Analysis of Body Composition and Levels of Antimicrobial Peptides in Patients with Basal Cell Carcinoma: A Preliminary Study
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duren, D.L.; Sherwood, R.J.; Czerwinski, S.A.; Lee, M.; Choh, A.C.; Siervogel, R.M.; Cameron Chumlea, W. Body composition methods: Comparisons and interpretation. J. Diabetes Sci. Technol. 2008, 2, 1139–1146. [Google Scholar] [CrossRef]
- Gómez-Ambrosi, J.; González-Crespo, I.; Catalán, V.; Rodríguez, A.; Moncada, R.; Valentí, V.; Romero, S.; Ramírez, B.; Silva, C.; Gil, M.J.; et al. Clinical usefulness of abdominal bioimpedance (ViScan) in the determination of visceral fat and its application in the diagnosis and management of obesity and its comorbidities. Clin. Nutr. 2018, 37, 580–589. [Google Scholar] [CrossRef] [PubMed]
- Ain, K.; Wibowo, R.A.; Soelistiono, S.; Muniroh, L.; Ariwanto, B. Design and Development of a Low-Cost Arduino-Based Electrical BioImpedance Spectrometer. J. Med. Signals Sens. 2020, 10, 125–133. [Google Scholar] [CrossRef]
- Popiolek-Kalisz, J.; Szczygiel, K. Bioelectrical Impedance Analysis and Body Composition in Cardiovascular Diseases. Curr. Probl. Cardiol. 2023, 48, 101911. [Google Scholar] [CrossRef]
- Nishikawa, H.; Kim, S.K.; Asai, A. Body Composition in Chronic Liver Disease. Int. J. Mol. Sci. 2024, 25, 964. [Google Scholar] [CrossRef]
- Ding, N.S.; Tassone, D.; Al Bakir, I.; Wu, K.; Thompson, A.J.; Connell, W.R.; Malietzis, G.; Lung, P.; Singh, S.; Choi, C.R.; et al. Systematic Review: The Impact and Importance of Body Composition in Inflammatory Bowel Disease. J. Crohns Colitis 2022, 16, 1475–1492. [Google Scholar] [CrossRef] [PubMed]
- Wilczyński, J.; Sobolewski, P.; Zieliński, R.; Kabała, M. Body Composition in Women after Radical Mastectomy. Int. J. Environ. Res. Public Health 2020, 17, 8991. [Google Scholar] [CrossRef] [PubMed]
- Surov, A.; Thormann, M.; Hinnerichs, M.; Seidensticker, M.; Seidensticker, R.; Öcal, O.; Schütte, K.; Zech, C.J.; Loewe, C.; van Delden, O.; et al. Impact of body composition in advanced hepatocellular carcinoma: A subanalysis of the SORAMIC trial. Hepatol. Commun. 2023, 7, e0165. [Google Scholar] [CrossRef] [PubMed]
- Branco, M.G.; Mateus, C.; Capelas, M.L.; Pimenta, N.; Santos, T.; Mäkitie, A.; Ganhão-Arranhado, S.; Trabulo, C.; Ravasco, P. Bioelectrical Impedance Analysis (BIA) for the Assessment of Body Composition in Oncology: A Scoping Review. Nutrients 2023, 15, 4792. [Google Scholar] [CrossRef]
- Lauby-Secretan, B.; Scoccianti, C.; Loomis, D.; Grosse, Y.; Bianchini, F.; Straif, K. Body fatness and cancer—Viewpoint of the IARC Working Group. N. Engl. J. Med. 2016, 375, 794–798. [Google Scholar] [CrossRef]
- Olsen, C.M.; Hughes, M.C.; Pandeya, N.; Green, A.C. Anthropometric measures in relation to basal cell carcinoma: A longitudinal study. BMC Cancer 2006, 6, 82. [Google Scholar] [CrossRef] [PubMed]
- Pothiawala, S.; Qureshi, A.A.; Li, Y.; Han, J. Obesity and the incidence of skin cancer in US Caucasians. Cancer Causes Control 2012, 23, 717–726. [Google Scholar] [CrossRef] [PubMed]
- Friedenreich, C.M.; Ryder-Burbidge, C.; McNeil, J. Physical activity, obesity and sedentary behavior in cancer etiology: Epidemiologic evidence and biologic mechanisms. Mol. Oncol. 2021, 15, 790–800. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.; Monk, J.M.; Robinson, L.E.; Mourtzakis, M. The integrative role of leptin, oestrogen and the insulin family in obesity-associated breast cancer: Potential effects of exercise. Obes. Rev. 2015, 16, 473–487. [Google Scholar] [CrossRef] [PubMed]
- Pandya, P.H.; Murray, M.E.; Pollok, K.E.; Renbarger, J.L. The Immune System in Cancer Pathogenesis: Potential Therapeutic Approaches. J. Immunol. Res. 2016, 2016, 4273943. [Google Scholar] [CrossRef]
- Choi, K.Y.; Chow, L.N.; Mookherjee, N. Cationic host defence peptides: Multifaceted role in immune modulation and inflammation. J. Innate Immun. 2012, 4, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Hemshekhar, M.; Anaparti, V.; Mookherjee, N. Functions of Cationic Host Defense Peptides in Immunity. Pharmaceuticals 2016, 9, 40. [Google Scholar] [CrossRef]
- Fijałkowska, M.; Koziej, M.; Antoszewski, B.; Sitek, A. Correlations between antimicrobial peptides and spectrophotometric skin color parameters in patients with basal cell carcinoma. J. Cancer Res. Clin. Oncol. 2023, 149, 5697–5704. [Google Scholar] [CrossRef]
- Gambini, D.; Passoni, E.; Nazzaro, G.; Beltramini, G.; Tomasello, G.; Ghidini, M.; Kuhn, E.; Garrone, O. Basal Cell Carcinoma and Hedgehog Pathway Inhibitors: Focus on Immune Response. Front. Med. 2022, 9, 893063. [Google Scholar] [CrossRef] [PubMed]
- Omland, S.H.; Nielsen, P.S.; Gjerdrum, L.M.; Gniadecki, R. Immunosuppressive environment in basal cell carcinoma: The role of regulatory T cells. Acta Derm. Venereol. 2016, 96, 917–921. [Google Scholar] [CrossRef] [PubMed]
- Omland, S.H. Local immune response in cutaneous basal cell carcinoma. Dan. Med. J. 2017, 64, B5412. [Google Scholar]
- Chan, A.A.; Noguti, J.; Pak, Y.; Qi, L.; Caan, B.; Going, S.; Han, J.; Chlebowski, R.T.; Lee, D.J. Interaction of body mass index or waist-to-hip ratio and sun exposure associated with nonmelanoma skin cancer: A prospective study from the Women’s Health Initiative. Cancer 2019, 125, 1133–1142. [Google Scholar] [CrossRef] [PubMed]
- Præstegaard, C.; Kjær, S.K.; Christensen, J.; Tjønneland, A.; Halkjær, J.; Jensen, A. Obesity and risks for malignant melanoma and non-melanoma skin cancer: Results from a large Danish prospective cohort study. J. Investig. Dermatol. 2015, 135, 901–904. [Google Scholar] [CrossRef]
- Cai, H.; Sobue, T.; Kitamura, T.; Sawada, N.; Iwasaki, M.; Shimazu, T.; Tsugane, S. Epidemiology of nonmelanoma skin cancer in Japan: Occupational type, lifestyle, and family history of cancer. Cancer Sci. 2020, 111, 4257–4265. [Google Scholar] [CrossRef]
- Ayeser, T.; Basak, M.; Arslan, K.; Sayan, I. Investigating the correlation of the number of diagnostic criteria to serum adiponectin, leptin, resistin, TNF-alpha, EGFR levels and abdominal adipose tissue. Diabetes Metab. Syndr. 2016, 10 (Suppl. S1), S165–S169. [Google Scholar] [CrossRef] [PubMed]
- Sukkriang, N.; Chanprasertpinyo, W.; Wattanapisit, A.; Punsawad, C.; Thamrongrat, N.; Sangpoom, S. Correlation of body visceral fat rating with serum lipid profile and fasting blood sugar in obese adults using a noninvasive machine. Heliyon 2021, 7, e06264. [Google Scholar] [CrossRef]
- Fernandez-Garcia, J.C.; Alcaide, J.; Santiago-Fernandez, C.; Roca-Rodriguez, M.M.; Aguera, Z.; Baños, R.; Botella, C.; de la Torre, R.; Fernandez-Real, J.M.; Fruhbeck, G.; et al. An increase in visceral fat is associated with a decrease in the taste and olfactory capacity. PLoS ONE 2017, 12, e0171204. [Google Scholar]
- Benachour, H.; Zaiou, M.; Samara, A.; Herbeth, B.; Pfister, M.; Lambert, D.; Siest, G.; Visvikis-Siest, S. Association of human cathelicidin (hCAP-18/LL-37) gene expression with cardiovascular disease risk factors. Nutr. Metab. Cardiovasc. Dis. 2009, 19, 720–728. [Google Scholar] [CrossRef]
- Kozłowska, E.; Wysokiński, A.; Brzezińska-Błaszczyk, E. Serum levels of peptide cathelicidin LL-37 in elderly patients with depression. Psychiatry Res. 2017, 255, 156–160. [Google Scholar] [CrossRef]
- Szczepocka, E.; Kozłowska, E.; Brzezińska-Błaszczyk, E.; Wysokiński, A. Body composition does not affect serum levels of cathelicidin LL-37 in elderly women with unipolar depression. Nord. J. Psychiatry 2018, 72, 45–50. [Google Scholar] [CrossRef] [PubMed]
BCC | Control | p | |||
---|---|---|---|---|---|
Mean | SD | Mean | SD | ||
Weight [kg] | 75.4 | 13.2 | 78.2 | 20.6 | 0.825 |
Height [cm] | 165.0 | 8.6 | 167.3 | 9.6 | 0.365 |
BMI | 27.8 | 4.1 | 27.2 | 4.6 | 0.321 |
% of fat | 32.5 | 8.1 | 32.3 | 9.1 | 0.956 |
Fat mass | 25.0 | 8.4 | 25.0 | 10.2 | 0.899 |
Muscle mass | 48.3 | 9.5 | 48.8 | 11.2 | 0.909 |
Bone mass | 2.6 | 0.5 | 2.6 | 0.6 | 1.000 |
TBW [kg] | 1023.7 | 6989.9 | 35.5 | 8.0 | 0.890 |
TBW [%] | 46.4 | 5.1 | 46.7 | 5.4 | 0.804 |
Ideal mass | 60.1 | 6.4 | 61.8 | 7.3 | 0.347 |
Visceral fat rating | 11.7 | 3.7 | 10.1 | 4.0 | 0.035 |
Obesity level in % | 26.4 | 18.5 | 23.4 | 21.1 | 0.292 |
Cathelicidin | 1022.6 | 1259.9 | 428.4 | 187.5 | 0.026 |
Defensin-1 | 5.6 | 17.8 | 4.3 | 15.2 | 0.866 |
Defensin-2 | 1.2 | 1.6 | 0.4 | 0.2 | 0.036 |
Age | 68.7 | 11.4 | 62.4 | 10.1 | 0.004 |
Fat/muscle | 0.53 | 0.19 | 0.53 | 0.22 | 0.926 |
Visceral fat/muscle | 0.24 | 0.06 | 0.21 | 0.07 | 0.005 |
BCC | Control | |||||||
---|---|---|---|---|---|---|---|---|
Cathelicidin | Defensin-2 | Cathelicidin | Defensin-2 | |||||
R | p | R | p | R | p | R | p | |
Age | −0.14 | 0.378 | −0.30 | 0.036 | 0.33 | 0.037 | −0.18 | 0.203 |
Weight [kg] | 0.09 | 0.579 | −0.08 | 0.558 | 0.68 | 0.000 | 0.65 | 0.000 |
Height [cm] | 0.25 | 0.113 | 0.24 | 0.098 | 0.14 | 0.390 | 0.28 | 0.049 |
BMI | −0.11 | 0.506 | −0.22 | 0.131 | 0.81 | 0.000 | 0.65 | 0.000 |
% of fat | −0.19 | 0.236 | −0.25 | 0.075 | 0.19 | 0.224 | 0.21 | 0.152 |
Fat mass | −0.09 | 0.589 | −0.19 | 0.193 | 0.44 | 0.004 | 0.45 | 0.001 |
Muscle mass | 0.17 | 0.290 | 0.08 | 0.569 | 0.51 | 0.001 | 0.55 | 0.000 |
Bone mass | 0.18 | 0.271 | 0.07 | 0.615 | 0.49 | 0.001 | 0.53 | 0.000 |
TBW [kg] | 0.15 | 0.361 | 0.08 | 0.560 | 0.52 | 0.000 | 0.58 | 0.000 |
TBW [%] | 0.15 | 0.336 | 0.20 | 0.154 | −0.19 | 0.235 | −0.16 | 0.270 |
Ideal mass | 0.25 | 0.114 | 0.24 | 0.099 | 0.14 | 0.371 | 0.28 | 0.050 |
Visceral fat rating | 0.08 | 0.621 | −0.16 | 0.258 | 0.68 | 0.000 | 0.34 | 0.015 |
Obesity level in % | −0.10 | 0.516 | −0.22 | 0.134 | 0.80 | 0.000 | 0.64 | 0.000 |
Fat/muscle | −0.18 | 0.258 | −0.24 | 0.086 | 0.19 | 0.231 | 0.20 | 0.160 |
Visceral fat/muscle | −0.01 | 0.962 | −0.25 | 0.082 | 0.51 | 0.001 | 0.12 | 0.423 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fijałkowska, M.; Antoszewski, B.; Koziej, M. Analysis of Body Composition and Levels of Antimicrobial Peptides in Patients with Basal Cell Carcinoma: A Preliminary Study. J. Clin. Med. 2025, 14, 419. https://doi.org/10.3390/jcm14020419
Fijałkowska M, Antoszewski B, Koziej M. Analysis of Body Composition and Levels of Antimicrobial Peptides in Patients with Basal Cell Carcinoma: A Preliminary Study. Journal of Clinical Medicine. 2025; 14(2):419. https://doi.org/10.3390/jcm14020419
Chicago/Turabian StyleFijałkowska, Marta, Bogusław Antoszewski, and Mateusz Koziej. 2025. "Analysis of Body Composition and Levels of Antimicrobial Peptides in Patients with Basal Cell Carcinoma: A Preliminary Study" Journal of Clinical Medicine 14, no. 2: 419. https://doi.org/10.3390/jcm14020419
APA StyleFijałkowska, M., Antoszewski, B., & Koziej, M. (2025). Analysis of Body Composition and Levels of Antimicrobial Peptides in Patients with Basal Cell Carcinoma: A Preliminary Study. Journal of Clinical Medicine, 14(2), 419. https://doi.org/10.3390/jcm14020419