Femoral Closure with Single ProGlide® in Transcatheter Aortic Valve Implantation: A Registry-Based Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Reporting
2.2. Data Collection
2.3. Procedure
2.4. Endpoints
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Study Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AS | Aortic Stenosis |
TAVI | Transcatheter Aortic Valve Implantation |
VCD | Vascular Closure Device |
VARC-3 | Valve Academic Research Consortium-3 |
ANOVA | Analysis of Variance |
References
- d’Arcy, J.L.; Prendergast, B.D.; Chambers, J.B.; Ray, S.G.; Bridgewater, B. Valvular heart disease: The next cardiac epidemic. Heart 2011, 97, 91–93. [Google Scholar] [CrossRef] [PubMed]
- Auffret, V.; Lefevre, T.; Van Belle, E.; Eltchaninoff, H.; Iung, B.; Koning, R.; Motreff, P.; Leprince, P.; Verhoye, J.P.; Manigold, T.; et al. Temporal trends in transcatheter aortic valve replacement in France: FRANCE 2 to FRANCE TAVI. J. Am. Coll. Cardiol. 2017, 70, 42–55. [Google Scholar] [CrossRef] [PubMed]
- Cribier, A.; Eltchaninoff, H.; Bash, A.; Borenstein, N.; Tron, C.; Bauer, F.; Derumeaux, G.; Anselme, F.; Laborde, F.; Leon, M.B. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: First human case description. Circulation 2002, 106, 3006–3008. [Google Scholar] [CrossRef]
- Grube, E.; Schuler, G.; Buellesfeld, L.; Gerckens, U.; Linke, A.; Wenaweser, P.; Sauren, B.; Blackman, D.; Horst, M.; Siegert, M.; et al. First report on a human percutaneous transluminal implantation of a self-expanding valve prosthesis for interventional treatment of aortic valve stenosis. Catheter. Cardiovasc. Interv. 2005, 66, 465–469. [Google Scholar] [CrossRef]
- Barbanti, M.; Binder, R.K.; Freeman, M.; Wood, D.A.; Leipsic, J.; Cheung, A.; Ye, J.; Tan, J.; Toggweiler, S.; Yang, T.-H.; et al. Impact of low-profile sheaths on vascular complications during transfemoral transcatheter aortic valve replacement. EuroIntervention 2013, 9, 929–935. [Google Scholar] [CrossRef]
- Biasco, L.; Ferrari, E.; Pedrazzini, G.B.; Faletra, F.; Moccetti, T.; Auricchio, A.; Reuthebuch, O. Access sites for TAVI: Patient selection criteria, technical aspects, and outcomes. Front. Cardiovasc. Med. 2018, 5, 88. [Google Scholar] [CrossRef]
- Arai, T.; Lefevre, T.; Hovasse, T.; Morice, M.C.; Garot, P.; Benamer, H.; Romano, M.; Dubois, C.; Farge, A.; Dufour, J.F.; et al. Direct comparison of feasibility and safety of transfemoral versus transaortic versus transapical transcatheter aortic valve replacement. JACC Cardiovasc. Interv. 2016, 9, 2320–2325. [Google Scholar] [CrossRef]
- Marchant, D.; Schwartz, R.; Chepurko, L.; Katz, S. Access site management after aortic valvuloplasty using a suture mediated closure device: Clinical experience in 4 cases. J. Invasive Cardiol. 2000, 12, 474–477. [Google Scholar]
- Solomon, L.W.; Fusman, B.; Jolly, N.; Kim, A.; Feldman, T. Percutaneous suture closure for management of large French size arterial puncture in aortic valvuloplasty. J. Invasive Cardiol. 2001, 13, 592–596. [Google Scholar]
- Barbash, I.M.; Barbanti, M.; Webb, J.; Molina-Martin de Nicolas, J.; Dvir, D.; Latib, A.; Chakravarty, T.; Testa, L.; Rodes-Cabau, J.; Kapadia, S.; et al. Comparison of vascular closure devices for access site closure after transfemoral aortic valve implantation. Eur. Heart J. 2015, 36, 3370–3379. [Google Scholar] [CrossRef] [PubMed]
- Uguz, E.; van Gils, L.; Valk, S.D.; Götberg, M.; Franzone, A.; Walther, T.; Falk, V.; Dörffler-Melly, J. Predictability and outcome of vascular complications after transfemoral transcatheter aortic valve implantation. J. Heart Valve Dis. 2016, 25, 173–181. [Google Scholar]
- Finkelstein, A.; Landes, U.; Jaffe, R.; Segev, A.; Assali, A.; Vaknin-Assa, H.; Leibowitz, D.; Bental, T.; Abramowitz, Y.; Sagie, A.; et al. Safety outcomes of new versus old generation transcatheter aortic valves. Catheter. Cardiovasc. Interv. 2019, 94, E162–E167. [Google Scholar] [CrossRef]
- 12->13 Honda, Y.; Takamatsu, T.; Tada, N.; Shiono, Y.; Naganuma, T.; Akagi, T.; Yamanaka, F.; Mizutani, K.; Shirai, S.; Yamamoto, M. The novel echo-guided ProGlide technique during percutaneous transfemoral transcatheter aortic valve implantation. J. Interv. Cardiol. 2018, 31, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Dimitriadis, Z.; Scholtz, W.; Husser, O.; Andreas, M.; Lauten, P.; Franzone, A.; Butz, T.; Walther, T.; Seeger, F.; Linke, A. Impact of closure devices on vascular complication and mortality rates in TAVI procedures. Int. J. Cardiol. 2017, 241, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Griese, D.P.; Reents, W.; Diegeler, A.; Kerber, S.; Babin-Ebell, J. Simple, effective and safe vascular access site closure with the double-ProGlide preclose technique in 162 patients receiving transfemoral transcatheter aortic valve implantation. Catheter. Cardiovasc. Interv. 2013, 82, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Rosseel, L.; Manoharan, G.; Dubois, C.; Mortier, L.; Lefevre, T.; Naber, C.K.; Abdel-Wahab, M.; Bosmans, J.; De Backer, O.; Legrand, V. A systematic algorithm for large-bore arterial access closure after TAVI: The TAVI-MultiCLOSE study. EuroIntervention. 2024, 20, 123–130. [Google Scholar] [CrossRef]
- Sardar, M.R.; Tam, D.Y.; Sanon, S.; Kiani, S.; Pakbaz, R.; Azemi, T.; Wang, D.D.; O’Neill, W.W.; Borreguero, J.; Jilaihawi, H. Vascular complications associated with transcatheter aortic valve replacement. Vasc. Med. 2017, 22, 234–244. [Google Scholar] [CrossRef]
- Généreux, P.; Webb, J.G.; Svensson, L.G.; Kodali, S.K.; Satler, L.F.; Fearon, W.F.; Makkar, R.R.; Xu, K.; Daneault, B.; Anderson, W.N.; et al. Clinical outcomes after transcatheter aortic valve replacement using valve academic research consortium definitions: A weighted meta-analysis of 3519 patients from 16 studies. J. Am. Coll. Cardiol. 2012, 59, 2317–2326. [Google Scholar] [CrossRef]
- Czerwińska-Jelonkiewicz, K.; Michałowska, I.; Witkowski, A.; Dąbrowski, M.; Chmielak, Z.; Jastrzębski, J.; Demkow, M.; Wasąg, P.; Kleczyński, P.; Sorysz, D.; et al. Vascular complications after transcatheter aortic valve implantation (TAVI): Risk and long-term results. J. Thromb. Thrombolysis 2014, 37, 490–498. [Google Scholar] [CrossRef]
- Kodama, A.; Kondo, N.; Kamioka, N.; Kashima, Y.; Kataoka, A.; Komuro, I. Comparative data of single versus double ProGlide vascular preclose technique after percutaneous transfemoral transcatheter aortic valve implantation from the optimized catheter valvular intervention (OCEAN-TAVI) Japanese multicenter registry. Catheter. Cardiovasc. Interv. 2017, 90, 144–150. [Google Scholar] [CrossRef]
- Reifart, J.; Schäfer, U.; Behnes, M.; Arnold, M.; Scholtz, S.; Kleber, F.X.; Walther, T. Single versus double use of a suture-based closure device for transfemoral aortic valve implantation. Int. J. Cardiol. 2021, 331, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Gmeiner, J.M.; Linnemann, M.; Steffen, J.; Scherer, C.; Orban, M.; Theiss, H.; Mehilli, J.; Sadoni, S.; Peterss, S.; Joskowiak, D.; et al. Dual ProGlide versus ProGlide and FemoSeal for vascular access haemostasis after transcatheter aortic valve implantation. EuroIntervention 2022, 18, 812–819. [Google Scholar] [CrossRef]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; STROBE Initiative. Strengthening the reporting of observational studies in epidemiology (STROBE) statement: Guidelines for reporting observational studies. BMJ 2007, 335, 806–808. [Google Scholar] [CrossRef] [PubMed]
- Mack, M.J.; Leon, M.B.; Thourani, V.H.; Makkar, R.; Kodali, S.K.; Russo, M.; Kapadia, S.; Malaisrie, S.C.; Cohen, D.J.; Pibarot, P.; et al. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N. Engl. J. Med. 2019, 380, 1695–1705. [Google Scholar] [CrossRef] [PubMed]
- Popma, J.J.; Deeb, G.M.; Yakubov, S.J.; Mumtaz, M.; Gada, H.; O’Hair, D.; Bajwa, T.; Heiser, J.; Merhi, W.; Kleiman, N.S.; et al. Transcatheter aortic-valve replacement with a self-expanding valve in low-risk patients. N. Engl. J. Med. 2019, 380, 1706–1715. [Google Scholar] [CrossRef]
- Hollowed, J.; Ambo, M.; Elliott, R.; Lillo, R.; Levisay, J.; Geiss, D.; Kim, J. Single versus double Perclose techniques for vascular closure during transfemoral transcatheter aortic valve replacement. Catheter. Cardiovasc. Interv. 2022, 99, 2125–2130. [Google Scholar] [CrossRef]
- Bazarbashi, N.; Alharbi, S.; Thomas, M.; Khatri, K.; Kapadia, S.; Svensson, L. The utilization of single versus double Perclose devices for transfemoral aortic valve replacement access site closure: Insights from Cleveland Clinic Aortic Valve Center. Catheter. Cardiovasc. Interv. 2020, 96, 442–447. [Google Scholar] [CrossRef]
- Abdel-Wahab, M.; Landt, M.; Mangner, N.; Möllmann, H.; Holzhey, D.; Linke, A. Comparison of a pure plug-based versus a primary suture-based vascular closure device strategy for transfemoral transcatheter aortic valve replacement: The CHOICE-CLOSURE randomized clinical trial. Circulation 2022, 145, 170–183. [Google Scholar] [CrossRef]
- Fitzgerald, S.; Slaughter, M.; Husser, O.; Hamm, C.; Thiele, H.; Abdel-Wahab, M. Femoral arterial calcification and plug- vs. suture-based closure device strategies post-transcatheter aortic valve implantation: Insights from CHOICE-CLOSURE. Struct. Heart 2024, 8, 100236. [Google Scholar] [CrossRef]
- Dumpies, O.; Weber, M.; De Backer, O.; Søndergaard, L.; van Mieghem, N.M. A study of bailout plug-based closure after failed suture-based closure in patients undergoing transfemoral TAVI. EuroIntervention 2024, 20, 1055–1063. [Google Scholar] [CrossRef]
Patient Characteristics | |
---|---|
Female sex, n (%) | 613 (47) |
Age, years [mean ± SD] | 81.7 ± 7.5 |
Arterial hypertension, n (%) | 693 (53.2) |
Diabetes mellitus, n (%) | 332 (25.5) |
Dyslipidemia, n (%) | 340 (26.1) |
Active smoking, n (%) | 43 (3.3) |
History of coronary angioplasty, n (%) | 262 (20.1) |
History of coronary bypass surgery, n (%) | 66 (5.1) |
History of atrial fibrillation, n (%) | 287 (22) |
Chronic renal failure *, n (%) | 158 (12.1) |
STS score (%), [mean ± SD] | 3.5 ± 3.7 |
Procedural characteristics | |
Introducer sheath size | |
14 Fr, n (%) | 857 (65.8) |
16 Fr, n (%) | 267 (20.5) |
18 Fr, n (%) | 81 (6.2) |
20 Fr, n (%) | 87 (6.7) |
21 Fr, n (%) | 8 (0.6) |
22 Fr, n (%) | 3 (0.2) |
Transcatheter aortic valve | |
Self-expandable, n (%) | 394 (30.2) |
Boston®, n (%) | 14 (1.1) |
Medtronic®, n (%) | 340 (26.1) |
Abbott®, n (%) | 40 (3.1) |
Balloon expandable®, n (%) | 909 (69.8) |
Edwards Lifesciences®, n (%) | 909 (69.8) |
Secondary access | |
Contralateral femoral artery, n (%) | 606 (46.5) |
Radial artery, n (%) | 697 (53.5) |
Entire Cohort (n = 1303) | 1P Strategy (n = 733) | 2P Strategy (n = 570) | P | |
---|---|---|---|---|
BC and/or VC | 148 (11.3) | 83 (11.3) | 65 (11.4) | 0.964 |
Major VC | 41 (3.1) | 22 (3.0) | 19 (3.3) | 0.733 |
Minor VC | 107 (8.2) | 61 (8.3) | 46 (8.1) | 0.870 |
Major VC at the primary access site for TAVI | 24 (1.8) | 13 (1.8) | 11 (1.9) | 0.83 |
Minor VC at the primary access site for TAVI | 35 (2.9) | 8 (1.1) | 27 (4.7) | <0.001 |
Major VC at the secondary access site for TAVI | 0 (0) | 0 (0) | 0 (0) | - |
Minor VC at the secondary access site for TAVI | 5 (0.4) | 0 (0) | 5 (0.9) | 0.033 |
BC at discharge | ||||
BC type 1 | 70 (5.3) | 52 (7.1) | 18 (3.2) | 0.006 |
BC type 2 | 15 (1.1) | 11 (1.5) | 4 (0.7) | 0.180 |
BC type 3 | 8 (0.6) | 2 (0.3) | 6 (1.1) | 0.074 |
BC type 4 | 0 (0) | 0 (0) | 0 (0) | - |
Death at discharge | 23 (1.7) | 17 (2.3) | 6 (1.1) | 0.085 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roulot, K.; Kibler, M.; Trimaille, A.; Carmona, A.; Granier, A.; Plastaras, P.; Rischner, J.; Greciano, S.; Leddet, P.; De Poli, F.; et al. Femoral Closure with Single ProGlide® in Transcatheter Aortic Valve Implantation: A Registry-Based Study. J. Clin. Med. 2025, 14, 7113. https://doi.org/10.3390/jcm14197113
Roulot K, Kibler M, Trimaille A, Carmona A, Granier A, Plastaras P, Rischner J, Greciano S, Leddet P, De Poli F, et al. Femoral Closure with Single ProGlide® in Transcatheter Aortic Valve Implantation: A Registry-Based Study. Journal of Clinical Medicine. 2025; 14(19):7113. https://doi.org/10.3390/jcm14197113
Chicago/Turabian StyleRoulot, Kévin, Marion Kibler, Antonin Trimaille, Adrien Carmona, Amandine Granier, Philoktimon Plastaras, Jérome Rischner, Stéphane Greciano, Pierre Leddet, Fabien De Poli, and et al. 2025. "Femoral Closure with Single ProGlide® in Transcatheter Aortic Valve Implantation: A Registry-Based Study" Journal of Clinical Medicine 14, no. 19: 7113. https://doi.org/10.3390/jcm14197113
APA StyleRoulot, K., Kibler, M., Trimaille, A., Carmona, A., Granier, A., Plastaras, P., Rischner, J., Greciano, S., Leddet, P., De Poli, F., Kanso, M., Crimizade, U., Boyer, K., Hoang, M., Kindo, M., Jesel, L., Morel, O., & Ohlmann, P. (2025). Femoral Closure with Single ProGlide® in Transcatheter Aortic Valve Implantation: A Registry-Based Study. Journal of Clinical Medicine, 14(19), 7113. https://doi.org/10.3390/jcm14197113