The Changes in the Antibiotic Resistance of Staphylococcus aureus, Streptococcus pneumoniae, Enterococcus faecalis and Enterococcus faecium in the Clinical Isolates of a Multiprofile Hospital over 6 Years (2017–2022)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Data Analysis
3. Results
3.1. Evolution of Bacterial Resistance
3.1.1. Antibiotic Resistance of Staphylococcus aureus Strains in 2017–2022
3.1.2. Antibiotic Resistance of E. faecalis and E. faecium Strains in 2017–2022
3.1.3. Antibiotic Resistance of S. pneumoniae Strains in 2017–2022
3.1.4. Statistical Analysis Results
3.2. Consumption of Antibiotics in Hospitals in the Analyzed Period 2017–2022
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pulingam, T.; Parumasivam, T.; Gazzali, A.M.; Sulaiman, A.M.; Chee, J.Y.; Lakshmanan, M.; Chin, C.F.; Sudesh, K. Antimicrobial resistance: Prevalence, economic burden, mechanisms of resistance and strategies to overcome. Eur. J. Pharm. Sci. 2022, 170, 106103. [Google Scholar] [CrossRef] [PubMed]
- Theuretzbacher, U. Global antibacterial resistance: The never-ending story. J. Glob. Antimicrob. Resist. 2013, 1, 63–69. [Google Scholar] [CrossRef]
- Alexander, J.A.N.; Worrall, L.J.; Hu, J.; Vuckovic, M.; Satishkumar, N.; Poon, R.; Sobhanifar, S.; Rosell, F.I.; Jenkins, J.; Chiang, D.; et al. Structural basis of broad-spectrum β-lactam resistance in Staphylococcus Aureus. Nature 2023, 613, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Nosheen, S.; Ejaz, H.; Zafar, A.; Ikram, H. Antibacterial activity of penicillins alone and in combination with different agents against Staphylococcus aureus. Pak. J. Pharm. Sci. 2017, 30, 393–397. [Google Scholar]
- Lakhundi, S.; Zhang, K. Methicillin-Resistant Staphylococcus aureus: Molecular Characterization, Evolution, and Epidemiology. Clin. Microbiol. Rev. 2018, 31, e00020-18. [Google Scholar] [CrossRef] [PubMed]
- Mlynarczyk-Bonikowska, B.; Kowalewski, C.; Krolak-Ulinska, A.; Marusza, W. Molecular Mechanisms of Drug Resistance in Staphylococcus aureus. Int. J. Mol. Sci. 2022, 23, 8088. [Google Scholar] [CrossRef]
- Quezada-Aguiluz, M.; Aguayo-Reyes, A.; Carrasco, C.; Mejías, D.; Saavedra, P.; Mella-Montecinos, S.; Opazo-Capurro, A.; Bello-Toledo, H.; Munita, J.M.; Hormazábal, J.C.; et al. Phenotypic and Genotypic Characterization of Macrolide, Lincosamide and Streptogramin B Resistance among Clinical Methicillin-Resistant Staphylococcus aureus Isolates in Chile. Antibiotics 2022, 11, 1000. [Google Scholar] [CrossRef] [PubMed]
- Acharya, Y.; Dhanda, G.; Sarkar, P.; Haldar, J. Pursuit of next-generation glycopeptides: A journey with vancomycin. Chem. Commun. 2022, 58, 1881–1897. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Walker, M.J.; De Oliveira, D.M.P. Vancomycin Resistance in Enterococcus and Staphylococcus aureus. Microorganisms 2022, 11, 24. [Google Scholar] [CrossRef]
- Sattari-Maraji, A.; Jabalameli, F.; Farahani, N.N.; Beigverdi, R.; Emaneini, M. Antimicrobial resistance pattern, virulence determinants and molecular analysis of Enterococcus faecium isolated from children infections in Iran. BMC Microbiol. 2019, 19, 156. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.R.; Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance in enterococci. Expert Rev. Anti-Infect. Ther. 2014, 12, 1221–1236. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.X.; Li, T.; Ning, Y.Z.; Shao, D.H.; Liu, J.; Wang, S.Q.; Liang, G.W. Molecular characterization of resistance, virulence and clonality in vancomycin-resistant Enterococcus faecium and Enterococcus faecalis: A hospital-based study in Beijing, China. Infect. Genet. Evol. 2015, 33, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Weiser, J.N.; Ferreira, D.M.; Paton, J.C. Streptococcus pneumoniae: Transmission, colonization and invasion. Nat. Rev. Microbiol. 2018, 16, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Wang, L.; Wang, Z.; Kudinha, T.; Wang, Y.; Xu, Y.; Liu, Z. Molecular Characterization of Penicillin-Binding Protein2x, 2b and 1a of Streptococcus pneumoniae Causing Invasive Pneumococcal Diseases in China: A Multicenter Study. Front. Microbiol. 2022, 13, 838790. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, J.; Zhang, Z.; Liu, Y.; Wang, Y.; Liu, Y. Molecular characteristics of penicillin-binding protein 2b, 2x and 1a sequences in Streptococcus pneumoniae isolates causing invasive diseases among children in Northeast China. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 633–645. [Google Scholar] [CrossRef]
- Armitage, P. Tests for Linear Trends in Proportions and Frequencies. Biometrics 1955, 11, 375–386. [Google Scholar] [CrossRef]
- Mancuso, G.; Midiri, A.; Gerace, E.; Biondo, C. Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens 2021, 10, 1310. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, X.; Tan, L.; Ouyang, P.; Ma, H.; Peng, J.; Shi, T.; Xie, L. Analysis of distribution and antibiotic resistance of Gram-positive bacteria isolated from a tertiary-care hospital in southern China: An 8-year retrospective study. Front. Microbiol. 2023, 14, 1220363. [Google Scholar] [CrossRef] [PubMed]
- Duclos, G.; Lakbar, I.; Boucekine, M.; Lolo, G.; Cassir, N.; Leone, M. Association Between Multidrug-Resistant Bacteria and Mortality in Critically Ill Patients. Adv. Ther. 2023, 40, 1736–1749. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Antimicrobial Resistance in the EU/EEA (EARS-Net): Annual Epidemiological Report for 2022; ECDC: Stockholm, Sweden, 2023.
- World Health Organization. Prioritization of Pathogens to Guide Discovery, Research and Development of New Antibiotics for Drug-Resistant Bacterial Infections, Including Tuberculosis; No. WHO/EMP/IAU/2017.12; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Mączyńska, B.; Frej-Mądrzak, M.; Sarowska, J.; Woronowicz, K.; Choroszy-Król, I.; Jama-Kmiecik, A. Evolution of Antibiotic Resistance in Escherichia coli and Klebsiella pneumoniae Clinical Isolates in a Multi-Profile Hospital over 5 Years (2017–2021). J. Clin. Med. 2023, 12, 2414. [Google Scholar] [CrossRef]
- Mączyńska, B.; Jama-Kmiecik, A.; Sarowska, J.; Woronowicz, K.; Choroszy-Król, I.; Piątek, D.; Frej-Mądrzak, M. Changes in Antibiotic Resistance of Acinetobacter baumannii and Pseudomonas aeruginosa Clinical Isolates in a Multi-Profile Hospital in Years 2017–2022 in Wroclaw, Poland. J. Clin. Med. 2023, 12, 5020. [Google Scholar] [CrossRef]
- Saber, T.; Samir, M.; El-Mekkawy, R.M.; Ariny, E.; El-Sayed, S.R.; Enan, G.; Abdelatif, S.H.; Askora, A.; Merwad, A.M.A.; Tartor, Y.H. Methicillin- and Vancomycin-Resistant Staphylococcus aureus From Humans and Ready-To-Eat Meat: Characterization of Antimicrobial Resistance and Biofilm Formation Ability. Front. Microbiol. 2022, 12, 735494. [Google Scholar] [CrossRef] [PubMed]
- Kakoullis, L.; Papachristodoulou, E.; Chra, P.; Panos, G. Mechanisms of Antibiotic Resistance in Important Gram-Positive and Gram-Negative Pathogens and Novel Antibiotic Solutions. Antibiotics 2021, 10, 415. [Google Scholar] [CrossRef] [PubMed]
- Alkharsah, K.R.; Rehman, S.; Alkhamis, F.; Alnimr, A.; Diab, A.; Al-Ali, A.K. Comparative and molecular analysis of MRSA isolates from infection sites and carrier colonization sites. Ann. Clin. Microbiol. Antimicrob. 2018, 17, 7. [Google Scholar] [CrossRef] [PubMed]
- Kourtis, A.P.; Hatfield, K.; Baggs, J.; Mu, Y.; See, I.; Epson, E.; Nadle, J.; Kainer, M.A.; Dumyati, G.; Petit, S.; et al. Vital signs: Epidemiology and Recent Trends in Methicillin-Resistant and in Methicillin-Susceptible Staphylococcus aureus Bloodstream Infections—United States. MMWR Morb. Mortal. Wkly. Rep. 2019, 68, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Hou, Z.; Liu, L.; Wei, J.; Xu, B. Progress in the Prevalence, Classification and Drug Resistance Mechanisms of Methicillin-Resistant Staphylococcus aureus. Infect. Drug Resist. 2023, 16, 3271–3292. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- European Centre for Disease Prevention and Control. Antimicrobial Resistance in the EU/EEA (EARS-Net)—Annual Epidemiological Report 2020; ECDC: Stockholm, Sweden, 2021.
- European Centre for Disease Prevention and Control. Antimicrobial Resistance in the EU/EEA (EARS-Net)—Annual Epidemiological Report 2019; ECDC: Stockholm, Sweden, 2020.
- European Centre for Disease Prevention and Control. Antimicrobial Resistance in the EU/EEA (EARS-Net)—Annual Epidemiological Report 2021; ECDC: Stockholm, Sweden, 2022.
- Xing, A.; Ng, H.M.; Jiao, H.; Li, K.; Ye, Q. The Prevalence, Epidemiological, and Molecular Characterization of Methicillin-Resistant Staphylococcus aureus (MRSA) in Macau (2017–2022). Microorganisms 2024, 12, 148. [Google Scholar] [CrossRef]
- Liao, F.; Mo, Z.; Gu, W.; Xu, W.; Fu, X.; Zhang, Y. A comparative genomic analysis between methicillin-resistant Staphylococcus aureus strains of hospital acquired and community infections in Yunnan province of China. BMC Infect. Dis. 2020, 20, 137. [Google Scholar] [CrossRef]
- Nyasinga, J.; Omuse, G.; John, N.; Nyerere, A.; Abdulgader, S.; Newton, M.; Whitelaw, A.; Revathi, G. Epidemiology of Staphylococcus aureus Infections in Kenya: Current State, Gaps and Opportunities. Open J. Med. Microbiol. 2020, 10, 204–221. [Google Scholar] [CrossRef]
- Tabaja, H.; Hindy, J.R.; Kanj, S.S. Epidemiology of Methicillin-Resistant Staphylococcus Aureus in Arab Countries of the Middle East and North African (MENA) Region. Mediterr. J. Hematol. Infect. Dis. 2021, 13, e2021050. [Google Scholar] [CrossRef]
- Sit, P.S.; The, C.S.; Idris, N.; Sam, I.C.; Syed Omar, S.F.; Sulaiman, H.; Thong, K.L.; Kamarulzaman, A.; Ponnampalavanar, S. Prevalence of methicillin-resistant Staphylococcus aureus (MRSA) infection and the molecular characteristics of MRSA bacteraemia over a two-year period in a tertiary teaching hospital in Malaysia. BMC Infect. Dis. 2017, 17, 274. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Antimicrobial Resistance in the EU/EEA (EARS-Net)—Annual Epidemiological Report 2018; ECDC: Stockholm, Sweden, 2019.
- García-Solache, M.; Rice, L.B. The Enterococcus: A Model of Adaptability to Its Environment. Clin. Microbiol. Rev. 2019, 32, e00058-18. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Talaga, K.; Odrowąż-Konduracka, D.; Paradowska, B.; Jagiencarz-Starzec, B.; Wolak, Z.; Bulanda, M.; Szczypta, A. Typing of Enterococcus spp. strains in 4 hospitals in the Małopolska region in Poland. Adv. Clin. Exp. Med. 2018, 27, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Hollenbeck, B.L.; Rice, L.B. Intrinsic and acquired resistance mechanisms in enterococcus. Virulence 2012, 3, 421–433. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Misiakou, M.A.; Hertz, F.B.; Schønning, K.; Häussler, S.; Nielsen, K.L. Emergence of linezolid-resistant Enterococcus faecium in a tertiary hospital in Copenhagen. Microb. Genom. 2023, 9, mgen001055. [Google Scholar] [CrossRef] [PubMed]
- Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Cormican, M.; Flamm, R.K.; Mendes, R.E.; Jones, R.N. Temporal and Geographic Variation in Antimicrobial Susceptibility and Resistance Patterns of Enterococci: Results From the SENTRY Antimicrobial Surveillance Program, 1997–2016. Open Forum. Infect Dis. 2019, 6, S54–S62. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Zhu, D.; Wang, F.; Wang, M. Current Status and Trends of Antibacterial Resistance in China. Clin. Infect. Dis. 2018, 67 (Suppl. S2), 128–134. [Google Scholar] [CrossRef]
- Gergova, R.; Boyanov, V.; Muhtarova, A.; Alexandrova, A. A Review of the Impact of Streptococcal Infections and Antimicrobial Resistance on Human Health. Antibiotics 2024, 13, 360. [Google Scholar] [CrossRef] [PubMed]
- Zahari, N.I.N.; Engku Abd Rahman, E.N.S.; Irekeola, A.A.; Ahmed, N.; Rabaan, A.A.; Alotaibi, J.; Alqahtani, S.A.; Halawi, M.Y.; Alamri, I.A.; Almogbel, M.S.; et al. A Review of the Resistance Mechanisms for β-Lactams, Macrolides and Fluoroquinolones among Streptococcus pneumoniae. Medicina 2023, 59, 1927. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Antimicrobial Resistance in the EU/EEA (EARS-Net)—Annual Epidemiological Report 2017; ECDC: Stockholm, Sweden, 2018.
- Li, L.; Ma, J.; Yu, Z.; Li, M.; Zhang, W.; Sun, H. Epidemiological characteristics and antibiotic resistance mechanisms of Streptococcus pneumoniae: An updated review. Microbiol. Res. 2023, 266, 127221. [Google Scholar] [CrossRef] [PubMed]
Year/Strain | 2017 (%) | 2018 (%) | 2019 (%) | 2020 (%) | 2021 (%) | 2022 (%) |
---|---|---|---|---|---|---|
S. aureus | 532 (56.8) | 627 (58.7) | 445 (55.6) | 365 (50.4) | 348 (42.7) | 361 (44.9) |
E. faecalis | 318 (33.9) | 284 (26.6) | 243 (30.3) | 249 (34.4) | 350 (42.9) | 295 (36.7) |
E. faecium | 49 (5.2) | 97 (9.1) | 68 (8.5) | 73 (10.1) | 87 (10.7) | 105 (13.1) |
S. pneumoniae | 38 (4.1) | 61 (5.7) | 45 (5.6) | 37 (5.1) | 30 (3.7) | 43 (5.3) |
Total | 937 | 1069 | 801 | 724 | 815 | 804 |
Microorganism | Selected Antibiotics |
---|---|
Staphylococcus aureus MS/MR * | Gentamicin, amikacin, erythromycin, clindamycin, levofloxacin, ciprofloxacin, rifampicin and cotrimoxazole |
Enterococcus faecalis | Levofloxacin, teicoplanin, vancomycin, nitrofurantoin, fosfomycin and linezolid |
Enterococcus faecium | Levofloxacin, teicoplanin, vancomycin and linezolid |
Streptococcus pneumoniae | Cefotaxime, ceftriaxone, erythromycin, clindamycin, benzylpenicillin, ampicillin, tetracycline and cotrimoxazole |
Drug | S. aureus MSSA | S. aureus MRSA | S. pneumoniae (Resistant Strains) | S. pneumoniae (Reduced Susceptibility Strains) | E. faecalis | E. faecium | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Amikacin | 0.1657 | 0.1815 | ||||||||||
Gentamicin | 0.0103 | ↓ | 0.0008 | ↑ | ||||||||
Ciprofloxacin | 0.4070 | 0.0166 | ↓ | 0.0755 | ↓ | 0.3026 | ||||||
Levofloxacin | 0.5715 | 0.2227 | 0.0036 | ↓ | 0.0776 | ↑ | ||||||
Erythromycin | 0.0765 | ↑ | <0.0001 | ↓ | 0.2168 | |||||||
Clindamycin | 0.1135 | <0.0001 | ↓ | 0.5431 | ||||||||
Tetracycline | 0.4350 | |||||||||||
Cotrimoxazole | 0.0006 | ↑ | 0.1649 | 0.0108 | ↓ | |||||||
Rifampicin | 0.6470 | 0.5868 | ||||||||||
Cefotaxime | 0.7900 | |||||||||||
Ceftriaxone | 0.9850 | |||||||||||
Ampicillin | 0.4349 | 0.2849 | ||||||||||
Benzylpenicillin | <0.0001 | ↑ | 0.4881 | |||||||||
Teicoplanin | 0.1012 | |||||||||||
Vancomycin | <0.0001 | ↑ | 0.8323 | |||||||||
Fosfomycin | 0.0197 | ↓ | ||||||||||
Nitrofurantoin | 0.7662 |
Antibiotic Consumption [DDD/100 Person-Days] | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | TETs | PENs | PENs + ins. | C II | C III | C IV | CARs | MACs | LINs | AMs | CHs | GPs | Total |
2017 | 1.0 | 0.8 | 7.3 | 9.3 | 2.6 | 0.1 | 0.9 | 3.4 | 0.2 | 0.8 | 5.7 | 0.6 | 42.4 |
2018 | 0.6 | 0.7 | 7.2 | 11.0 | 3.1 | 0.2 | 1.2 | 0.6 | 0.6 | 0.6 | 9.3 | 0.9 | 44.0 |
2019 | 2.4 | 1.3 | 8.4 | 1.4 | 2.7 | 0.2 | 2.4 | 2.4 | 0.8 | 0.7 | 2.5 | 1.3 | 34.7 |
2020 | 0.8 | 1.4 | 8.3 | 2.6 | 15.7 | 0.3 | 2.0 | 0.6 | 1.1 | 1.0 | 12.7 | 1.1 | 58.3 |
2021 | 0.7 | 3.9 | 22.3 | 1.8 | 7.4 | 0.2 | 2.1 | 0.8 | 1.0 | 1.0 | 8.3 | 1.4 | 60.5 |
2022 | 0.7 | 3.3 | 25.3 | 1.8 | 4.7 | 0.2 | 2.8 | 0.8 | 1.2 | 1.5 | 7.3 | 1.4 | 62.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jama-Kmiecik, A.; Mączyńska, B.; Frej-Mądrzak, M.; Choroszy-Król, I.; Dudek-Wicher, R.; Piątek, D.; Kujawa, K.; Sarowska, J. The Changes in the Antibiotic Resistance of Staphylococcus aureus, Streptococcus pneumoniae, Enterococcus faecalis and Enterococcus faecium in the Clinical Isolates of a Multiprofile Hospital over 6 Years (2017–2022). J. Clin. Med. 2025, 14, 332. https://doi.org/10.3390/jcm14020332
Jama-Kmiecik A, Mączyńska B, Frej-Mądrzak M, Choroszy-Król I, Dudek-Wicher R, Piątek D, Kujawa K, Sarowska J. The Changes in the Antibiotic Resistance of Staphylococcus aureus, Streptococcus pneumoniae, Enterococcus faecalis and Enterococcus faecium in the Clinical Isolates of a Multiprofile Hospital over 6 Years (2017–2022). Journal of Clinical Medicine. 2025; 14(2):332. https://doi.org/10.3390/jcm14020332
Chicago/Turabian StyleJama-Kmiecik, Agnieszka, Beata Mączyńska, Magdalena Frej-Mądrzak, Irena Choroszy-Król, Ruth Dudek-Wicher, Daniel Piątek, Krzysztof Kujawa, and Jolanta Sarowska. 2025. "The Changes in the Antibiotic Resistance of Staphylococcus aureus, Streptococcus pneumoniae, Enterococcus faecalis and Enterococcus faecium in the Clinical Isolates of a Multiprofile Hospital over 6 Years (2017–2022)" Journal of Clinical Medicine 14, no. 2: 332. https://doi.org/10.3390/jcm14020332
APA StyleJama-Kmiecik, A., Mączyńska, B., Frej-Mądrzak, M., Choroszy-Król, I., Dudek-Wicher, R., Piątek, D., Kujawa, K., & Sarowska, J. (2025). The Changes in the Antibiotic Resistance of Staphylococcus aureus, Streptococcus pneumoniae, Enterococcus faecalis and Enterococcus faecium in the Clinical Isolates of a Multiprofile Hospital over 6 Years (2017–2022). Journal of Clinical Medicine, 14(2), 332. https://doi.org/10.3390/jcm14020332