The Influence of Serotonergic Signaling on Quality of Life, Depression, Insomnia, and Hypoxia in Obstructive Sleep Apnea Patients: Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karuga, F.F.; Kaczmarski, P.; Białasiewicz, P.; Szmyd, B.; Jaromirska, J.; Grzybowski, F.; Gebuza, P.; Sochal, M.; Gabryelska, A. REM-OSA as a Tool to Understand Both the Architecture of Sleep and Pathogenesis of Sleep Apnea—Literature Review. J. Clin. Med. 2023, 12, 5907. [Google Scholar] [CrossRef] [PubMed]
- Sforza, E.; Roche, F. Chronic intermittent hypoxia and obstructive sleep apnea: An experimental and clinical approach. Hypoxia 2016, 4, 99–108. [Google Scholar] [CrossRef]
- Cao, M.T.; Sternbach, J.M.; Guilleminault, C. Continuous positive airway pressure therapy in obstuctive sleep apnea: Benefits and alternatives. Expert Rev. Respir. Med. 2017, 11, 259–272. [Google Scholar] [CrossRef] [PubMed]
- Punjabi, N.M. The epidemiology of adult obstructive sleep apnea. Proc. Am. Thorac. Soc. 2008, 5, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Lv, R.; Liu, X.; Zhang, Y.; Dong, N.; Wang, X.; He, Y.; Yue, H.; Yin, Q. Pathophysiological mechanisms and therapeutic approaches in obstructive sleep apnea syndrome. Signal Transduct. Target. Ther. 2023, 8, 218. [Google Scholar] [CrossRef] [PubMed]
- Aung, O.; Amorim, M.R.; Mendelowitz, D.; Polotsky, V.Y. Revisiting the Role of Serotonin in Sleep-Disordered Breathing. Int. J. Mol. Sci. 2024, 25, 1483. [Google Scholar] [CrossRef] [PubMed]
- Veasey, S.C. Serotonin Agonists and Antagonists in Obstructive Sleep Apnea. Am. J. Respir. Med. 2003, 2, 21–29. [Google Scholar] [CrossRef]
- Ciesla, M.C.; Seven, Y.B.; Allen, L.L.; Smith, K.N.; Gonzalez-Rothi, E.J.; Mitchell, G.S. Daily acute intermittent hypoxia enhances serotonergic innervation of hypoglossal motor nuclei in rats with and without cervical spinal injury. Exp. Neurol. 2022, 347, 113903. [Google Scholar] [CrossRef] [PubMed]
- Dempsey, J.A.; Veasey, S.C.; Morgan, B.J.; O’Donnell, C.P. Pathophysiology of sleep apnea. Physiol. Rev. 2010, 90, 47–112. [Google Scholar] [CrossRef]
- Brock, L.U.; Yeager, K.A.; Miller, A.H.; Pelkmans, J.; Graetz, I.; Giordano, N.A. Psychometric Assessment of Anxiety Measures in a Pilot Study of African American Patients with Obstructive Sleep Apnea. Clin. Nurs. Res. 2024, 33, 603–609. [Google Scholar] [CrossRef]
- Gupta, M.A.; Simpson, F.C. Obstructive sleep apnea and psychiatric disorders: A systematic review. J. Clin. Sleep. Med. 2015, 11, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Shaw, V.; Ngo, Q.C.; Pah, N.D.; Oliveira, G.; Khandoker, A.H.; Mahapatra, P.K.; Pankaj, D.; Kumar, D.K. Screening major depressive disorder in patients with obstructive sleep apnea using single-lead ECG recording during sleep. Health Inform. J. 2024, 30, 14604582241300012. [Google Scholar] [CrossRef] [PubMed]
- Zinchuk, A.V.; Gentry, M.J.; Concato, J.; Yaggi, H.K. Phenotypes in obstructive sleep apnea: A definition, examples and evolution of approaches. Sleep. Med. Rev. 2017, 35, 113–123. [Google Scholar] [CrossRef]
- Gabryelska, A.; Turkiewicz, S.; Bialasiewicz, P.; Grzybowski, F.; Strzelecki, D.; Sochal, M. Evaluation of daytime sleepiness and insomnia symptoms in OSA patients with a characterization of symptom-defined phenotypes and their involvement in depression comorbidity-a cross-sectional clinical study. Front. Psychiatry 2024, 15, 1303778. [Google Scholar] [CrossRef]
- Maffei, M.E. 5-Hydroxytryptophan (5-HTP): Natural Occurrence, Analysis, Biosynthesis, Biotechnology, Physiology and Toxicology. Int. J. Mol. Sci. 2020, 22, 181. [Google Scholar] [CrossRef]
- Jenkins, T.A.; Nguyen, J.C.; Polglaze, K.E.; Bertrand, P.P. Influence of Tryptophan and Serotonin on Mood and Cognition with a Possible Role of the Gut-Brain Axis. Nutrients 2016, 8, 56. [Google Scholar] [CrossRef] [PubMed]
- Bayliss, D.A.; Viana, F.; Berger, A.J. Mechanisms underlying excitatory effects of thyrotropin-releasing hormone on rat hypoglossal motoneurons in vitro. J. Neurophysiol. 1992, 68, 1733–1745. [Google Scholar] [CrossRef] [PubMed]
- Hodges, M.R.; Richerson, G.B. The role of medullary serotonin (5-HT) neurons in respiratory control: Contributions to eupneic ventilation, CO2 chemoreception, and thermoregulation. J. Appl. Physiol. 2010, 108, 1425–1432. [Google Scholar] [CrossRef] [PubMed]
- Brindley, R.L.; Bauer, M.B.; Blakely, R.D.; Currie, K.P.M. An interplay between the serotonin transporter (SERT) and 5-HT receptors controls stimulus-secretion coupling in sympathoadrenal chromaffin cells. Neuropharmacology 2016, 110, 438–448. [Google Scholar] [CrossRef] [PubMed]
- Maierean, A.D.; Bordea, I.R.; Salagean, T.; Hanna, R.; Alexescu, T.G.; Chis, A.; Todea, D.A. Polymorphism of the Serotonin Transporter Gene and the Peripheral 5-Hydroxytryptamine in Obstructive Sleep Apnea: What Do We Know and What are We Looking for? A Systematic Review of the Literature. Nat. Sci. Sleep 2021, 13, 125–139. [Google Scholar] [CrossRef]
- Witkowska, A.; Jaromirska, J.; Gabryelska, A.; Sochal, M. Obstructive Sleep Apnea and Serotoninergic Signalling Pathway: Pathomechanism and Therapeutic Potential. Int. J. Mol. Sci. 2024, 25, 9427. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Saxena, R.; Palmer, L.J. The genetics of obstructive sleep apnoea. Respirology 2018, 23, 18–27. [Google Scholar] [CrossRef]
- Edinoff, A.N.; Akuly, H.A.; Hanna, T.A.; Ochoa, C.O.; Patti, S.J.; Ghaffar, Y.A.; Kaye, A.D.; Viswanath, O.; Urits, I.; Boyer, A.G.; et al. Selective Serotonin Reuptake Inhibitors and Adverse Effects: A Narrative Review. Neurol. Int. 2021, 13, 387–401. [Google Scholar] [CrossRef] [PubMed]
- Benca, R.M.; Krystal, A.; Chepke, C.; Doghramji, K. Recognition and Management of Obstructive Sleep Apnea in Psychiatric Practice. J. Clin. Psychiatry 2023, 84, 45191. [Google Scholar] [CrossRef]
- Hilaire, G.; Voituron, N.; Menuet, C.; Ichiyama, R.M.; Subramanian, H.H.; Dutschmann, M. The role of serotonin in respiratory function and dysfunction. Respir. Physiol. Neurobiol. 2010, 174, 76–88. [Google Scholar] [CrossRef]
- Wieckiewicz, M.; Martynowicz, H.; Lavigne, G.; Lobbezoo, F.; Kato, T.; Winocur, E.; Wezgowiec, J.; Danel, D.; Wojakowska, A.; Mazur, G.; et al. An exploratory study on the association between serotonin and sleep breathing disorders. Sci. Rep. 2023, 13, 11800. [Google Scholar] [CrossRef] [PubMed]
- Madaeva, I.M.; Berdina, O.N.; Kurashova, N.A.; Semenova, N.V.; Ukhinov, E.B.; Belskikh, A.V.; Kolesnikova, L.I. Sleep Apnea and Serum Serotonin Level Pre- and Post-PAP Therapy: A Preliminary Study. Neurol. Ther. 2021, 10, 1095–1102. [Google Scholar] [CrossRef] [PubMed]
- Sebastiani, J.; Sabatelli, A.; McDonald, M.D. Mild hypoxia exposure impacts peripheral serotonin uptake and degradation in Gulf toadfish (Opsanus beta). J. Exp. Biol. 2022, 225, jeb244064. [Google Scholar] [CrossRef] [PubMed]
- Kapur, V.K.; Auckley, D.H.; Chowdhuri, S.; Kuhlmann, D.C.; Mehra, R.; Ramar, K.; Harrod, C.G. Clinical Practice Guideline for Diagnostic Testing for Adult Obstructive Sleep Apnea: An American Academy of Sleep Medicine Clinical Practice Guideline. J. Clin. Sleep. Med. 2017, 13, 479–504. [Google Scholar] [CrossRef]
- Beck, A.T.; Ward, C.H.; Mendelson, M.; Mock, J.; Erbaugh, J. An inventory for measuring depression. Arch. Gen. Psychiatry 1961, 4, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Morin, C.M.; Belleville, G.; Bélanger, L.; Ivers, H. The Insomnia Severity Index: Psychometric indicators to detect insomnia cases and evaluate treatment response. Sleep 2011, 34, 601–608. [Google Scholar] [CrossRef] [PubMed]
- Brazier, J.E.; Harper, R.; Jones, N.M.; O’Cathain, A.; Thomas, K.J.; Usherwood, T.; Westlake, L. Validating the SF-36 health survey questionnaire: New outcome measure for primary care. BMJ 1992, 305, 160–164. [Google Scholar] [CrossRef]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.C.; Yeh, T.L.; Hsieh, M.H.; Lee, I.H.; Chen, K.C.; Chen, P.S.; Yang, Y.K.; Yao, W.J. Association between serotonin transporter availability and overall rating scores of quality of life in healthy volunteers. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2009, 33, 711–714. [Google Scholar] [CrossRef] [PubMed]
- Piletz, J.; Baker, R.; Halaris, A. Platelet imidazoline receptors as state marker of depressive symptomatology. J. Psychiatr. Res. 2008, 42, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Herold, N.; Uebelhack, K.; Franke, L.; Amthauer, H.; Luedemann, L.; Bruhn, H.; Felix, R.; Uebelhack, R.; Plotkin, M. Imaging of serotonin transporters and its blockade by citalopram in patients with major depression using a novel SPECT ligand [123I]-ADAM. J. Neural Transm. 2006, 113, 659–670. [Google Scholar] [CrossRef] [PubMed]
- Kambeitz, J.P.; Howes, O.D. The serotonin transporter in depression: Meta-analysis of in vivo and post mortem findings and implications for understanding and treating depression. J. Affect. Disord. 2015, 186, 358–366. [Google Scholar] [CrossRef]
- Sochal, M.; Witkowska, A.; Binienda, A.; Gabryelska, A.; Białasiewicz, P.; Fichna, J.; Talar-Wojnarowska, R.; Małecka-Wojciesko, E. The Effect of Serotonin Transmission on Depressive and Insomnia Symptoms in Inflammatory Bowel Diseases. J. Clin. Med. 2023, 12, 353. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Redline, S.; Stone, K.L.; Xiao, Y. Redefining Comorbid Insomnia and Sleep Apnea: The Association of Sleep Breathing Impairment and Insomnia with Incident Diabetes. Ann. Am. Thorac. Soc. 2023, 20, 1791–1800. [Google Scholar] [CrossRef] [PubMed]
- Deuschle, M.; Schredl, M.; Schilling, C.; Wüst, S.; Frank, J.; Witt, S.H.; Rietschel, M.; Buckert, M.; Meyer-Lindenberg, A.; Schulze, T.G. Association between a serotonin transporter length polymorphism and primary insomnia. Sleep 2010, 33, 343–347. [Google Scholar] [CrossRef] [PubMed]
- Uhlig, B.L.; Hagen, K.; Engstrøm, M.; Stjern, M.; Gravdahl, G.B.; Sand, T. The relationship between obstructive sleep apnea and insomnia: A population-based cross-sectional polysomnographic study. Sleep Med. 2019, 54, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Gabryelska, A.; Turkiewicz, S.; Kaczmarski, P.; Gajewski, A.; Białasiewicz, P.; Strzelecki, D.; Chałubiński, M.; Sochal, M. Circadian clock dysregulation: A potential mechanism of depression in obstructive sleep apnea patients. Transl. Psychiatry 2024, 14, 423. [Google Scholar] [CrossRef]
- Gabryelska, A.; Turkiewicz, S.; Karuga, F.F.; Sochal, M.; Strzelecki, D.; Białasiewicz, P. Disruption of Circadian Rhythm Genes in Obstructive Sleep Apnea Patients—Possible Mechanisms Involved and Clinical Implication. Int. J. Mol. Sci. 2022, 23, 709. [Google Scholar] [CrossRef] [PubMed]
- Gabryelska, A.; Turkiewicz, S.; Ditmer, M.; Sochal, M. Neurotrophins in the Neuropathophysiology, Course, and Complications of Obstructive Sleep Apnea-A Narrative Review. Int. J. Mol. Sci. 2023, 24, 1808. [Google Scholar] [CrossRef] [PubMed]
- Flores, K.R.; Viccaro, F.; Aquilini, M.; Scarpino, S.; Ronchetti, F.; Mancini, R.; Di Napoli, A.; Scozzi, D.; Ricci, A. Protective role of brain derived neurotrophic factor (BDNF) in obstructive sleep apnea syndrome (OSAS) patients. PLoS ONE 2020, 15, e0227834. [Google Scholar] [CrossRef]
- Correia, A.S.; Cardoso, A.; Vale, N. BDNF Unveiled: Exploring Its Role in Major Depression Disorder Serotonergic Imbalance and Associated Stress Conditions. Pharmaceutics 2023, 15, 2081. [Google Scholar] [CrossRef] [PubMed]
- Mössner, R.; Daniel, S.; Albert, D.; Heils, A.; Okladnova, O.; Schmitt, A.; Lesch, K.P. Serotonin transporter function is modulated by brain-derived neurotrophic factor (BDNF) but not nerve growth factor (NGF). Neurochem. Int. 2000, 36, 197–202. [Google Scholar] [CrossRef]
- Aguilera, M.; Arias, B.; Wichers, M.; Barrantes-Vidal, N.; Moya, J.; Villa, H.; van Os, J.; Ibáñez, M.I.; Ruipérez, M.A.; Ortet, G.; et al. Early adversity and 5-HTT/BDNF genes: New evidence of gene-environment interactions on depressive symptoms in a general population. Psychol. Med. 2009, 39, 1425–1432. [Google Scholar] [CrossRef]
- Fanburg, B.L.; Lee, S.L. A role for the serotonin transporter in hypoxia-induced pulmonary hypertension. J. Clin. Investig. 2000, 105, 1521–1523. [Google Scholar] [CrossRef] [PubMed]
- Song, J.-L.; Zheng, S.-Y.; He, R.-L.; Gui, L.-X.; Lin, M.-J.; Sham, J.S.K. Serotonin and chronic hypoxic pulmonary hypertension activate a NADPH oxidase 4 and TRPM2 dependent pathway for pulmonary arterial smooth muscle cell proliferation and migration. Vasc. Pharmacol. 2021, 138, 106860. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.K. Hypoxia. 3. Hypoxia and neurotransmitter synthesis. Am. J. Physiol.-Cell Physiol. 2011, 300, C743–C751. [Google Scholar] [CrossRef] [PubMed]
- Murugesan, A.; Rani, M.R.S.; Vilella, L.; Lacuey, N.; Hampson, J.P.; Faingold, C.L.; Friedman, D.; Devinsky, O.; Sainju, R.K.; Schuele, S.; et al. Postictal serotonin levels are associated with peri-ictal apnea. Neurology 2019, 93, e1485–e1494. [Google Scholar] [CrossRef]
- Bateman, L.M.; Li, C.S.; Lin, T.C.; Seyal, M. Serotonin reuptake inhibitors are associated with reduced severity of ictal hypoxemia in medically refractory partial epilepsy. Epilepsia 2010, 51, 2211–2214. [Google Scholar] [CrossRef]
- Carley, D.W.; Radulovacki, M. Role of Peripheral Serotonin in the Regulation of Central Sleep Apneas in Rats. Chest 1999, 115, 1397–1401. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, S. Effects of carotid Body chemoreceptor stimulation by 5-HT on phrenic nerve activity and ventilation in the rabbit. Arch. Int. Pharmacodyn. Ther. 1981, 254, 282–292. [Google Scholar]
- Lipford, M.C.; Ramar, K.; Liang, Y.J.; Lin, C.W.; Chao, Y.T.; An, J.; Chiu, C.H.; Tsai, Y.J.; Shu, C.H.; Lee, F.P.; et al. Serotnin as a possible biomarker in obstructive sleep apnea. Sleep Med. Rev. 2016, 28, 125–132. [Google Scholar] [CrossRef]
- Marshall, N.S.; Yee, B.J.; Desai, A.V.; Buchanan, P.R.; Wong, K.K.; Crompton, R.; Melehan, K.L.; Zack, N.; Rao, S.G.; Gendreau, R.M.; et al. Two randomized placebo-controlled trials to evaluate the efficacy and tolerability of mirtazapine for the treatment of obstructive sleep apnea. Sleep 2008, 31, 824–831. [Google Scholar] [CrossRef]
- Bouloukaki, I.; Fanaridis, M.; Testelmans, D.; Pataka, A.; Schiza, S. Overlaps between obstructive sleep apnoea and other respiratory diseases, including COPD, asthma and interstitial lung disease. Breathe 2022, 18, 220073. [Google Scholar] [CrossRef]
- Pirina, P.; Zinellu, E.; Paliogiannis, P.; Fois, A.G.; Marras, V.; Sotgia, S.; Carru, C.; Zinellu, A. Circulating serotonin levels in COPD patients: A pilot study. BMC Pulm. Med. 2018, 18, 167. [Google Scholar] [CrossRef]
- Lau, W.K.; Chan-Yeung, M.M.; Yip, B.H.; Cheung, A.H.; Ip, M.S.; Mak, J.C. The role of circulating serotonin in the development of chronic obstructive pulmonary disease. PLoS ONE 2012, 7, e31617. [Google Scholar] [CrossRef]
- Frille, A.; Rullmann, M.; Becker, G.A.; Patt, M.; Luthardt, J.; Tiepolt, S.; Wirtz, H.; Sabri, O.; Hesse, S.; Seyfarth, H.J. Increased pulmonary serotonin transporter in patients with chronic obstructive pulmonary disease who developed pulmonary hypertension. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1081–1092. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.N.; Zong, Q.Q.; Yang, Y.; Zhang, L.; Xiang, Y.F.; Ng, C.H.; Chen, L.G.; Xiang, Y.T. Gender Difference in the Prevalence of Insomnia: A Meta-Analysis of Observational Studies. Front. Psychiatry 2020, 11, 577429. [Google Scholar] [CrossRef] [PubMed]
- Albert, P.R. Why is depression more prevalent in women? J. Psychiatry Neurosci. 2015, 40, 219–221. [Google Scholar] [CrossRef]
- Colle, R.; Masson, P.; Verstuyft, C.; Fève, B.; Werner, E.; Boursier-Neyret, C.; Walther, B.; David, D.J.; Boniface, B.; Falissard, B.; et al. Peripheral tryptophan, serotonin, kynurenine, and their metabolites in major depression: A case-control study. Psychiatry Clin. Neurosci. 2020, 74, 112–117. [Google Scholar] [CrossRef] [PubMed]
- El-Merahbi, R.; Löffler, M.; Mayer, A.; Sumara, G. The roles of peripheral serotonin in metabolic homeostasis. FEBS Lett. 2015, 589, 1728–1734. [Google Scholar] [CrossRef]
- Moncrieff, J.; Cooper, R.E.; Stockmann, T.; Amendola, S.; Hengartner, M.P.; Horowitz, M.A. The serotonin theory of depression: A systematic umbrella review of the evidence. Mol. Psychiatry 2023, 28, 3243–3256. [Google Scholar] [CrossRef]
- Jones, L.A.; Sun, E.W.; Martin, A.M.; Keating, D.J. The ever-changing roles of serotonin. Int. J. Biochem. Cell Biol. 2020, 125, 105776. [Google Scholar] [CrossRef]
- Sbrini, G.; Hanswijk, S.I.; Brivio, P.; Middelman, A.; Bader, M.; Fumagalli, F.; Alenina, N.; Homberg, J.R.; Calabrese, F. Peripheral Serotonin Deficiency Affects Anxiety-like Behavior and the Molecular Response to an Acute Challenge in Rats. Int. J. Mol. Sci. 2022, 23, 4941. [Google Scholar] [CrossRef] [PubMed]
- Yubero-Lahoz, S.; Robledo, P.; Farré, M.; de laTorre, R. Platelet SERT as a peripheral biomarker of serotonergic neurotransmission in the central nervous system. Curr. Med. Chem. 2013, 20, 1382–1396. [Google Scholar] [CrossRef]
OSA | CG | p | |
---|---|---|---|
Women, % | 11.4% | 33.3% | 0.025 |
Age | 53.0 (45.0–67.0) | 46.3 ± 12.3 | 0.001 |
BMI (kg/m2) | 35.5 ± 6.5 | 27.7 (24.5–30.5) | <0.001 |
Sleep Efficiency (%) | 83.3 (76.9–87.8) | 83.8 (71.9–88.8) | 0.908 |
Sleep Onset Latency (min) | 18.3 (8.5–29) | 24.5 (10.8–35.5) | 0.237 |
Sleep Maintenance Efficiency (%) | 87.5 (84.9–91.6) | 87.2 (81.9–96.1) | 0.877 |
REM Latency (min) | 120.5 ± 67.3 | 110 (80.5–158) | 0.713 |
Arousal Index (events/h) | 23.8 (16.5–34.9) | 9.3 (5.1–12.3) | <0.001 |
AHI (events/h) | 51.5 (46.6–72.2) | 1.5 (1.0–2.8) | <0.001 |
ODI (events/h) | 61.0 ± 23.8 | 2.0 (1.0–3.0) | <0.001 |
AIS score | 9.5 ± 4.3 | 10.1 ± 3.9 | 0.493 |
ISI score | 13.3 ± 5.2 | 13.7 ± 5.4 | 0.606 |
BDI score | 10.0 (6.0–15.0) | 10.0 (8.0–17.0) | 0.301 |
SF 36 score | 73.4 ± 32.0 | 74.1 ± 27.3 | 0.923 |
A. SERT [pg/mL] | 88.3 (76.2–107.9) | 93 (74–118.7) | 0.571 |
B. SERT [pg/mL] | 325.2 (87.1–613.8) | 221.1 (88.9–532.4) | 0.696 |
A/B SERT | 0.2 (0.2–1) | 0.5 (0.2–1) | 0.689 |
A. Serotonin [ng/mL] | 85 (43–236.1) | 72.4 (51–120.9) | 0.331 |
B. Serotonin [ng/mL] | 76.2 (44.6–158.1) | 68.3 (43.2–143.1) | 0.708 |
A/B Serotonin | 1.1 (0.6–2.3) | 1 (0.6–1.4) | 0.759 |
A. SERT mRNA | 22.0 (12.7–51.2) | 15.6 (7–32.1) | 0.099 |
B. SERT mRNA | 23.7 (11.9–38.8) | 21.7 (8.5–30) | 0.286 |
A/B SERT mRNA | 1.1 (0.6–1.8) | 0.9 (0.3–1.8) | 0.506 |
n | A. SERT [pg/mL] | B. SERT [pg/mL] | A/B SERT | A. Serotonin [ng/mL] | B. Serotonin [ng/mL] | A/B Serotonin | n | A.SERT mRNA | n | B. SERT mRNA | n | A/B SERT mRNA | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OSA | ISI > 14 | 14 | 88.3 (75.6–91.6) | 357.4 (83.4–609.2) | 0.2 (0.2–1.0) | 103.5 (70.9–229.5) | 56.3 (44.9–130.8) | 1.2 (0.7–4.5) | 11 | 24.0 (17.0–64.2) | 11 | 24.3 (13.4–38.8) | 9 | 0.9 (0.6–1.3) |
ISI ≤ 14 | 21 | 95.2 (77.0–120.8) | 331.2 (90.8–618.5) | 0.2 (0.2–1) | 87.8 (47.8–242.7) | 114.1 (46.9–213.2) | 1.1 (0.5–1.7) | 21 | 21.4 (10.2–47.8) | 20 | 19.1 (9.8–37.7) | 20 | 1.2 (0.7–1.9) | |
p | 0.434 | 0.987 | 0.606 | 0.583 | 0.454 | 0.293 | 0.481 | 0.317 | 0.532 | |||||
CG | ISI > 14 | 15 | 106.6 (72.4–130.2) | 175.6 (84.0–648.8) | 0.8 (0.2–1.3) | 0.8 (0.2–1.3) | 66.7 (40–134.7) | 1 (0.5–1.6) | 12 | 7.2 (2.8–19.4) | 15 | 20.1 (6.1–29.0) | 12 | 0.5 (0.2–1.2) |
ISI ≤ 14 | 24 | 90.3 (72.9–105.5) | 273.1 (92.2–501.3) | 0.3 (0.2–0.9) | 74.7 (52.4–128.2) | 72.4 (43.5–162) | 1 (0.6–1.4) | 22 | 24.2 (11.8–33.6) | 24 | 22.9 (13.2–31.3) | 22 | 1.0 (0.7–3.0) | |
p | 0.155 | 0.743 | 0.809 | 0.432 | 0.368 | 0.721 | 0.063 | 0.658 | 0.037 | |||||
OSA | BDI > 13 | 11 | 91.6 (87.7–118.5) | 525 (72.3–609.2) | 0.2 (0.2–1.3) | 125.0 (50.9–213) | 114.1 (46.9–149.1) | 0.8 (0.7–2.4) | 9 | 18.0 (15.5–24) | 11 | 24.3 (13.3–38.8) | 9 | 0.9 (0.5–1.3) |
BDI ≤ 13 | 24 | 82.2 (75.3–101.0) | 245.2 (87.1–626.0) | 0.3 (0.2–1) | 85.0 (42.5–272.6) | 76.2 (44.6–231.2) | 1.1 (0.5–2.3) | 23 | 32.0 (10.2–64.2) | 20 | 22.8 (11.2–37.7) | 20 | 1.2 (0.7–1.9) | |
p | 0.186 | 0.612 | 0.662 | 0.766 | 0.766 | 0.793 | 0.341 | 0.611 | 0.317 | |||||
CG | BDI >13 | 15 | 81.1 (66.6–97.8) | 467.7 (117.9–648.8) | 0.2 (0.1–0.8) | 75.8 (59.9–591.8) | 69.8 (46.4–178) | 1.3 (0.4–8.9) | 14 | 10.7 (2.7–33.6) | 15 | 27.2 (5.4–37.6) | 14 | 0.5 (0.2–1.8) |
BDI ≤ 13 | 24 | 101.4 (84.3–126.8) | 149.4 (80.6–501.9) | 0.8 (0.2–1.2) | 68.7 (40.5–79) | 64.7 (41.1–132.7) | 1 (0.7–1.2) | 20 | 17.7 (11.6–31.7) | 24 | 21.7 (9.8–28) | 20 | 1.0 (0.7–2.1) | |
p | 0.044 | 0.091 | 0.005 | 0.081 | 0.484 | 0.223 | 0.377 | 0.679 | 0.192 | |||||
OSA | SF 36 < 64 | 10 | 82 (66.9–109.5) | 141.9 (83.4–331.2) | 0.5 (0.2–1) | 42.3 (20.5–94) | 43.9 (34.7–70.5) | 1 (0.5–1.2) | 9 | 38.3 (10.2–64.2) | 8 | 19.1 (10.3–33.1) | 8 | 1.2 (0.8–1.7) |
SF36 ≥ 64 | 22 | 93.4 (77–116.5) | 502 (78.5–650.5) | 0.2 (0.2–1) | 124.1 (70.1–229.5) | 124 (52.7–196.5) | 1.1 (0.6–2.1) | 20 | 20.6 (11.6–36.6) | 20 | 20.0 (11.9–36.4) | 18 | 1.2 (0.6–2) | |
p | 0.269 | 0.176 | 0.163 | 0.028 | 0.043 | 0.675 | 0.594 | 0.709 | 0.495 | |||||
CG | SF 36 < 64 | 12 | 92.8 ± 24.3 | 206.6 (83.1–497.1) | 0.5 (0.2–1) | 72.5 (41.8–98.5) | 53.7 (40.3–141) | 1 (0.7–1.3) | 10 | 14.2 (7.8–32.1) | 12 | 17.3 (10.2–28.1) | 10 | 0.9 (0.3–4.2) |
SF 36 ≥ 64 | 22 | 97.4 ± 21.7 | 174.4 (93.8–542.1) | 0.8 (0.2–1.2) | 66.9 (56.6–135.5) | 68.2 (43–103) | 1.2 (0.6–1.6) | 19 | 13.8 (2.9–27.6) | 22 | 21.5 (6.5–37.6) | 19 | 0.7 (0.2–1.6) | |
p | 0.488 | 0.79 | 0.986 | 0.736 | 0.557 | 0.606 | 0.604 | 0.817 | 0.456 |
Correlation | Regression | |||
---|---|---|---|---|
AHI | ||||
B. SERT | R = 0.422 | p = 0.010 | b = 0.402 | p = 0.030 |
A/B SERT | R = −0.339 | p = 0.043 | ||
R2 = 0.131, F = 5.225, p = 0.030 | ||||
AHI nREM | ||||
A. SERT | R = 0.396 | p = 0.020 | ||
B. SERT | R = 0.467 | p = 0.005 | b = 0.406 | p = 0.032 |
B. Serotonin | R = 0.452 | p = 0.007 | ||
R2 = 0.133, F = 5.131, p = 0.032 | ||||
Arousal index | ||||
B. Serotonin | R = 0.435 | p = 0.010 | b = 0.578 | p = 0.001 |
B. SERT | R = 0.353 | p = 0.040 | ||
R2 = 0.308, F =13.039, p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ditmer, M.; Gabryelska, A.; Turkiewicz, S.; Gajewski, A.; Białasiewicz, P.; Chałubiński, M.; Strzelecki, D.; Witkowska, A.; Sochal, M. The Influence of Serotonergic Signaling on Quality of Life, Depression, Insomnia, and Hypoxia in Obstructive Sleep Apnea Patients: Cross-Sectional Study. J. Clin. Med. 2025, 14, 445. https://doi.org/10.3390/jcm14020445
Ditmer M, Gabryelska A, Turkiewicz S, Gajewski A, Białasiewicz P, Chałubiński M, Strzelecki D, Witkowska A, Sochal M. The Influence of Serotonergic Signaling on Quality of Life, Depression, Insomnia, and Hypoxia in Obstructive Sleep Apnea Patients: Cross-Sectional Study. Journal of Clinical Medicine. 2025; 14(2):445. https://doi.org/10.3390/jcm14020445
Chicago/Turabian StyleDitmer, Marta, Agata Gabryelska, Szymon Turkiewicz, Adrian Gajewski, Piotr Białasiewicz, Maciej Chałubiński, Dominik Strzelecki, Alicja Witkowska, and Marcin Sochal. 2025. "The Influence of Serotonergic Signaling on Quality of Life, Depression, Insomnia, and Hypoxia in Obstructive Sleep Apnea Patients: Cross-Sectional Study" Journal of Clinical Medicine 14, no. 2: 445. https://doi.org/10.3390/jcm14020445
APA StyleDitmer, M., Gabryelska, A., Turkiewicz, S., Gajewski, A., Białasiewicz, P., Chałubiński, M., Strzelecki, D., Witkowska, A., & Sochal, M. (2025). The Influence of Serotonergic Signaling on Quality of Life, Depression, Insomnia, and Hypoxia in Obstructive Sleep Apnea Patients: Cross-Sectional Study. Journal of Clinical Medicine, 14(2), 445. https://doi.org/10.3390/jcm14020445