Management of Normothermic Regional Perfusion Performance in Uncontrolled Versus Controlled Donation After Circulatory Death: A Multi-Center Investigation
Abstract
1. Introduction
2. Methods
2.1. uDCD Program—Bicompartimental Model [8,9]
2.2. cDCD Program
2.3. Normothermic Regional Perfusion Monitoring and Management [10]
- NRP flows (median) > 2 L/min;
- pH ≥ 7.4;
- Glucose (median) ≤ 200 mg/dL.
2.4. Liver Viability Assessment During NRP
- ALT < 1000 UI/L 4 h after commencing NRP;
- Stable or downward trend in serum lactate concentration;
- NRP flows (median) > 2 L/min.
- Macrovescicular steatosis > 40%;
- Necrosis > 10%;
- Fibrosis > 2.
2.5. Statistical Analysis
3. Results
3.1. NRP—uDCD
3.2. NRP-cDCDs
3.3. Dynamic Assessment During NRP—uDCDs vs. cDCDs
3.4. Liver Transplants and Outcomes
4. Discussion
Limitation of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Carlis, R.; Muiesan, P.; Taner, B. Donation after circulatory death: Novel strategies to improve the liver transplant outcome. J. Hepatol. 2023, 78, 1169–1180. [Google Scholar] [CrossRef]
- Lomero, M.; Gardiner, D.; Coll, E.; Haase-Kromwijk, B.; Procaccio, F.; Immer, F.; Gabbasova, L.; Antoine, C.; Jushinskis, J.; Lynch, N.; et al. Donation after circulatory death today: An updated overview of the European landscape. Transplant. Int. 2020, 33, 76–88. [Google Scholar] [CrossRef]
- Hessheimer, A.J.; de la Rosa, G.; Gastaca, M.; Ruíz, P.; Otero, A.; Gómez, M.; Alconchel, F.; Ramírez, P.; Bosca, A.; López-Andújar, R.; et al. Abdominal normothermic regional perfusion in controlled DCD liver transplantation: Outcomes and risk factors for graft loss. Am. J. Transplant. 2022, 22, 1169–1181. [Google Scholar] [CrossRef]
- De Beule, J.; Vandendriessche, K.; Pengel, L.H.M.; Bellini, M.I.; Dark, J.H.; Hessheimer, A.J.; Kimenai, H.J.A.N.; Knight, S.R.; Neyrinck, A.P.; Paredes, D.; et al. A systematic review and meta-analysis of regional perfusion in donation after circulatory death solid organ transplantation. Transplant. Int. 2021, 34, 2046–2060. [Google Scholar] [CrossRef] [PubMed]
- Jochmans, I.; Hessheimer, A.J.; Neyrinck, A.P.; Paredes, D.; Bellini, M.I.; Dark, J.H.; Kimenai, H.J.; Pengel, L.H.; Watson, C.J.; ESOT Workstream 04 of the TLJ (Transplant Learning Journey) project; et al. Consensus statement on normothermic regional perfusion in donation after circulatory death: Report from the European Society for Organ Transplantation’s Transplant Learning Journey. Transplant. Int. 2021, 34, 2019–2030. [Google Scholar] [CrossRef] [PubMed]
- van den Leemkolk, F.E.M.; Schurik, I.J.; Dekkers, O.M.; Oniscu, G.C.; Alwayn, I.P.J.; Ploeg, R.J.; de Jonge, J.; Huurman, V.A.L. Abdominal normothermic regional perfusion in donation after circulatory death: A systematic review and critical appraisal. Transplantation 2020, 104, 1776–1791. [Google Scholar] [CrossRef] [PubMed]
- Royo-Villanova, M.; Minmabres, E.; Coll, E.; Dominguez-Gill, B. Normothermic Regional Perfusion in Controlled Donation After the Circulatory Determination of Death: Understanding Where the Benefit Lies. Transplantation 2025, 109, 428–439. [Google Scholar] [CrossRef]
- Peris, A.; Lazzeri, C.; Cianchi, G.; Bonizzoli, M.; Batacchi, S.; Franci, A.; Rugna, M.; De Vito, L.; Ticali, P.F.; Li Marzi, V.; et al. Implementing a donation after circulatory death program in a setting of donation after brain death activity. Minerva Anestesiol. 2018, 84, 1387–1392. [Google Scholar] [CrossRef]
- Lazzeri, C.; Bonizzoli, M.; Ghinolfi, D.; Li Marzi, V.; Luzzi, L.; Entani Santini, L.; Peris, A. Uncontrolled Donation after circulatory death in the Tuscany Region: Evolving paradigms and potentials. A 8-year experience. Minerva Anestesiol 2025, in press. [Google Scholar]
- De Carlis, L.; De Carlis, R.; Muiesan, P. Past, present and future after circulatory death in Italy. Updates Surg. 2019, 71, 7–9. [Google Scholar] [CrossRef]
- Lazzeri, C.; Bonizzoli, M.; Fulceri, G.E.; Guetti, C.; Ghinolfi, D.; Li Marzi, V.; Migliaccio, M.L.; Peris, A. Utilization rate of uncontrolled donors after circulatory death- a 3- year single- center investigation. Clin. Transplant. 2020, 34, e13896. [Google Scholar] [CrossRef]
- Ghinolfi, D.; Dondossola, D.; Rreka, E.; Lonati, C.; Pezzati, D.; Cacciatoinsilla, A.; Kersik, A.; Lazzeri, C.; Zanella, A.; Peris, A.; et al. Sequential use of normothermic regional and ex situ machine perfusion in donation after circulatory death liver transplant. Liver Transplant. 2020, 27, 385–402. [Google Scholar] [CrossRef] [PubMed]
- Basta, G.; Melandro, F.; Babboni, S.; Del Turco, S.; Ndreu, R.; Torri, F.; Martinelli, C.; Silvestrini, B.; Peris, A.; Lazzeri, C.; et al. An extensive evaluation of hepatic markers of damage and regeneration in controlled and uncontrolled donation after circulatory death. Liver Transplant. 2023, 29, 813–826. [Google Scholar] [CrossRef] [PubMed]
- Palomo-Lopez, N.; Martin-Sastre, S.; Martin-Villen, L.; Ruiz de Aza-Lopez, Z.; Solis-Clavijo, D.; Caballero-Galvez, S.; Carballo-Caro, J.M.; Egea-Guerrero, J.J. Normothermic Regional Perfusion and Donation after circulatory death (controlled and uncontrolled): Metabolic differences and kidney transplantation. Transp. Proc. 2019, 51, 3044–3046. [Google Scholar] [CrossRef]
- Binks, A.; Nolan, J.P. Post-cardiac arrest syndrome. Minerva Anestesiol. 2010, 76, 362–368. [Google Scholar]
- Lazzarin, T.; Tonon, C.R.; Martins, D.; Fávero, E.L.; Baumgratz, T.D.; Pereira, F.W.L.; Pinheiro, V.R.; Ballarin, R.S.; Queiroz, D.A.R.; Azevedo, P.S.; et al. Post-Cardiac Arrest: Mechanisms, Management, and Future Perspectives. J. Clin. Med. 2022, 12, 259. [Google Scholar] [CrossRef]
- Ghinolfi, D.; Patrono, D.; De Carlis, R.; Melandro, F.; Buscemi, V.; Farnesi, F.; Torri, F.; Lauterio, A.; Di Salvo, M.; Cerchione, R.; et al. Liver transplantation with uncontrolled versus controlled DCD donors using normothermic regional perfusion and ex-situ machine perfusion. Liver Transplant. 2024, 30, 4660. [Google Scholar] [CrossRef]
- Vidgren, M.; Oniscu, G.C. Liver transplantation from uncontrolled DCD donors-Is there light at the end of the tunnel? Liver Transplant. 2024, 30, 6–7. [Google Scholar] [CrossRef]
- Tian, C.; Wang, A.; Kuang, Y. Remote ischemic conditioning in experimental hepatic ischemia-reperfusion; A systematic and meta-analysis. Biomed. Rep. 2025, 22, e49. [Google Scholar] [CrossRef] [PubMed]
- Stankiewicz, R.; Grat, M. Direct, remote and combined ischemic conditioning in liver surgery. World J. Hepatol. 2021, 13, 533–542. [Google Scholar] [CrossRef]
- Tapuria, N.; Junnarkar, S.P.; Dutt, N.; Abu-Amara, M.; Fuller, B.; Seifalian, A.M.; Davidson, B.R. Effect of remote ischemic preconditioning on hepatic microcirculation and function in a rat model of hepatic ischemia reperfusion injury. HPB 2009, 11, 108–117. [Google Scholar] [CrossRef]
- Montalvo-Jave, E.E.; Piña, E.; Montalvo-Arenas, C.; Urrutia, R.; Benavente-Chenhalls, L.; Peña-Sanchez, J.; Geller, D.A. Role of ischemic preconditioning in liver surgery and hepatic transplantation. J. Gastrointest. Surg. 2009, 13, 2074–2083. [Google Scholar] [CrossRef] [PubMed]
cDCD | uDCD | p | |
---|---|---|---|
Number | 45 | 44 | |
Age (yrs, mean ± SD) | 68 ± 15 | 52 ± 9 | 0.0001 * |
Gender (M/F, n., %) | 31/14, 69/31% | 39/5, 89/11% | 0.023 # |
BMI (kg/m2, mean ± SD) | 30.4 ± 4 | 29.7 ± 7 | 0.467 * |
Cause of death (n., %) | |||
Cardiac arrest | 44 (100%) | ||
Stroke | 12 (27%) | ||
Post-anoxic encephalopathy | 31 (69%) | ||
Trauma | 2 (4%) | ||
Cardiac arrest—NRP run—WIT (median, range, min–max) | 145.5 (60–175) | ||
NRP duration (hour, median range, min–max) | 4 (2–6) | 6 (4–9) | 0.001 & |
uDCD | ||||
Median (range, min–max) | NRP1 | NRP2 | NRP3 | p |
Lactate (mmol/L) | 18 (8–29) | 20 (13–27) | 18.5 (8–30) | 0.126 & |
AST (UI/L) | 223.5 (61–2375) | 287 (88–2243) | 384 (56–2900) | 0.045 & |
ALT (UI/L) | 237 (89–2377) | 286.5 (65–2071) | 395.5 (84–2125) | 0.013 & |
Blood flow (L/min) | 3 (1–4) | 3 (1–4.3) | 2 (1–4) | 0.001 & |
pH | 6.86 (6.17–7.33) | 7.2 (6.17–7.50) | 7.3 (6.7–7.49) | <0.001 |
Glucose (mg/dL) | 359 (105–580) | 276 (85–461) | 198 (46–451) | <0.001 |
cDCD | ||||
Median (range, min–max) | NRP1 | NRP2 | NRP3 | |
Lactate (mmol/L) | 9 (6.9–13.3) | 7 (3.4–11.3) | 3 (2–10.1) | <0.001 & |
AST (UI/L) | 43 (11–1221) | 56 (12–1736) | 62 (11–2054) | 0.305 & |
ALT (UI/L) | 43 (12–1340) | 50 (12–1500) | 61 (16–1664) | 0.375 & |
Blood flow (L/min) | 3 (2.41–4.3) | 3 (2.3–4.15) | 3 (2.5–4.2) | 0.810 & |
pH | 7.09 (6.72–7.47) | 7.4 (7.19–7.57) | 7.45 (7.30–7.58) | <0.001 & |
Glucose (mg/dL) | 282 (144–405) | 232 (102–385) | 168 (97–380) | <0.001 & |
Median (Range, Min–Max) | uDCD | cDCD | |
---|---|---|---|
Lactate (mmol/L) | |||
1 | 18 (8–29) | 9 (6.9–13.3) | <0.0001 & |
2 | 20 (13–27) | 7 (3.4–11.3) | <0.0001 & |
3 | 18.5 (8–30) | 3 (2–10.1) | <0.0001 & |
AST (UI/L) | |||
1 | 223.5 (61–2375) | 43 (11–1221) | 0.001 & |
2 | 287 (88–2243) | 56 (12–1736) | <0.0001 & |
3 | 384 (56–2900) | 62 (11–2054) | <0.001 & |
ALT (UI/L) | |||
1 | 237 (89–2377) | 43 (12–1340) | 0.005 & |
2 | 286.5 (65–2071) | 50 (12–1500) | <0.0001 & |
3 | 395.5 (84–2125) | 61 (16–1664) | <0.0001 & |
Blood flow (L/min) | |||
1 | 3 (1–4) | 3 (2.41–4.3) | <0.0001 & |
2 | 3 (1–4.3) | 3 (2.3–4.15) | <0.0001 & |
3 | 2 (1–4) | 3 (2.5–4.2) | <0.0001 & |
pH | |||
1 | 6.86 (6.17–7.33) | 7.09 (6.72–7.47) | <0.0001 & |
2 | 7.2 (6.17–7.50) | 7.4 (7.19–7.57) | <0.0001 & |
3 | 7.3 (6.7–7.49) | 7.45 (7.30–7.58) | <0.0001 & |
Glucose (mg/dL) | |||
1 | 359 (105–580) | 282 (144–405) | 0.01 & |
2 | 276 (85–461) | 232 (102–385) | 0.05 & |
3 | 198 (46–451) | 168 (97–380) | 0.02 & |
Median (Range, Min–Max) | uDCD | cDCD | |
---|---|---|---|
Ringer lactate (mL) | 3500 (2000–5500) | 600 (400–3200) | <0.0001 & |
Packed red blood cell units (n.) | 3 (2–5) | 3 (1–6) n.45 | 0.76 & |
Insulin therapy (units) | 15 (5–35) | 8 (5–10) | <0.0001 & |
Bicarbonate (mEq) | 600 (150–800) | 100 (100–300) | <0.001 & |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazzeri, C.; Ghinolfi, D.; Bonizzoli, M.; Cultrera, D.; Lo Pane, P.; Trizzino, A.; Precisi o Procissi, A.; Feltrin, G.; Peris, A. Management of Normothermic Regional Perfusion Performance in Uncontrolled Versus Controlled Donation After Circulatory Death: A Multi-Center Investigation. J. Clin. Med. 2025, 14, 7053. https://doi.org/10.3390/jcm14197053
Lazzeri C, Ghinolfi D, Bonizzoli M, Cultrera D, Lo Pane P, Trizzino A, Precisi o Procissi A, Feltrin G, Peris A. Management of Normothermic Regional Perfusion Performance in Uncontrolled Versus Controlled Donation After Circulatory Death: A Multi-Center Investigation. Journal of Clinical Medicine. 2025; 14(19):7053. https://doi.org/10.3390/jcm14197053
Chicago/Turabian StyleLazzeri, Chiara, Davide Ghinolfi, Manuela Bonizzoli, Daniele Cultrera, Paolo Lo Pane, Arianna Trizzino, Arianna Precisi o Procissi, Giuseppe Feltrin, and Adriano Peris. 2025. "Management of Normothermic Regional Perfusion Performance in Uncontrolled Versus Controlled Donation After Circulatory Death: A Multi-Center Investigation" Journal of Clinical Medicine 14, no. 19: 7053. https://doi.org/10.3390/jcm14197053
APA StyleLazzeri, C., Ghinolfi, D., Bonizzoli, M., Cultrera, D., Lo Pane, P., Trizzino, A., Precisi o Procissi, A., Feltrin, G., & Peris, A. (2025). Management of Normothermic Regional Perfusion Performance in Uncontrolled Versus Controlled Donation After Circulatory Death: A Multi-Center Investigation. Journal of Clinical Medicine, 14(19), 7053. https://doi.org/10.3390/jcm14197053