KI: 86.4–100%/63.5–100% [48,65,68] KPI: 57%/58–84% [49] OSI: 22–84%/45–99% [49,50] Sif: 74–95%/76% [45,50,52,67] SAI: 43–44%/91–92% [48,49] SRI: 68–83%/51–86% [48,49,67] Rmin: 69.8%/61.4% [65] | No |
OCT | High | Trained technician [74] | High [12] | High [75] | [58,66,76,77,78,79,80] | Range: 48–90%/88–94% Specific values: Fourier Posterior indices asymmetry: 58%/88% [76] Fourier Posterior indices Higher-order: 48%/94% [76] Several OCT parameters sensitivity: 90% [78] The coincident thinning (CTN) index 93% [81] As/Ps: 92%/96% [47] | No |
Corneal biomechanical parameters and Hysteresis measurements | High | Trained Technician * | High * | High * | [58,64,66,82,83,84,85,86] | Biomechanics improve diagnosis [82,84] ΔDAR2: 88.9%/NA [87] ΔIR: 88.4%/NA [87] ΔMax ICR: 80.5%/NA [87] ΔSP-A1: 76.2%/NA [87] SP-A1: 82.1%/74.4% [68] SP-A1: 84.93%/33.33% [88] TBI: 70.8–99%/67–95.4% [47,88,89] A1 dArc Length: 86.6%/84.4% [73] HC-Radius: 83.5%/80.5% [73] A2 Time: 83.5%/76.3% [73] CBI: 67.7–78.08%/71–97.7% [68,73,88] SSIv1: 88.14%/27.14% [90] SSIv2: 79.38%/93.47% [90] DA ratio: 73.97%/47.83% [88] ARTh: 78.08%/79.71% [88] | No |
Slit lamp biomicroscopy | medium | Clinician [35] | High [91] | High [91] | [92,93] | Not tested, but A positive association between the presence of clinical signs and topographic parameters [92] No clear clinical signs in slit lamp examination [93] | No £ |
Keratometry | medium | Clinician [94,95] | High [96] | High [97] | [39,66,94,98] | Miss inferior steepening [66] limitations in providing information about the corneal topography beyond the points of measurements [98] | No |
Retinoscopy | Low | Clinician [95,99] | High [99] | Low [99] | [66,95,99] | 98%/80% Scissoring reflex is sensitive for detecting early stages of KC 98%/80% [95,99] | Yes |
Ophthalmoscopy | Low | Clinician [8] | High but has potential for telemedicine * | Low [8] | [8] | Not tested Sensitive in detecting early KC with the ability to classify the stage of the disease. On going research | Yes |
Smart-phone based technologies | Low | Layperson [35] | High but has potential for telemedicine * | Low [35] | [35,100,101,102,103] | Not tested SmartKC [100]; SBK [35]; the null-screen test method; On going research | Yes |
Contrast sensitivity | Low | Trained technician | High [104] | High * | [105,106,107,108,109] | Not tested CS can help in detecting and grading keratoconus in different severity and even with good visual acuity | yes |
3.2. Primary Eye-Care Clinics
3.3. Primary Eye-Care Diagnosis with Affordable and Portable Equipment
3.4. Integration of Artificial Intelligence Methods for Improving Early Detection Keratoconus
Author, Year | Study Type | Number of Papers That Are Specified for Ekc (Years of Data Included in the Study) | Name of Included Devices/Imaging Modality | Type of Data | Sensitivity% | Specificity% | AUC/Accuracy% |
---|---|---|---|---|---|---|---|
Hashemi et al., 2024 [156] | A systemic and meta-analysis review | 22 (Up to March 2022) | Pentacam Sirius Galilei Tomy Orbscan CORVIS OCT OPD-Scan | Tomographic Topographic Aberrometric Biomechanics | 70.8–100 | 84.95–99.7 | 0.92–0.999/85.3–99.7 |
Afifah et al., 2024 [161] | A systematic review and meta-analysis | 6 (2018–2023) | Pentacam Pentacam-HR TMS-4 UHR-OCT | Tomographic Topographic | 97 £ | 96–98 £ | NA |
Bodmer et al., 2024 [163] | A systematic review and exploratory meta-analysis | 7 (Up to February 2022) | Pentacam TMS-4 | Tomographic Topographic | 93.7–95.1 | 94.4–100 | 0.99/86.4–98.9 |
Goodman and Zhu, 2024 [154] | A systemic review | 24 (Up to October 2023) | Pentacam HR Pentacam Sirius Orbscan OPD-Scan III SD-OCT UHR -OCT OCT (CASIA) Corvis ST Air-puff Slit lamp | Tomographic Topographic Aberrometric Biomechanics Clinical findings Demographic VA Geometric Tonometric | 75–98 | 89.8–97.9 | 0.81–0.99/68.7–99.78 |
Nguyen et al., 2024 [158] | A narrative review | 13 (1997–2024) | Pentacam-HR Galilei Sirius TMS-1 MS-39 Corvis-ST AS-OCT SD-OCT MS-39 | Tomographic Topographic Biomechanics Tonometric | 41.3–100 | 40.5–100 | 0.57–0.98/93–100 |
Hashemian et al., 2024 [167] | Comprehensive review | 4 (*) | Pentacam ORA Corvis ST | Tomographic Topographic Biomechanics | 80–85.2% | 90–96.6% | 0.945 |
Tey et al., 2024 [166] | Review | 17 (Up to August 2023) | Pentacam Galilei Sirius Oculyzer TMS-1 TMS-4 SmartKC Corvis ST APT SD-OC AS-OCT OPD-Scan III | Tomographic Topographic Aberometric Biomechanics Tonometric | 71.5–100 | 83.97–100 | 0.80–0.99/ 88.7–100 |
Huo et al., 2024 [150] | Review | 11 (June 2013 to September 2022) | ORA Corvis ST Pentacam AS-OCT SD-OCT | Tomographic Topographic Biomechanics Abberometric Tonometric | 75–100 | 82.07–100 | NA/83.33–99.6 |
Niazi et al., 2023 [67] | A systematic narrative review | 18 (Up to October 2022) | Pentacam Pentacam HR Orbscan II Sirius Corvis ST Air puff SD-OCT | Tomographic Topographic Biomechanics Genetic data Tonometric | 66.6–100 | 70–100 | 0.81–0.99/89–98.7 |
Vandevenne et al., 2023 [151] | A systematic review | 28 (2013–2022) | Pentacam Sirius Orbscan IIz Orbscan Galilei TMS-1 ARK-1 Corvis-ST OCT (CASIA, RCTVue) | Tomographic Topographic Biomechanics | 47–100 | 54–100 | NA |
Zhang et al., 2023 [162] | A systematic review | 18 (1997–2022) | Pentacam Sirius Galilei Orbscan IIz TMS-1 TMS-4 MS-39 OPD Scan III Corvis-ST AS-OCT (CASIA) UHR-OCT | Tomographic Topographic Abberometric Biomechanics | 76.92–100 | 83.1–100 | 0.96–1.0/85.4–100 |
Cao et al., 2022 [160] | A systematic review and meta-analysis | 17 (1995–2020) | Pentacam HR Orbscan IIz Sirius Galilei TMS-4 ORA Corvis ST UHR-OCT OCT (CASIA) | Tomographic Topographic Biomechanics | 82.2–92.3 | 91.4–96.7 | NA |
Shanthi et al., 2022 [159] | A systematic review | 14 (2010–2020) | Pentacam Sirius Galilei Corvis ST OPD Scan III VX120 OCT (CASIA) | Tomographic Topographic Abberometric Biomechanics Geometric Demographic | 63–97.59 | 82–98.72 | 0.69–0.98/88.8–98.2 |
Kang et al., 2022 [165] | Systematic review | 7 (2020–2022) | Tomography * Topography * AS-OCT | Tomographic Topographic | 99–86 | 99–85 | 0.995–0.93/69–99 |
Maile et al., 2021 [85] | A systematic review | 26 (2012–2020) | Pentacam Pentacam HR Orbscan IIz Sirius Galilei Corvis-ST TMS-4 MS-39 OCT (RCTVue, SS-1000 CASIA) OPD scan | Tomographic Topographic Abberometric Biomechanics Demographic | 28.5–98.5 | 14–100 | NA |
Jiang et al., 2024 [164] | Multicenter diagnostic study | Pentacam HR | Tomographic Topographic | 98 | 98 | 0.96/98 | |
Yang et al., 2024 [157] | Retrospective case-control study | Corvis-ST | Biomechanics | 100 | 75–100 | 0.92–1.00/ 85–95 | |
Mourgues et al., 2024 [123] | Retrospective case-control study | SS-OCT (CASIA 2) | Tomographic Topographic Pachymetric Abberometric | 100 84 | 100 90 | 0.98–0.99/NA | |
Ren et al., 2023 [168] | Case-control study | Pentacam Corvis ST | Tomographic Topographic Biomechanics | 76.9 | 90.4 | 0.91/NA | |
Chen et al., 2023 [153] | Prospective diagnostic study | Corvis-ST | Tomographic Topographic Biomechanics UDVA, CDVA Demographic Refraction Tonometric Slit lamp Fundus Examination | 70.30–75.25 | 89.4–99.7 | 0.88–0.89/ 86.3–93.4 |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mohammadpour, M.; Heidari, Z.; Hashemi, H. Updates on Managements for Keratoconus. J. Curr. Ophthalmol. 2018, 30, 110–124. [Google Scholar] [CrossRef] [PubMed]
- Belin, M.W.; Meyer, J.J.; Duncan, J.K.; Gelman, R.; Borgstrom, M. Assessing Progression of Keratoconus and Cross-Linking Efficacy: The Belin ABCD Progression Display. Int. J. Keratoconus Ectatic Corneal Dis. 2017, 6, 1–10. [Google Scholar] [CrossRef]
- Tuft, S.J.; Moodaley, L.C.; Gregory, W.M.; Davison, C.R.; Buckley, R.J. Prognostic Factors for the Progression of Keratoconus. Ophthalmology 1994, 101, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Krachmer, J.H.; Feder, R.S.; Belin, M.W. Keratoconus and Related Noninflammatory Corneal Thinning Disorders. Surv. Ophthalmol. 1984, 28, 293–322. [Google Scholar] [CrossRef] [PubMed]
- Rabinowitz, Y.S. Keratoconus. Surv. Ophthalmol. 1998, 42, 297–319. [Google Scholar] [CrossRef]
- Mannis, M.J.; Ling, J.J.; Kyrillos, R.; Barnett, M. Keratoconus and Personality—A Review. Cornea 2018, 37, 400–404. [Google Scholar] [CrossRef]
- Caporossi, A.; Mazzotta, C.; Baiocchi, S.; Caporossi, T. Long-Term Results of Riboflavin Ultraviolet A Corneal Collagen Cross-Linking for Keratoconus in Italy: The Siena Eye Cross Study. Am. J. Ophthalmol. 2010, 149, 585–593. [Google Scholar] [CrossRef]
- Gideon Abou Said, A.; Piñero, D.P.; Shneor, E. Revisiting the Oil Droplet Sign in Keratoconus: Utility for Early Keratoconus Diagnosis and Screening. Ophthalmic Physiol. Opt. 2023, 43, 83–92. [Google Scholar] [CrossRef]
- Kobashi, H.; Rong, S.S. Corneal Collagen Cross-Linking for Keratoconus: Systematic Review. Biomed. Res. Int. 2017, 2017, 8145651. [Google Scholar] [CrossRef]
- Gomes, J.A.P.; Rodrigues, P.F.; Lamazales, L.L. Keratoconus Epidemiology: A Review. Saudi J. Ophthalmol. 2022, 36, 3–6. [Google Scholar] [CrossRef]
- Kreps, E.O.; Claerhout, I.; Koppen, C. Diagnostic Patterns in Keratoconus. Contact Lens Anterior Eye 2021, 44, 101333. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chamberlain, W.; Tan, O.; Brass, R.; Weiss, J.L.; Huang, D. Subclinical Keratoconus Detection by Pattern Analysis of Corneal and Epithelial Thickness Maps with Optical Coherence Tomography. J. Cataract. Refract. Surg. 2016, 42, 284–295. [Google Scholar] [CrossRef] [PubMed]
- Millodot, M.; Shneor, E.; Albou, S.; Atlani, E.; Gordon-Shaag, A. Prevalence and Associated Factors of Keratoconus in Jerusalem: A Cross-Sectional Study. Ophthalmic Epidemiol. 2011, 18, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Shneor, E.; Millodot, M.; Gordon-Shaag, A.; Essa, M.; Anton, M.; Barbara, R.; Barbara, A. Prevalence of Keratoconus among Young Arab Students in Israel. Int. J. Keratoconus Ectatic Corneal Dis. 2014, 3, 9–14. [Google Scholar] [CrossRef]
- Hashemi, H.; Khabazkhoob, M.; Yazdani, N.; Ostadimoghaddam, H.; Norouzirad, R.; Amanzadeh, K.; Miraftab, M.; Derakhshan, A.; Yekta, A. The Prevalence of Keratoconus in a Young Population in Mashhad, Iran. Ophthalmic Physiol. Opt. 2014, 34, 519–527. [Google Scholar] [CrossRef]
- Waked, N.; Fayad, A.M.; Fadlallah, A.; El Rami, H. Dépistage Du Kératocône Dans Une Population Universitaire Au Liban. J. Fr. Ophtalmol. 2012, 35, 23–29. [Google Scholar] [CrossRef]
- Shneor, E.; Frucht-Pery, J.; Granit, E.; Gordon-Shaag, A. The Prevalence of Corneal Abnormalities in First-Degree Relatives of Patients with Keratoconus: A Prospective Case-Control Study. Ophthalmic Physiol. Opt. 2020, 40, 442–451. [Google Scholar] [CrossRef]
- Shehadeh, M.M.; Diakonis, V.F.; Jalil, S.A.; Younis, R.; Qadoumi, J.; Al-Labadi, L. Prevalence of Keratoconus Among a Palestinian Tertiary Student Population. Open Ophthalmol. J. 2016, 9, 172–176. [Google Scholar] [CrossRef]
- Hashemi, H.; Beiranvand, A.; Khabazkhoob, M.; Asgari, S.; Emamian, M.H.; Shariati, M.; Fotouhi, A. Prevalence of Keratoconus in a Population-Based Study in Shahroud. Cornea 2013, 32, 1441–1445. [Google Scholar] [CrossRef]
- Netto, E.A.T.; Al-Otaibi, W.M.; Hafezi, N.L.; Kling, S.; Al-Farhan, H.M.; Randleman, J.B.; Hafezi, F. Prevalence of Keratoconus in Paediatric Patients in Riyadh, Saudi Arabia. Br. J. Ophthalmol. 2018, 102, 1436–1441. [Google Scholar] [CrossRef]
- Jonas, J.B.; Nangia, V.; Matin, A.; Kulkarni, M.; Bhojwani, K. Prevalence and Associations of Keratoconus in Rural Maharashtra in Central India: The Central India Eye and Medical Study. Am. J. Ophthalmol. 2009, 148, 760–765. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wang, Y.X.; Guo, Y.; You, Q.S.; Jonas, J.B.; Beijing Eye Study Group. Prevalence and Associations of Steep Cornea/Keratoconus in Greater Beijing. The Beijing Eye Study. PLoS ONE 2012, 7, e39313. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, R.H.; Bourne, W.M.; Dyer, J.A. A 48-Year Clinical and Epidemiologic Study of Keratoconus. Am. J. Ophthalmol. 1986, 101, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, K.; Hjortdal, J.; Nohr, E.A.; Ehlers, N. Incidence and Prevalence of Keratoconus in Denmark. Acta Ophthalmol. Scand. 2007, 85, 890–892. [Google Scholar] [CrossRef]
- Ihalainen, A. Clinical and Epidemiological Features of Keratoconus Genetic and External Factors in the Pathogenesis of the Disease. Acta Ophthalmol. Suppl. 1986, 178, 1–64. [Google Scholar] [PubMed]
- Tanabe, U.; Fujiki, K.; Ogawa, A.; Ueda, S.; Kanai, A. Prevalence of Keratoconus Patients in Japan. Nihon Ganka Gakkai Zasshi 1985, 89, 407–411. [Google Scholar] [PubMed]
- Gordon-Shaag, A.; Millodot, M.; Shneor, E.; Liu, Y. The Genetic and Environmental Factors for Keratoconus. Biomed. Res. Int. 2015, 2015, 795738. [Google Scholar] [CrossRef]
- Gordon-Shaag, A.; Millodot, M.; Essa, M.; Garth, J.; Ghara, M.; Shneor, E. Is Consanguinity a Risk Factor for Keratoconus? Optom. Vis. Sci. 2013, 90, 448–454. [Google Scholar] [CrossRef]
- Chan, E.; Chong, E.W.; Lingham, G.; Stevenson, L.J.; Sanfilippo, P.G.; Hewitt, A.W.; Mackey, D.A.; Yazar, S. Prevalence of Keratoconus Based on Scheimpflug Imaging: The Raine Study. Ophthalmology 2021, 128, 515–521. [Google Scholar] [CrossRef]
- Klyce, S.D. Chasing the Suspect: Keratoconus. Br. J. Ophthalmol. 2009, 93, 745–747. [Google Scholar] [CrossRef]
- Henriquez, M.A.; Hadid, M.; Izquierdo, L. A Systematic Review of Subclinical Keratoconus and Forme Fruste Keratoconus. J. Refract. Surg. 2020, 36, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Gomes, J.A.P.; Tan, D.; Rapuano, C.J.; Belin, M.W.; Ambrósio, R.; Guell, J.L.; Malecaze, F.; Nishida, K.; Sangwan, V.S. Global Consensus on Keratoconus and Ectatic Diseases. Cornea 2015, 34, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Song, G.; Jelly, E.T.; Chu, K.K.; Kendall, W.Y.; Wax, A. A Review of Low-Cost and Portable Optical Coherence Tomography. Prog. Biomed. Eng. 2021, 3, 032002. [Google Scholar] [CrossRef]
- Trevethan, R. Sensitivity, Specificity, and Predictive Values: Foundations, Pliabilities, and Pitfalls in Research and Practice. Front. Public. Health 2017, 5, 307. [Google Scholar] [CrossRef]
- Hafezi, N.L.; Hafezi, F. Developing Affordable, Portable and Simplistic Diagnostic Sensors to Improve Access to Care. Sensors 2022, 22, 1181. [Google Scholar] [CrossRef]
- Savini, G.; Barboni, P.; Carbonelli, M.; Hoffer, K.J. Repeatability of Automatic Measurements by a New Scheimpflug Camera Combined with Placido Topography. J. Cataract. Refract. Surg. 2011, 37, 1809–1816. [Google Scholar] [CrossRef]
- Piñero, D.P.; Alió, J.L.; Alesón, A.; Vergara, M.E.; Miranda, M. Corneal Volume, Pachymetry, and Correlation of Anterior and Posterior Corneal Shape in Subclinical and Different Stages of Clinical Keratoconus. J. Cataract. Refract. Surg. 2010, 36, 814–825. [Google Scholar] [CrossRef]
- Rabinowitz, Y.S.; Rasheed, K. KISA% Index: A Quantitative Videokeratography Algorithm Embodying Minimal Topographic Criteria for Diagnosing Keratoconus. J. Cataract. Refract. Surg. 1999, 25, 1327–1335. [Google Scholar] [CrossRef]
- Maeda, N.; Klyce, S.D.; Smolek, M.K. Comparison of Methods for Detecting Keratoconus Using Videokeratography. Arch. Ophthalmol. 1995, 113, 870–874. [Google Scholar] [CrossRef]
- Uma, S.; Koushik, T. Corneal Topography. In StatPearls; StatPearls: Treasure Island, FL, USA, 2023. [Google Scholar]
- Toprak, I.; Cavas, F.; Velázquez, J.S.; Alio del Barrio, J.L.; Alio, J.L. Subclinical Keratoconus Detection with Three-Dimensional (3-D) Morphogeometric and Volumetric Analysis. Acta Ophthalmol. 2020, 98, e933–e942. [Google Scholar] [CrossRef]
- Castro-luna, G.; Jiménez-rodríguez, D.; Castaño-fernández, A.B.; Pérez-rueda, A. Diagnosis of Subclinical Keratoconus Based on Machine Learning Techniques. J. Clin. Med. 2021, 10, 4281. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.E.; Lin, D.T.C.; Klyce, S.D.; Reidy, J.J.; Insler, M.S. Topographic Changes in Contact Lens-Induced Corneal Warpage. Ophthalmology 1990, 97, 734–744. [Google Scholar] [CrossRef] [PubMed]
- Maeda, N.; Klyce, S.D.; Smolek, M.K.; Thompson, H.W. Automated Keratoconus Screening with Corneal Topography Analysis. Investig. Ophthalmol. Vis. Sci. 1994, 35, 2749–2757. [Google Scholar]
- Kandel, S.; Chaudhary, M.; Mishra, S.K.; Joshi, N.D.; Subedi, M.; Puri, P.R.; Gyawali, P.; Bist, J.; Kandel, H. Evaluation of Corneal Topography, Pachymetry and Higher Order Aberrations for Detecting Subclinical Keratoconus. Ophthalmic Physiol. Opt. 2022, 42, 594–608. [Google Scholar] [CrossRef]
- Li, X.; Yang, H.; Rabinowitz, Y.S. Keratoconus: Classification Scheme Based on Videokeratography and Clinical Signs. J. Cataract. Refract. Surg. 2009, 35, 1597–1603. [Google Scholar] [CrossRef]
- Al Bdour, M.; Sabbagh, H.M.; Jammal, H.M. Multi-Modal Imaging for the Detection of Early Keratoconus: A Narrative Review. Eye Vis. 2024, 11, 18. [Google Scholar] [CrossRef]
- Shetty, R.; Rao, H.; Khamar, P.; Sainani, K.; Vunnava, K.; Jayadev, C.; Kaweri, L. Keratoconus Screening Indices and Their Diagnostic Ability to Distinguish Normal From Ectatic Corneas. Am. J. Ophthalmol. 2017, 181, 140–148. [Google Scholar] [CrossRef]
- Moshirfar, M.; Motlagh, M.N.; Murri, M.S.; Momeni-Moghaddam, H.; Ronquillo, Y.C.; Phillip, C.H. Galilei Corneal Tomography for Screening of Refractive Surgery Candidates: A Review of the Literature, Part II. Med. Hypothesis Discov. Innov. Ophthalmol. 2019, 8, 204. [Google Scholar]
- Doctor, K.; Vunnava, K.P.; Shroff, R.; Kaweri, L.; Lalgudi, V.G.; Gupta, K.; Kundu, G. Simplifying and Understanding Various Topographic Indices for Keratoconus Using Scheimpflug Based Topographers. Indian J. Ophthalmol. 2020, 68, 2732–2743. [Google Scholar] [CrossRef]
- Heidari, Z.; Hashemi, H.; Mohammadpour, M.; Amanzadeh, K.; Fotouhi, A. Evaluation of Corneal Topographic, Tomographic and Biomechanical Indices for Detecting Clinical and Subclinical Keratoconus: A Comprehensive Three-Device Study. Int. J. Ophthalmol. 2021, 14, 228–239. [Google Scholar] [CrossRef]
- Salman, A.; Darwish, T.; Ali, A.; Ghabra, M.; Shaaban, R. Sensitivity and Specificity of Sirius Indices in Diagnosis of Keratoconus and Suspect Keratoconus. Eur. J. Ophthalmol. 2021, 32, 790–797. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Caneiro, D.; Iskander, D.R.; Collins, M.J. Estimating Corneal Surface Topography in Videokeratoscopy in the Presence of Strong Signal Interference. IEEE Trans. Biomed. Eng. 2008, 55, 2381–2387. [Google Scholar] [CrossRef] [PubMed]
- Anitha, V.; Vanathi, M.; Raghavan, A.; Rajaraman, R.; Ravindran, M.; Tandon, R. Pediatric Keratoconus—Current Perspectives and Clinical Challenges. Indian J. Ophthalmol. 2021, 69, 214–225. [Google Scholar] [CrossRef] [PubMed]
- Moshirfar, M.; Duong, A.; Ronquillo, Y. Corneal Imaging. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Sinjab, M.M. Corneal Tomography in Clinical Practice (Pentacam System): Basics and Clinical Interpretation, 4th ed.; Jaypee Brothers Medical Publishers (P) Ltd.: New Delhi, India, 2021. [Google Scholar]
- Kanclerz, P.; Khoramnia, R.; Wang, X. Current Developments in Corneal Topography and Tomography. Diagnostics 2021, 11, 1466. [Google Scholar] [CrossRef]
- Masiwa, L.E.; Moodley, V. A Review of Corneal Imaging Methods for the Early Diagnosis of Pre-Clinical Keratoconus. J. Optom. 2020, 13, 269–275. [Google Scholar] [CrossRef]
- Huseynli, S.; Salgado-Borges, J.; Alio, J.L. Comparative Evaluation of Scheimpflug Tomography Parameters between Thin Non-Keratoconic, Subclinical Keratoconic, and Mild Keratoconic Corneas. Eur. J. Ophthalmol. 2018, 28, 521–534. [Google Scholar] [CrossRef]
- Thulasidas, M.; Teotia, P. Evaluation of Corneal Topography and Tomography in Fellow Eyes of Unilateral Keratoconus Patients for Early Detection of Subclinical Keratoconus. Indian J. Ophthalmol. 2020, 68, 2415–2420. [Google Scholar] [CrossRef]
- Consejo, A.; Jiménez-García, M.; Issarti, I.; Rozema, J.J. Detection of Subclinical Keratoconus With a Validated Alternative Method to Corneal Densitometry. Transl. Vis. Sci. Technol. 2021, 10, 32. [Google Scholar] [CrossRef]
- Gharieb, H.M.; Othman, I.S.; Oreaba, A.H.; Abdelatif, M.K. Topographic, Elevation, and Keratoconus Indices for Diagnosis of Keratoconus by a Combined Placido and Scheimpflug Topography System. Eur. J. Ophthalmol. 2021, 31, 1553–1562. [Google Scholar] [CrossRef]
- Huseynli, S.; Abdulaliyeva, F. Evaluation of Scheimpflug Tomography Parameters in Subclinical Keratoconus, Clinical Keratoconus and Normal Caucasian Eyes. Turk. J. Ophthalmol. 2018, 48, 99–108. [Google Scholar] [CrossRef]
- Atalay, E.; Özalp, O.; Erol, M.A.; Bilgin, M.; Yıldırım, N. A Combined Biomechanical and Tomographic Model for Identifying Cases of Subclinical Keratoconus. Cornea 2020, 39, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Motlagh, M.N.; Moshirfar, M.; Murri, M.S.; Skanchy, D.F.; Momeni-Moghaddam, H.; Ronquillo, Y.C.; Hoopes, P.C. Pentacam® Corneal Tomography for Screening of Refractive Surgery Candidates: A Review of the Literature, Part I. Med. Hypothesis Discov. Innov. Ophthalmol. 2019, 8, 177–203. [Google Scholar] [PubMed]
- Bevara, A.; Vaddavalli, P.K. The Evolution of Diagnostics for Keratoconus: From Ophthalmometry to Biomechanics. Semin. Ophthalmol. 2023, 38, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Niazi, S.; Jiménez-García, M.; Findl, O.; Gatzioufas, Z.; Doroodgar, F.; Shahriari, M.H.; Javadi, M.A. Keratoconus Diagnosis: From Fundamentals to Artificial Intelligence: A Systematic Narrative Review. Diagnostics 2023, 13, 2715. [Google Scholar] [CrossRef]
- Ganesh, M.; Arora, R.; Titiyal, J.S. Combined Corneal Biomechanical and Tomographical Indices in Subclinical and Forme Fruste Keratoconus. Indian J. Ophthalmol. 2024, 72, 1337–1345. [Google Scholar] [CrossRef]
- Somali, A.A.; Najmi, H.; Alsawadi, H.; Alsawadi, H.; Almalki, A.; Alhamoud, M.; Alhatlan, H.; Alwohaibi, N. Analysis of Scheimpflug Tomography Parameters for Detecting Subclinical Keratoconus in the Fellow Eyes of Patients with Unilateral Keratoconus in the Eastern Province of Saudi Arabia. Clin. Ophthalmol. 2024, 18, 277–287. [Google Scholar] [CrossRef]
- Toprak, İ.; Martin, Ç.; Güneş, C.E.; Alio, J. Revisiting Pentacam Parameters in the Diagnosis of Subclinical and Mild Keratoconus Based on Different Grading System Definitions. Turk. J. Ophthalmol. 2023, 53, 324–335. [Google Scholar] [CrossRef]
- Gharieb, H.M.; Abdelatif, M.K.; Gharieb, H.M.; Othman, I.S. Early, Forme Fruste Keratoconus and Normal Thin Cornea, Evaluation of Sensitive Parameters by Combined Placido Scheimpflug Topography. Eur. J. Ophthalmol. 2024, 34, 59–70. [Google Scholar] [CrossRef]
- Saad, A.; Debellemanière, G.; Zeboulon, P.; Rizk, M.; Rouger, H.; Mazharian, A.; Grise-Dulac, A.; Panthier, C.; Gatinel, D. Discrimination between Keratoconus, Forme Fruste Keratoconus, and Normal Eyes Using a Novel OCT-Based Tomographer. J. Cataract. Refract. Surg. 2023, 49, 1092–1097. [Google Scholar] [CrossRef]
- Chen, X.; Cao, H.; Huo, Y.; Song, J.; Zou, H.; Li, J.; Hou, J.; Wang, Y. Screening of Sensitive in Vivo Characteristics for Early Keratoconus Diagnosis: A Multicenter Study. Front. Bioeng. Biotechnol. 2023, 11, 1158299. [Google Scholar] [CrossRef]
- Yim, M.; Galor, A.; Nanji, A.; Joag, M.; Palioura, S.; Feuer, W.; Karp, C.L. Ability of Novice Clinicians to Interpret High-Resolution Optical Coherence Tomography for Ocular Surface Lesions. Can. J. Ophthalmol. 2018, 53, 150–154. [Google Scholar] [CrossRef] [PubMed]
- de Amorim Garcia Filho, C.A.; Yehoshua, Z.; Gregori, G.; Puliafito, C.A.; Rosenfeld, P.J. Optical Coherence Tomography. Retin. Fifth Ed. 2013, 1, 82–110. [Google Scholar] [CrossRef]
- Maeno, S.; Koh, S.; Inoue, R.; Oie, Y.; Maeda, N.; Jhanji, V.; Nishida, K. Fourier Analysis on Irregular Corneal Astigmatism Using Optical Coherence Tomography in Various Severity Stages of Keratoconus. Am. J. Ophthalmol. 2022, 243, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Pavlatos, E.; Chamberlain, W.; Huang, D.; Li, Y. Keratoconus Detection Using OCT Corneal and Epithelial Thickness Map Parameters and Patterns. J. Cataract. Refract. Surg. 2021, 47, 759–766. [Google Scholar] [CrossRef]
- Yücekul, B.; Dick, H.B.; Taneri, S. Systematic Detection of Keratoconus in OCT: Corneal and Epithelial Thickness Maps. J. Cataract. Refract. Surg. 2022, 48, 1360–1365. [Google Scholar] [CrossRef]
- Hu, L.; Li, Y.; Liu, Q.; Xu, Z.; Gu, J.; Li, A.; Wang, Y.; Lin, K.; Xia, J.; Chen, S.; et al. Corneal Vertical and Horizontal Thickness Profiles Generated by UHR-OCT for Suspected and Subclinical Keratoconus Diagnosis. J. Refract. Surg. 2021, 37, 438–445. [Google Scholar] [CrossRef]
- Khamar, P.; Rao, K.; Wadia, K.; Dalal, R.; Grover, T.; Versaci, F.; Gupta, K. Advanced Epithelial Mapping for Refractive Surgery. Indian J. Ophthalmol. 2020, 68, 2819–2830. [Google Scholar] [CrossRef]
- Pavlatos, E.; Chen, S.; Yang, Y.; Wang, Q.; Huang, D.; Li, Y. A Coincident Thinning Index for Keratoconus Identification Using OCT Pachymetry and Epithelial Thickness Maps. J. Refract. Surg. 2020, 36, 757–765. [Google Scholar] [CrossRef]
- Padmanabhan, P.; Elsheikh, A. Keratoconus: A Biomechanical Perspective. Curr. Eye Res. 2022, 48, 121–129. [Google Scholar] [CrossRef]
- Degle, S. Detection of Subclinical Keratoconus. Klin Monbl Augenheilkd 2022, 239, 233–250. [Google Scholar] [CrossRef]
- Augustin, V.A.; Son, H.S.; Baur, I.; Zhao, L.; Auffarth, G.U.; Khoramnia, R. Detecting Subclinical Keratoconus by Biomechanical Analysis in Tomographically Regular Keratoconus Fellow Eyes. Eur. J. Ophthalmol. 2021, 32, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Maile, H.; Li, J.P.O.; Gore, D.; Leucci, M.; Mulholland, P.; Hau, S.; Szabo, A.; Moghul, I.; Balaskas, K.; Fujinami, K.; et al. Machine Learning Algorithms to Detect Subclinical Keratoconus: Systematic Review. JMIR Med. Inf. 2021, 9, e27363. [Google Scholar] [CrossRef] [PubMed]
- Herber, R.; Ramm, L.; Spoerl, E.; Raiskup, F.; Pillunat, L.E.; Terai, N. Assessment of Corneal Biomechanical Parameters in Healthy and Keratoconic Eyes Using Dynamic Bidirectional Applanation Device and Dynamic Scheimpflug Analyzer. J. Cataract. Refract. Surg. 2019, 45, 778–788. [Google Scholar] [CrossRef]
- Xian, Y.; Zhao, Y.; Sun, L.; Zhang, X.; Ding, L.; Liu, Z.; Li, Y.; Ding, Y.; Jiang, L.; Zhou, X.; et al. Comparison of Bilateral Differential Characteristics of Corneal Biomechanics between Keratoconus and Normal Eyes. Front. Bioeng. Biotechnol. 2023, 11, 1163223. [Google Scholar] [CrossRef]
- Peyman, A.; Sepahvand, F.; Pourazizi, M.; Noorshargh, P.; Forouhari, A. Corneal Biomechanics in Normal and Subclinical Keratoconus Eyes. BMC Ophthalmol. 2023, 23, 459. [Google Scholar] [CrossRef]
- Wallace, H.B.; Vellara, H.R.; Gokul, A.; McGhee, C.N.J.; Meyer, J.J. Comparison of Ectasia Detection in Early Keratoconus Using Scheimpflug-Based Corneal Tomography and Biomechanical Assessments. Cornea 2023, 42, 1528–1535. [Google Scholar] [CrossRef]
- Miao, Y.Y.; Ma, X.M.; Qu, Z.X.; Eliasy, A.; Wu, B.W.; Xu, H.; Wang, P.; Zheng, X.B.; Wang, J.J.; Ye, Y.F.; et al. Performance of Corvis ST Parameters Including Updated Stress-Strain Index in Differentiating Between Normal, Forme-Fruste, Subclinical, and Clinical Keratoconic Eyes. Am. J. Ophthalmol. 2024, 258, 196–207. [Google Scholar] [CrossRef]
- Kaur, K.; Gurnani, B. Slit-Lamp Biomicroscope. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Naderan, M.; Jahanrad, A.; Farjadnia, M. Clinical Biomicroscopy and Retinoscopy Findings of Keratoconus in a Middle Eastern Population. Clin. Exp. Optom. 2018, 101, 46–51. [Google Scholar] [CrossRef]
- Lang, S.J.; Maier, P.; Böhringer, T.; Reinhard, T. Early Diagnosis of Keratoconus. Ophthalmologe 2022, 119, 209–218. [Google Scholar] [CrossRef]
- Zhang, X.; Munir, S.Z.; Sami Karim, S.A.; Munir, W.M. A Review of Imaging Modalities for Detecting Early Keratoconus. Eye 2021, 35, 173–187. [Google Scholar] [CrossRef]
- Al-Mahrouqi, H.; Oraba, S.B.; Al-Habsi, S.; Mundemkattil, N.; Babu, J.; Panchatcharam, S.M.; Al-Saidi, R.; Al-Raisi, A. Retinoscopy as a Screening Tool for Keratoconus. Cornea 2019, 38, 442–445. [Google Scholar] [CrossRef] [PubMed]
- Song, A.L.; Rizzuti, A. Optical Biometry. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar] [PubMed]
- Gurnani, B.; Kaur, K. Keratometer. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Hashemi, H.; Yekta, A.; Khabazkhoob, M. Effect of Keratoconus Grades on Repeatability of Keratometry Readings: Comparison of 5 Devices. J. Cataract. Refract. Surg. 2015, 41, 1065–1072. [Google Scholar] [CrossRef] [PubMed]
- Goebels, S.; Käsmann-Kellner, B.; Eppig, T.; Seitz, B.; Langenbucher, A. Can Retinoscopy Keep up in Keratoconus Diagnosis? Contact Lens Anterior Eye 2015, 38, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Gairola, S.; Bohra, M.; Shaheer, N.; Jayaprakash, N.; Joshi, P.; Balasubramaniam, A.; Murali, K.; Kwatra, N.; Jain, M. SmartKC: Smartphone-Based Corneal Topographer for Keratoconus Detection. In Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies; Association for Computing Machinery: New York, NY, USA, 2021; Volume 5, p. 1. [Google Scholar] [CrossRef]
- Gairola, S.; Joshi, P.; Balasubramaniam, A.; Murali, K.; Kwatra, N.; Jain, M. Keratoconus Classifier for Smartphone-Based Corneal Topographer. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Scotland, UK, 11–15 July 2022; pp. 1875–1878. [Google Scholar] [CrossRef]
- Huerta-Carranza, O.; Campos-García, M.; Moreno-Oliva, V.I.; Aguirre-Aguirre, D.; Pérez-Lomelí, J.S. Smartphone-Based Corneal Topography with Null-Screens. Appl. Opt. 2022, 61, 1381. [Google Scholar] [CrossRef]
- Campos-García, M.; Aguirre-Aguirre, D.; Lechuga-Núñez, J.A.; Peña-Conzuelo, A. Design of a Null-Screen for a Compact Corneal Topographer. In Proceedings of the Modeling Aspects in Optical Metrology VII, Munich, Germany, 24–26 June 2019; Volume 14. [Google Scholar] [CrossRef]
- Kaur, K.; Gurnani, B. Contrast Sensitivity; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar] [PubMed]
- Shneor, E.; Piñero, D.P.; Doron, R. Contrast Sensitivity and Higher-Order Aberrations in Keratoconus Subjects. Sci. Rep. 2021, 11, 12971. [Google Scholar] [CrossRef]
- Awad, E.A.; Abou Samra, W.A.; Torky, M.A.; El-Kannishy, A.M. Objective and Subjective Diagnostic Parameters in the Fellow Eye of Unilateral Keratoconus. BMC Ophthalmol. 2017, 17, 186. [Google Scholar] [CrossRef]
- Jinabhai, A.; O’Donnell, C.; Radhakrishnan, H.; Nourrit, V. Forward Light Scatter and Contrast Sensitivity in Keratoconic Patients. Contact Lens Anterior Eye 2012, 35, 22–27. [Google Scholar] [CrossRef]
- Pesudovs, K.; Schoneveld, P.; Seto, R.J.; Coster, D.J. Contrast and Glare Testing in Keratoconus and after Penetrating Keratoplasty. Br. J. Ophthalmol. 2004, 88, 653–657. [Google Scholar] [CrossRef]
- Ling, Y.X.; Yuhao, S.; Xiaoyu, Y.; Wuxiao, Z.; Yang, Z.; Zhong-Lin, S.; Xingtao, L.; Zhao, Z.J. The Characteristics of Quick Contrast Sensitivity Function in Keratoconus and Its Correlation with Corneal Topography. Ophthalmol. Ther. 2023, 12, 293–305. [Google Scholar] [CrossRef]
- Atalay, E.; Özalp, O.; Yıldırım, N. Advances in the Diagnosis and Treatment of Keratoconus. Ther. Adv. Ophthalmol. 2021, 13, 251584142110127. [Google Scholar] [CrossRef]
- Alqudah, N. Keratoconus: Imaging Modalities and Management. Med. Hypothesis Discov. Innov. Ophthalmol. 2024, 13, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Belin, M.W.; Jang, H.S.; Borgstrom, M. Keratoconus: Diagnosis and Staging. Cornea 2022, 41, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Meisler, D.M.; Tang, M.; Lu, A.T.H.; Thakrar, V.; Reiser, B.J.; Huang, D. Keratoconus Diagnosis with Optical Coherence Tomography Pachymetry Mapping. Ophthalmology 2008, 115, 2159–2166. [Google Scholar] [CrossRef] [PubMed]
- Yip, H.; Chan, E. Optical Coherence Tomography Imaging in Keratoconus. Clin. Exp. Optom. 2019, 102, 218–223. [Google Scholar] [CrossRef]
- Naujokaitis, T.; Khoramnia, R.; Friedrich, M.; Son, H.S.; Auffarth, G.U.; Augustin, V.A. Inter-Zonal Epithelial Thickness Differences for Early Keratoconus Detection Using Optical Coherence Tomography. Eye 2024, 38, 2968–2975. [Google Scholar] [CrossRef]
- Scuderi, L.; Anselmi, G.; Greco, A.; Abdolrahimzadeh, B.; Costa, M.C.; Scuderi, G. Early Identification of Keratoconus Using Pachymetric Indexes Obtained with Spectral Domain Optical Coherence Tomography. Clin. Ter. 2021, 172, 347–357. [Google Scholar] [CrossRef]
- Bui, A.D.; Truong, A.; Pasricha, N.D.; Indaram, M. Keratoconus Diagnosis and Treatment: Recent Advances and Future Directions. Clin. Ophthalmol. 2023, 17, 2705. [Google Scholar] [CrossRef]
- Vingopoulos, F.; Zisimopoulos, A.; Kanellopoulos, A.J. Concordance of Keratoconus in Monozygotic Twins before and after Combined Corneal Crosslinking/Photorefractive Keratectomy (Athens Protocol) Using Scheimpflug and OCT Tomography. J. Cataract. Refract. Surg. 2022, 48, 83–88. [Google Scholar] [CrossRef]
- Reinstein, D.Z.; Gobbe, M.; Archer, T.J.; Silverman, R.H.; Coleman, J. Epithelial, Stromal, and Total Corneal Thickness in Keratoconus: Three-Dimensional Display with Artemis Very-High Frequency Digital Ultrasound. J. Refract. Surg. 2010, 26, 259–271. [Google Scholar] [CrossRef]
- Alghamdi, A.; Khan, M.S.; Dakhil, T.A. Understanding Corneal Epithelial Thickness Mapping. Middle East. Afr. J. Ophthalmol. 2023, 29, 147. [Google Scholar] [CrossRef]
- Kenia, V.P.; Kenia, R.V.; Maru, S.; Pirdankar, O.H. Role of Corneal Epithelial Mapping, Corvis Biomechanical Index, and Artificial Intelligence-Based Tomographic Biomechanical Index in Diagnosing Spectrum of Keratoconus. Oman J. Ophthalmol. 2023, 16, 276–280. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tan, O.; Brass, R.; Weiss, J.L.; Huang, D. Corneal Epithelial Thickness Mapping by Fourier-Domain Optical Coherence Tomography in Normal and Keratoconic Eyes. Ophthalmology 2012, 119, 2425–2433. [Google Scholar] [CrossRef] [PubMed]
- Mourgues, E.; Saunier, V.; Smadja, D.; Touboul, D.; Saunier, V. Forme Fruste Keratoconus Detection with OCT Corneal Topography Using Artificial Intelligence Algorithms. J. Cataract. Refract. Surg. 2024, 50, 1247–1253. [Google Scholar] [CrossRef] [PubMed]
- De Stefano, V.S.; Dupps, W.J. Biomechanical Diagnostics of the Cornea. Int. Ophthalmol. Clin. 2017, 57, 75. [Google Scholar] [CrossRef]
- Sedaghat, M.R.; Momeni-Moghaddam, H.; Roberts, C.J.; Maddah, N.; Ambrósio, R.; Hosseini, S.R. Corneal Biomechanical Parameters in Keratoconus Eyes with Abnormal Elevation on the Back Corneal Surface Only versus Both Back and Front Surfaces. Sci. Rep. 2021, 11, 11971. [Google Scholar] [CrossRef]
- Komninou, M.A.; Seiler, T.G.; Enzmann, V. Corneal Biomechanics and Diagnostics: A Review. Int. Ophthalmol. 2024, 44, 11971. [Google Scholar] [CrossRef]
- Pérez, J.F.; Marcos, A.V.; Peña, F.J.M. Early Diagnosis of Keratoconus: What Difference Is It Making? Br. J. Ophthalmol. 2014, 98, 1465–1466. [Google Scholar] [CrossRef]
- Redaelli, E.; Nana, M.; Calvo, B.; Matas, J.F.R.; Luraghi, G.; Rozema, J.; Grasa, J. Improving Early Detection of Keratoconus by Non Contact Tonometry. A Computational Study and New Biomarkers Proposal. J. Mech. Behav. Biomed. Mater. 2024, 152, 106413. [Google Scholar] [CrossRef]
- Ren, S.; Xu, L.; Fan, Q.; Gu, Y.; Yang, K. Accuracy of New Corvis ST Parameters for Detecting Subclinical and Clinical Keratoconus Eyes in a Chinese Population. Sci. Rep. 2021, 11, 4962. [Google Scholar] [CrossRef]
- Pérez-Rueda, A.; Jiménez-Rodríguez, D.; Castro-Luna, G. Diagnosis of Subclinical Keratoconus with a Combined Model of Biomechanical and Topographic Parameters. J. Clin. Med. 2021, 10, 2746. [Google Scholar] [CrossRef]
- Mikielewicz, M.; Kotliar, K.; Barraquer, R.I.; Michael, R. Air-Pulse Corneal Applanation Signal Curve Parameters for the Characterisation of Keratoconus. Br. J. Ophthalmol. 2011, 95, 793–798. [Google Scholar] [CrossRef] [PubMed]
- Schweitzer, C.; Roberts, C.J.; Mahmoud, A.M.; Colin, J.; Maurice-Tison, S.; Kerautret, J. Screening of Forme Fruste Keratoconus with the Ocular Response Analyzer. Investig. Ophthalmol. Vis. Sci. 2010, 51, 2403–2410. [Google Scholar] [CrossRef] [PubMed]
- Galletti, J.D.; Ruiseñor Vázquez, P.R.; Fuentes Bonthoux, F.; Pförtner, T.; Galletti, J.G. Multivariate Analysis of the Ocular Response Analyzer’s Corneal Deformation Response Curve for Early Keratoconus Detection. J. Ophthalmol. 2015, 2015, 496382. [Google Scholar] [CrossRef]
- Pniakowska, Z.; Jurowski, P. Detection of the Early Keratoconus Based on Corneal Biomechanical Properties in the Refractive Surgery Candidates. Indian J. Ophthalmol. 2016, 64, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Esporcatte, L.P.G.; Salomão, M.Q.; Lopes, B.T.; Sena, N.; Ferreira, É.; Filho, J.B.R.F.; Machado, A.P.; Ambrósio, R. Biomechanics in Keratoconus Diagnosis. Curr. Eye Res. 2023, 48, 130–136. [Google Scholar] [CrossRef]
- Koh, S.; Ambrósio, R.; Inoue, R.; Maeda, N.; Miki, A.; Nishida, K. Detection of Subclinical Corneal Ectasia Using Corneal Tomographic and Biomechanical Assessments in a Japanese Population. J. Refract. Surg. 2019, 35, 383–390. [Google Scholar] [CrossRef]
- Randleman, J.B.; Zhang, H.; Asroui, L.; Tarib, I.; Dupps, W.J.; Scarcelli, G. Subclinical Keratoconus Detection and Characterization Using Motion-Tracking Brillouin Microscopy. Ophthalmology 2024, 131, 310–321. [Google Scholar] [CrossRef]
- Godefrooij, D.A.; Galvis, V.; Tello, A. Von Helmholtz’s Ophthalmometer: Historical Review and Experience with One of the Last Surviving Original Devices. Acta Ophthalmol. 2018, 96, 314–320. [Google Scholar] [CrossRef]
- Matalia, H.; Swarup, R. Imaging Modalities in Keratoconus. Indian J. Ophthalmol. 2013, 61, 394–400. [Google Scholar] [CrossRef]
- Gold, J.; Chauhan, V.; Rojanasthien, S.; Fitzgerald, J. Munson’s Sign: An Obvious Finding to Explain Acute Vision Loss. Clin. Pract. Cases Emerg. Med. 2019, 3, 312–313. [Google Scholar] [CrossRef]
- Zadnik, K.; Barr, J.T.; Edrington, T.B.; Everett, D.F.; Jameson, M.; Mcmahon, T.T.; Shin, J.A.; Sterling, J.L.; Wagner, H.; Gordon, M.O. Baseline Findings in the Collaborative Longitudinal Evaluation of Keratoconus (CLEK) Study. Investig. Ophthalmol. Vis. Sci. 1998, 39, 2537–2546. [Google Scholar] [PubMed]
- Romero-Jiménez, M.; Santodomingo-Rubido, J.; Wolffsohn, J.S. Keratoconus: A Review. Contact Lens Anterior Eye 2010, 33, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Lawless, M.; Coster, D.J.; Phillips, A.J.; Loane, M. Keratoconus: Diagnosis and Management. Aust. N. Z. J. Ophthalmol. 1989, 17, 33–60. [Google Scholar] [CrossRef]
- Okamoto, C.; Okamoto, F.; Samejima, T.; Miyata, K.; Oshika, T. Higher-Order Wavefront Aberration and Letter-Contrast Sensitivity in Keratoconus. Eye 2008, 22, 1488–1492. [Google Scholar] [CrossRef]
- Shehata, A.E.M.; Foster, J.W.; Jun, A.S.; Soiberman, U.S. The Correlation between Corneal Findings and Disease Severity in Keratoconus per Scheimpflug Corneal Tomography. J. Ophthalmol. 2020, 2020, 4130643. [Google Scholar] [CrossRef]
- Zadnik, K.; Barr, J.T.; Gordon, M.O.; Edrington, T.B. Biomicroscopic Signs and Disease Severity in Keratoconus. Cornea 1996, 15, 139–146. [Google Scholar] [CrossRef]
- Harvey, P.A.; Tandon, R.; Singh, A.K. Automated ESR Analysis in 20 Minutes. Br. J. Ophthalmol. 1995, 79, 396. [Google Scholar] [CrossRef]
- Pathmanathan, T.; Falcon, M.G.; Reck, A. Ophthalmoscopic Sign of Early Keratoconus. Br. J. Ophthalmol. 1994, 78, 510. [Google Scholar] [CrossRef]
- Nartey, I. Ophthalmoscopic Sign of Early Keratoconus. Br. J. Ophthalmol. 1995, 79, 396. [Google Scholar] [CrossRef]
- Huo, Y.; Chen, X.; Khan, G.A.; Wang, Y. Corneal Biomechanics in Early Diagnosis of Keratoconus Using Artificial Intelligence. Graefes Arch. Clin. Exp. Ophthalmol. 2024, 262, 1337–1349. [Google Scholar] [CrossRef]
- Vandevenne, M.M.S.; Favuzza, E.; Veta, M.; Lucenteforte, E.; Berendschot, T.T.J.M.; Mencucci, R.; Nuijts, R.M.M.A.; Virgili, G.; Dickman, M.M. Artificial Intelligence for Detecting Keratoconus. Cochrane Database Syst. Rev. 2023, 11, CD014911. [Google Scholar] [CrossRef]
- Mohammadpour, M.; Heidari, Z.; Hashemi, H.; Yaseri, M.; Fotouhi, A. Comparison of Artificial Intelligence-Based Machine Learning Classifiers for Early Detection of Keratoconus. Eur. J. Ophthalmol. 2022, 32, 1352–1360. [Google Scholar] [CrossRef]
- Chen, X.; Tan, Z.; Huo, Y.; Song, J.; Xu, Q.; Yang, C.; Jhanji, V.; Li, J.; Hou, J.; Zou, H.; et al. Localized Corneal Biomechanical Alteration Detected In Early Keratoconus Based on Corneal Deformation Using Artificial Intelligence. Asia Pac. J. Ophthalmol. 2023, 12, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Goodman, D.; Zhu, A.Y. Utility of Artificial Intelligence in the Diagnosis and Management of Keratoconus: A Systematic Review. Front. Ophthalmol. 2024, 4, 1380701. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.R.; Ladas, J.G.; Bahadur, G.G.; Al-Hashimi, S.; Pineda, R. A Review of Machine Learning Techniques for Keratoconus Detection and Refractive Surgery Screening. Semin. Ophthalmol. 2019, 34, 317–326. [Google Scholar] [CrossRef]
- Hashemi, H.; Doroodgar, F.; Niazi, S.; Khabazkhoob, M.; Heidari, Z. Comparison of Different Corneal Imaging Modalities Using Artificial Intelligence for Diagnosis of Keratoconus: A Systematic Review and Meta-Analysis. Graefes Arch. Clin. Exp. Ophthalmol. 2024, 262, 1017–1039. [Google Scholar] [CrossRef]
- Yang, L.; Qi, K.; Zhang, P.; Cheng, J.; Soha, H.; Jin, Y.; Ci, H.; Zheng, X.; Wang, B.; Mei, Y.; et al. Diagnosis of Forme Fruste Keratoconus Using Corvis ST Sequences with Digital Image Correlation and Machine Learning. Bioengineering 2024, 11, 429. [Google Scholar] [CrossRef]
- Nguyen, T.; Ong, J.; Masalkhi, M.; Waisberg, E.; Zaman, N.; Sarker, P.; Aman, S.; Lin, H.; Luo, M.; Ambrosio, R.; et al. Artificial Intelligence in Corneal Diseases: A Narrative Review. Contact Lens Anterior Eye 2024, 47, 102284. [Google Scholar] [CrossRef]
- Shanthi, S.; Aruljyothi, L.; Balasundaram, M.B.; Janakiraman, A.; Nirmaladevi, K.; Pyingkodi, M. Artificial Intelligence Applications in Different Imaging Modalities for Corneal Topography. Surv. Ophthalmol. 2022, 67, 801–816. [Google Scholar] [CrossRef]
- Cao, K.; Verspoor, K.; Sahebjada, S.; Baird, P.N. Accuracy of Machine Learning Assisted Detection of Keratoconus: A Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 478. [Google Scholar] [CrossRef]
- Afifah, A.; Syafira, F.; Afladhanti, P.M.; Dharmawidiarini, D. Artificial Intelligence as Diagnostic Modality for Keratoconus: A Systematic Review and Meta-Analysis. J. Taibah Univ. Med. Sci. 2024, 19, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, Y.; Zhang, H.; Samusak, A.; Rao, H.; Xiao, C.; Abula, M.; Cao, Q.; Dai, Q. Artificial Intelligence-Assisted Diagnosis of Ocular Surface Diseases. Front. Cell Dev. Biol. 2023, 11, 1133680. [Google Scholar] [CrossRef] [PubMed]
- Bodmer, N.S.; Christensen, D.G.; Bachmann, L.M.; Faes, L.; Sanak, F.; Iselin, K.; Kaufmann, C.; Thiel, M.A.; Baenninger, P.B. Deep Learning Models Used in the Diagnostic Workup of Keratoconus: A Systematic Review and Exploratory Meta-Analysis. Cornea 2024, 43, 916–931. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Jiang, H.; Zhang, J.; Chen, T.; Li, Y.; Zhou, Y.; Chen, Y.; Li, F. The Development of a Machine Learning Model to Train Junior Ophthalmologists in Diagnosing the Pre-Clinical Keratoconus. Front Med. 2024, 11, 1458356. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.; Ballouz, D.; Woodward, M.A. Artificial Intelligence and Corneal Diseases. Curr. Opin. Ophthalmol. 2022, 33, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Tey, K.Y.; Cheong, E.Z.K.; Ang, M. Potential Applications of Artificial Intelligence in Image Analysis in Cornea Diseases: A Review. Eye Vis. 2024, 11, 10. [Google Scholar] [CrossRef]
- Hashemian, H.; Peto, T.; Ambrósio, R., Jr.; Lengyel, I.; Kafieh, R.; Noori, A.M.; Khorrami-Nezhad, M. Application of Artificial Intelligence in Ophthalmology: An Updated Comprehensive Review. J. Ophthalmic Vis. Res. 2024, 19, 354. [Google Scholar] [CrossRef]
- Ren, S.; Yang, K.; Xu, L.; Fan, Q.; Gu, Y.; Pang, C.; Zhao, D. Machine learning analysis with the comprehensive index of corneal tomographic and biomechanical parameters in detecting pediatric subclinical keratoconus. Front. Bioeng. Biotechnol. 2023, 11, 1273500. [Google Scholar] [CrossRef]
- Lopes, B.T.; Ramos, I.C.; Salomão, M.Q.; Guerra, F.P.; Schallhorn, S.C.; Schallhorn, J.M.; Vinciguerra, R.; Vinciguerra, P.; Price, F.W.; Price, M.O.; et al. Enhanced Tomographic Assessment to Detect Corneal Ectasia Based on Artificial Intelligence. Am. J. Ophthalmol. 2018, 195, 223–232. [Google Scholar] [CrossRef]
- Zéboulon, P.; Debellemanière, G.; Gatinel, D. Unsupervised Learning for Large-Scale Corneal Topography Clustering. Sci. Rep. 2020, 10, 16973. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gideon Abou Said, A.; Gispets, J.; Shneor, E. Strategies for Early Keratoconus Diagnosis: A Narrative Review of Evaluating Affordable and Effective Detection Techniques. J. Clin. Med. 2025, 14, 460. https://doi.org/10.3390/jcm14020460
Gideon Abou Said A, Gispets J, Shneor E. Strategies for Early Keratoconus Diagnosis: A Narrative Review of Evaluating Affordable and Effective Detection Techniques. Journal of Clinical Medicine. 2025; 14(2):460. https://doi.org/10.3390/jcm14020460
Chicago/Turabian StyleGideon Abou Said, Arige, Joan Gispets, and Einat Shneor. 2025. "Strategies for Early Keratoconus Diagnosis: A Narrative Review of Evaluating Affordable and Effective Detection Techniques" Journal of Clinical Medicine 14, no. 2: 460. https://doi.org/10.3390/jcm14020460
APA StyleGideon Abou Said, A., Gispets, J., & Shneor, E. (2025). Strategies for Early Keratoconus Diagnosis: A Narrative Review of Evaluating Affordable and Effective Detection Techniques. Journal of Clinical Medicine, 14(2), 460. https://doi.org/10.3390/jcm14020460