The Effects of Exercise Training on Functional Aerobic Capacity and Quality of Life in Patients with Systemic Lupus Erythematosus: A Systematic Review of Randomized Controlled Trials
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Criteria
- Design: RCTs with an intervention and a control group.
- Population: adult patients (≥18 years) with a confirmed diagnosis of SLE under stable treatment.
- Intervention: structured exercise training programs, including aerobic, resistance, combined, or alternative exercise modalities (vibration, home-based, or counseling).
- Duration: interventions lasting at least 2 weeks.
- Outcomes: reporting on functional aerobic capacity [peak oxygen consumption (VO2), walking test, ergospirometry, chronotropic reserve, or step count] and/or quality of life assessed by validated questionnaires [36-item Short Form Health Survey questionnaire (SF-36), LupusQoL, Health Assessment Questionnaire (HAQ)].
2.3. Data Extraction
2.4. Risk of Bias Assessment
2.5. Primary and Secondary Outcomes
3. Results
3.1. Study Selection Results
3.2. Study and Patient Characteristics
3.3. Interventions
3.4. Outcomes
3.4.1. Functional Aerobic Capacity
3.4.2. Quality of Life
3.4.3. Secondary Outcomes
3.5. Risk of Bias
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
SLE | Systemic lupus erythematosus |
HRR | Heart rate reserve |
1RM | One repetition maximum |
SF-36 | Short form health survey-36 |
BDI | Beck depression inventory |
SLEDAI | Systemic lupus erythematosus disease activity index |
HRmax | Maximum heart rate |
FSS | Fatigue severity scale |
PWC75%/kg | Physical work capacity at 75% of predicted HR normalized by weight |
AMPK | AMP-activated protein kinase |
GLUT4 | Glucose transporter type 4 |
VO2 | Oxygen uptake |
QoL | Quality of life |
SLICC | Systemic lupus international collaborating clinics damage index |
HAQ | Health assessment questionnaire |
DASH | Disabilities of the arm, shoulder, and hand questionnaire |
LupusQoL | Lupus quality of life questionnaire |
VAS | Visual analog scale |
MVPA | Moderate-to-vigorous physical activity |
MPQ-SF | McGill pain questionnaire—short form |
PHQ-9 | Patient health questionnaire-9 |
TUG | Timed up and go test |
HRR1, HRR2 | Heart rate recovery at 1 and 2 min after exercise |
CR | Chronotropic reserve |
PSQI | Pittsburgh sleep quality index |
5A’s model | Ask, advise, assess, assist, arrange |
ESCA | Exercise of self-care agency scale |
PCS/MCS | Physical and mental component summary scores of SF-36 |
CT | Cardiovascular training |
RT | Resistance training |
STG | Supervised group |
HTG | Home-based group |
BMI | Body mass index |
NA | Not available |
References
- Ameer, M.A.; Chaudhry, H.; Mushtaq, J.; Khan, O.S.; Babar, M.; Hashim, T.; Zeb, S.; Tariq, M.A.; Patlolla, S.R.; Ali, J.; et al. An overview of systemic lupus erythematosus (SLE) pathogenesis, classification, and management. Cureus 2022, 14, e30330. [Google Scholar] [CrossRef]
- Nikolopoulos, D.; Cetrez, N.; Lindblom, J.; Palazzo, L.; Enman, Y.; Parodis, I. Patients with NPSLE experience poorer HRQoL and more fatigue than SLE patients with no neuropsychiatric involvement, irrespective of neuropsychiatric activity. Rheumatology 2024, 63, 2494–2502. [Google Scholar] [CrossRef]
- Kim, Y.J.; Ismail, P.; Petri, M.; Fava, A.; Adamo, L. Preload deficiency as a treatable cause of fatigue and exercise intolerance in SLE. Lancet Rheumatol. 2025, 7, e601–e602. [Google Scholar] [CrossRef]
- Tharwat, S.; Husain, S.M. Musculoskeletal symptoms in systemic lupus erythematosus patients and their impact on health-related quality of life. BMC Musculoskelet. Disord. 2024, 25, 272. [Google Scholar] [CrossRef]
- Alghareeb, R.; Hussain, A.; Maheshwari, M.V.; Khalid, N.; Patel, P.D. Cardiovascular complications in systemic lupus erythematosus. Cureus 2022, 14, e26671. [Google Scholar] [CrossRef]
- Atzeni, F.; Rodríguez-Pintó, I.; Cervera, R. Cardiovascular disease risk in systemic lupus erythematous: Certainties and controversies. Autoimmun. Rev. 2024, 23, 103646. [Google Scholar] [CrossRef] [PubMed]
- Fairag, M.; Alzahrani, S.A.; Alshehri, N.; Alamoudi, A.O.; Alkheriji, Y.; Alzahrani, O.A.; Alomari, A.M.; Alzahrani, Y.A.; Alghamdi, S.M.; Fayraq, A. Exercise as a therapeutic intervention for chronic disease management: A comprehensive review. Cureus 2024, 16, e74165. [Google Scholar] [CrossRef]
- Beavers, K.M.; Brinkley, T.E.; Nicklas, B.J. Effect of exercise training on chronic inflammation. Clin. Chim. Acta 2010, 411, 785–793. [Google Scholar] [CrossRef]
- Athanasiou, A.; Papazachou, O.; Rovina, N.; Nanas, S.; Dimopoulos, S.; Kourek, C. The effects of exercise training on functional capacity and quality of life in patients with rheumatoid arthritis: A systematic review. J. Cardiovasc. Dev. Dis. 2024, 11, 161. [Google Scholar] [CrossRef] [PubMed]
- Kourek, C.; Alshamari, M.; Mitsiou, G.; Psarra, K.; Delis, D.; Linardatou, V.; Pittaras, T.; Ntalianis, A.; Papadopoulos, C.; Panagopoulou, N.; et al. The acute and long-term effects of a cardiac rehabilitation program on endothelial progenitor cells in chronic heart failure patients: Comparing two different exercise training protocols. Int. J. Cardiol. Heart Vasc. 2020, 32, 100702. [Google Scholar] [CrossRef]
- Kourek, C.; Briasoulis, A.; Karatzanos, E.; Zouganeli, V.; Psarra, K.; Pratikaki, M.; Alevra-Prokopiou, A.; Skoularigis, J.; Xanthopoulos, A.; Nanas, S.; et al. The effects of a cardiac rehabilitation program on endothelial progenitor cells and inflammatory profile in patients with chronic heart failure of different severity. J. Clin. Med. 2023, 12, 6592. [Google Scholar] [CrossRef]
- Fastenau, A.; van Schayck, O.C.; Winkens, B.; Aretz, K.; Gosselink, R.; Muris, J.W. Effectiveness of an exercise training programme for COPD in primary care: A randomized controlled trial. Respir. Med. 2020, 165, 105943. [Google Scholar] [CrossRef] [PubMed]
- Blaess, J.; Geneton, S.; Goepfert, T.; Appenzeller, S.; Bordier, G.; Davergne, T.; Fuentes, Y.; Haglo, H.; Hambly, K.; Kinnett-Hopkins, D.; et al. Recommendations for physical activity and exercise in persons living with systemic lupus erythematosus (SLE): Consensus by an international task force. RMD Open 2024, 10, e004171. [Google Scholar] [CrossRef] [PubMed]
- Blaess, J.; Goepfert, T.; Geneton, S.; Irenee, E.; Gerard, H.; Taesch, F.; Sordet, C.; Arnaud, L. Benefits and risks of physical activity in patients with systemic lupus erythematosus: A systematic review of the literature. Semin. Arthritis Rheum. 2023, 58, 152128. [Google Scholar] [CrossRef] [PubMed]
- Abrahão, M.I.; Gomiero, A.B.; Peccin, M.S.; Grande, A.J.; Trevisani, V.F. Cardiovascular training vs. resistance training for improving quality of life and physical function in patients with systemic lupus erythematosus: A randomized controlled trial. Scand. J. Rheumatol. 2016, 45, 197–201. [Google Scholar] [CrossRef]
- Avaux, M.; Hoellinger, P.; Nieuwland-Husson, S.; Fraselle, V.; Depresseux, G.; Houssiau, F.A. Effects of two different exercise programs on chronic fatigue in lupus patients. Acta Clin. Belg. 2016, 71, 403–406. [Google Scholar] [CrossRef]
- Benatti, F.B.; Miyake, C.N.H.; Dantas, W.S.; Zambelli, V.O.; Shinjo, S.K.; Pereira, R.M.R.; Silva, M.E.R.; Sá-Pinto, A.L.; Borba, E.; Bonfá, E.; et al. Exercise increases insulin sensitivity and skeletal muscle AMPK expression in systemic lupus erythematosus: A randomized controlled trial. Front. Immunol. 2018, 9, 906. [Google Scholar] [CrossRef]
- Bogdanovic, G.; Stojanovich, L.; Djokovic, A.; Stanisavljevic, N. Physical activity program is helpful for improving quality of life in patients with systemic lupus erythematosus. Tohoku J. Exp. Med. 2015, 237, 193–199. [Google Scholar] [CrossRef]
- Boström, C.; Elfving, B.; Dupré, B.; Opava, C.H.; Lundberg, I.E.; Jansson, E. Effects of a one-year physical activity programme for women with systemic lupus erythematosus: A randomized controlled study. Lupus 2016, 25, 602–616. [Google Scholar] [CrossRef]
- Carvalho, M.R.; Sato, E.I.; Tebexreni, A.S.; Heidecher, R.T.; Schenkman, S.; Neto, T.L. Effects of a supervised cardiovascular training program on exercise tolerance, aerobic capacity, and quality of life in patients with systemic lupus erythematosus. Arthritis Rheum. 2005, 53, 838–844. [Google Scholar] [CrossRef]
- Miossi, R.; Benatti, F.B.; Lúcia de Sá Pinto, A.; Lima, F.R.; Borba, E.F.; Prado, D.M.; Perandini, L.A.; Gualano, B.; Bonfá, E.; Roschel, H. Using exercise training to counterbalance chronotropic incompetence and delayed heart rate recovery in systemic lupus erythematosus: A randomized trial. Arthritis Care Res. 2012, 64, 1159–1166. [Google Scholar] [CrossRef]
- Keramiotou, K.; Anagnostou, C.; Kataxaki, E.; Galanos, A.; Sfikakis, P.P.; Tektonidou, M.G. The impact of upper limb exercise on function, daily activities and quality of life in systemic lupus erythematosus: A pilot randomised controlled trial. RMD Open 2020, 6, e001141. [Google Scholar] [CrossRef]
- Wu, M.L.; Tsai, J.C.; Yu, K.H.; Chen, J.J. Effects of physical activity counselling in women with systemic lupus erythematosus: A randomized controlled trial. Int. J. Nurs. Pract. 2019, 25, e12770. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Song, Y.; Yang, H.; Nie, A.; Chen, H.; Li, J.P. Effects of transitional care on self-care, readmission rates, and quality of life in adult patients with systemic lupus erythematosus: A randomized controlled trial. Arthritis Res. Ther. 2018, 20, 184. [Google Scholar] [CrossRef] [PubMed]
- Lopes-Souza, P.; Dionello, C.F.; Bernardes-Oliveira, C.L.; Moreira-Marconi, E.; Marchon, R.M.; Teixeira-Silva, Y.; Paineiras-Domingos, L.L.; da Cunha Sá-Caputo, D.; Xavier, V.L.; Bergmann, A.; et al. Effects of 12-week whole-body vibration exercise on fatigue, functional ability and quality of life in women with systemic lupus erythematosus: A randomized controlled trial. J. Bodyw. Mov. Ther. 2021, 27, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Li, L.C.; Feehan, L.M.; Xie, H.; Lu, N.; Shaw, C.; Gromala, D.; Aviña-Zubieta, J.A.; Koehn, C.; Hoens, A.M.; English, K.; et al. Efficacy of a physical activity counseling program with use of a wearable tracker in people with inflammatory arthritis: A randomized controlled trial. Arthritis Care Res. 2020, 72, 1755–1765. [Google Scholar] [CrossRef]
- Collins, K.A.; Fos, L.B.; Ross, L.M.; Slentz, C.A.; Davis, P.G.; Willis, L.H.; Piner, L.W.; Bateman, L.A.; Houmard, J.A.; Kraus, W.E. Aerobic, resistance, and combination training on health-related quality of life: The STRRIDE-AT/RT randomized trial. Front. Sports Act. Living 2021, 2, 620300. [Google Scholar] [CrossRef]
- Poli, L.; Greco, G.; Cataldi, S.; Ciccone, M.M.; De Giosa, A.; Fischetti, F. Multicomponent versus aerobic exercise intervention: Effects on hemodynamic, physical fitness and quality of life in adult and elderly cardiovascular disease patients: A randomized controlled study. Heliyon 2024, 10, e36200. [Google Scholar] [CrossRef]
- Vandenbulcke, L.; Erard, M.; Van Assche, D.; De Langhe, E. The effect of physical exercise on fatigue in systemic lupus erythematosus: A systematic review. Acta Clin. Belg. 2023, 78, 342–357. [Google Scholar] [CrossRef]
- Lu, M.C.; Koo, M. Effects of exercise intervention on health-related quality of life in patients with systemic lupus erythematosus: A systematic review and meta-analysis of controlled trials. Healthcare 2021, 9, 1215. [Google Scholar] [CrossRef]
- Kaul, A.; Gordon, C.; Crow, M.K.; Touma, Z.; Urowitz, M.B.; van Vollenhoven, R.; Ruiz-Irastorza, G.; Hughes, G. Systemic lupus erythematosus. Nat. Rev. Dis. Primers 2016, 2, 16039. [Google Scholar] [CrossRef]
- Gusev, E.; Sarapultsev, A. Atherosclerosis and inflammation: Insights from the theory of general pathological processes. Int. J. Mol. Sci. 2023, 24, 7910. [Google Scholar] [CrossRef]
- Triantafyllias, K.; Thiele, L.E.; Cavagna, L.; Baraliakos, X.; Bertsias, G.; Schwarting, A. Arterial stiffness as a surrogate marker of cardiovascular disease and atherosclerosis in patients with arthritides and connective tissue diseases: A literature review. Diagnostics 2023, 13, 1870. [Google Scholar] [CrossRef]
- Baaten, C.C.F.M.J.; Vondenhoff, S.; Noels, H. Endothelial cell dysfunction and increased cardiovascular risk in patients with chronic kidney disease. Circ. Res. 2023, 132, 970–992. [Google Scholar] [CrossRef] [PubMed]
- Cacciatore, S.; Andaloro, S.; Bernardi, M.; Oterino Manzanas, A.; Spadafora, L.; Figliozzi, S.; Asher, E.; Rana, J.S.; Ecarnot, F.; Gragnano, F.; et al. Chronic inflammatory diseases and cardiovascular risk: Current insights and future strategies for optimal management. Int. J. Mol. Sci. 2025, 26, 3071. [Google Scholar] [CrossRef]
- Lewsey, S.C.; Weiss, K.; Schär, M.; Zhang, Y.; Bottomley, P.A.; Samuel, T.J.; Xue, Q.L.; Steinberg, A.; Walston, J.D.; Gerstenblith, G.; et al. Exercise intolerance and rapid skeletal muscle energetic decline in human age-associated frailty. JCI Insight 2020, 5, e141246. [Google Scholar] [CrossRef]
- Lv, J.; Li, Y.; Shi, S.; Xu, X.; Wu, H.; Zhang, B.; Song, Q. Skeletal muscle mitochondrial remodeling in heart failure: An update on mechanisms and therapeutic opportunities. Biomed. Pharmacother. 2022, 155, 113833. [Google Scholar] [CrossRef]
- Chen, X.; Ji, Y.; Liu, R.; Zhu, X.; Wang, K.; Yang, X.; Liu, B.; Gao, Z.; Huang, Y.; Shen, Y.; et al. Mitochondrial dysfunction: Roles in skeletal muscle atrophy. J. Transl. Med. 2023, 21, 503. [Google Scholar] [CrossRef]
- Keller-Ross, M.L.; Larson, M.; Johnson, B.D. Skeletal muscle fatigability in heart failure. Front. Physiol. 2019, 10, 129. [Google Scholar] [CrossRef] [PubMed]
- Surmachevska, N.; Tiwari, V. Corticosteroid-Induced Myopathy. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK557731/ (accessed on 20 May 2025).
- Kuzuya, M. Drug-related sarcopenia as a secondary sarcopenia. Geriatr. Gerontol. Int. 2024, 24, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Miliotis, P.G.; Ntalapera, S.D.; Lakeas, P.; Loukas, I.; Toubekis, A.G.; Geladas, N.D.; Koskolou, M.D. Cardiorespiratory and oxygenation responses in iron-deficient anemic women during whole-body exercise under moderate hypoxia. Eur. J. Appl. Physiol. 2025. [Google Scholar] [CrossRef]
- Listerman, J.; Geisberg, C.; Nading, M.A.; Goring, J.; Huang, R.; Butler, J. Blunted hemodynamic response and reduced oxygen delivery with exercise in anemic heart failure patients with systolic dysfunction. Congest. Heart Fail. 2007, 13, 71–77. [Google Scholar] [CrossRef]
- Margiotta, D.P.E.; Basta, F.; Dolcini, G.; Batani, V.; Lo Vullo, M.; Vernuccio, A.; Navarini, L.; Afeltra, A. Physical activity and sedentary behavior in patients with systemic lupus erythematosus. PLoS ONE 2018, 13, e0193728. [Google Scholar] [CrossRef]
- Keramiotou, K.; Anagnostou, C.; Konstantonis, G.; Kataxaki, E.; Sfikakis, P.P.; Tektonidou, M.G. Impaired hand function and performance in activities of daily living in systemic lupus erythematosus, even in patients achieving lupus low disease activity state (LLDAS). Rheumatol. Adv. Pract. 2021, 5, rkab029. [Google Scholar] [CrossRef]
- Wooten, L.C.; Hasni, S.; Mikdashi, J.A.; Keyser, R.E. Cardiorespiratory insufficiency and performance fatigability in women with systemic lupus erythematosus. Cardiopulm. Phys. Ther. J. 2023, 34, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Tao, X.; Chen, Y.; Zhen, K.; Ren, S.; Lv, Y.; Yu, L. Effect of continuous aerobic exercise on endothelial function: A systematic review and meta-analysis of randomized controlled trials. Front. Physiol. 2023, 14, 1043108. [Google Scholar] [CrossRef] [PubMed]
- Green, D.J.; Maiorana, A.; O’Driscoll, G.; Taylor, R. Effect of exercise training on endothelium-derived nitric oxide function in humans. J. Physiol. 2004, 561, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Hambrecht, R.; Adams, V.; Erbs, S.; Linke, A.; Kränkel, N.; Shu, Y.; Baither, Y.; Gielen, S.; Thiele, H.; Gummert, J.F.; et al. Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation 2003, 107, 3152–3158. [Google Scholar] [CrossRef]
- Ye, Y.; Lin, H.; Wan, M.; Qiu, P.; Xia, R.; He, J.; Tao, J.; Chen, L.; Zheng, G. The effects of aerobic exercise on oxidative stress in older adults: A systematic review and meta-analysis. Front. Physiol. 2021, 12, 701151. [Google Scholar] [CrossRef]
- Robinson, A.T.; Fancher, I.S.; Sudhahar, V.; Bian, J.T.; Cook, M.D.; Mahmoud, A.M.; Ali, M.M.; Ushio-Fukai, M.; Brown, M.D.; Fukai, T.; et al. Short-term regular aerobic exercise reduces oxidative stress produced by acute in the adipose microvasculature. Am. J. Physiol. Heart Circ. Physiol. 2017, 312, H896–H906. [Google Scholar] [CrossRef]
- Thirupathi, A.; Wang, M.; Lin, J.K.; Fekete, G.; István, B.; Baker, J.S.; Gu, Y. Effect of different exercise modalities on oxidative stress: A systematic review. Biomed. Res. Int. 2021, 2021, 1947928. [Google Scholar] [CrossRef] [PubMed]
- Craighead, D.H.; Freeberg, K.A.; Seals, D.R. The protective role of regular aerobic exercise on vascular function with aging. Curr. Opin. Physiol. 2019, 10, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Goeder, D.; Kröpfl, J.M.; Angst, T.; Hanssen, H.; Hauser, C.; Infanger, D.; Maurer, D.; Oberhoffer-Fritz, R.; Schmidt-Trucksäss, A.; Königstein, K. VascuFit: Aerobic exercise improves endothelial function independent of cardiovascular risk: A randomized-controlled trial. Atherosclerosis 2024, 399, 118631. [Google Scholar] [CrossRef] [PubMed]
- Dent, J.R.; Stocks, B.; Campelj, D.G.; Philp, A. Transient changes to metabolic homeostasis initiate mitochondrial adaptation to endurance exercise. Semin. Cell Dev. Biol. 2023, 143, 3–16. [Google Scholar] [CrossRef]
- Smith, J.A.B.; Murach, K.A.; Dyar, K.A.; Zierath, J.R. Exercise metabolism and adaptation in skeletal muscle. Nat. Rev. Mol. Cell Biol. 2023, 24, 607–632. [Google Scholar] [CrossRef]
- Lundby, C.; Jacobs, R.A. Adaptations of skeletal muscle mitochondria to exercise training. Exp. Physiol. 2016, 101, 17–22. [Google Scholar] [CrossRef]
- Yasuda, T. Selected methods of resistance training for prevention and treatment of sarcopenia. Cells 2022, 11, 1389. [Google Scholar] [CrossRef]
- Carcelén-Fraile, M.D.C.; Lorenzo-Nocino, M.F.; Afanador-Restrepo, D.F.; Rodríguez-López, C.; Aibar-Almazán, A.; Hita-Contreras, F.; Achalandabaso-Ochoa, A.; Castellote-Caballero, Y. Effects of different intervention combined with resistance training on musculoskeletal health in older male adults with sarcopenia: A systematic review. Front. Public Health 2023, 10, 1037464. [Google Scholar] [CrossRef]
- Govindasamy, K.; Rao, C.R.; Chandrasekaran, B.; Parpa, K.; Granacher, U. Effects of resistance training on sarcopenia risk among healthy older adults: A scoping review of physiological mechanisms. Life 2025, 15, 688. [Google Scholar] [CrossRef]
- Docherty, S.; Harley, R.; McAuley, J.J.; Crowe, L.A.N.; Pedret, C.; Kirwan, P.D.; Siebert, S.; Millar, N.L. The effect of exercise on cytokines: Implications for musculoskeletal health: A narrative review. BMC Sports Sci. Med. Rehabil. 2022, 14, 5. [Google Scholar] [CrossRef]
- Scheffer, D.D.L.; Latini, A. Exercise-induced immune system response: Anti-inflammatory status on peripheral and central organs. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165823. [Google Scholar] [CrossRef]
- Magni, O.; Arnaoutis, G.; Panagiotakos, D. The impact of exercise on chronic systemic inflammation: A systematic review and meta–meta-analysis. Sport Sci. Health 2025, 21, 1405–1417. [Google Scholar] [CrossRef]
- Taherkhani, S.; Suzuki, K.; Castell, L. A short overview of changes in inflammatory cytokines and oxidative stress in response to physical activity and antioxidant supplementation. Antioxidants 2020, 9, 886. [Google Scholar] [CrossRef]
- Lewis, M.J.; Jawad, A.S. The effect of ethnicity and genetic ancestry on the epidemiology, clinical features and outcome of systemic lupus erythematosus. Rheumatology 2017, 56, i67–i77. [Google Scholar] [CrossRef]
- Parodis, I.; Lanata, C.; Nikolopoulos, D.; Blazer, A.; Yazdany, J. Reframing health disparities in SLE: A critical reassessment of racial and ethnic differences in lupus disease outcomes. Best Pract. Res. Clin. Rheumatol. 2023, 37, 101894. [Google Scholar] [CrossRef]
- Hasan, B.; Fike, A.; Hasni, S. Health disparities in systemic lupus erythematosus-a narrative review. Clin. Rheumatol. 2022, 41, 3299–3311. [Google Scholar] [CrossRef] [PubMed]
Study | Year | Sample Size (n) | Females [n (%)] | Age (Years) | Disease Duration (Years) | BMI (kg/m2) | SLEDAI |
---|---|---|---|---|---|---|---|
Abrahao et al. [15] | 2016 | • Exercise group 1: 21 SLE patients | 61 (96.8) in the total sample | 43.8 ± 14.6 | 4.9 ± 4.3 | 27.5 ± 10.4 | 2.3 ± 1.7 |
• Exercise group 2: 21 SLE patients | 39.1 ± 14.4 | 3.5 ± 3.3 | 27.8 ± 11.6 | 1.4 ± 0.6 | |||
• Control group: 21 SLE patients | 46.1 ± 14.1 | 3.08 ± 1.7 | 30.9 ± 10.1 | 1.8 ± 0.6 | |||
Avaux et al. [16] | 2016 | • Exercise group 1: 15 SLE patients | 15 (100) | 43 ± 7 | 16 ± 10 | NA | 3.60 ± 3.87 |
• Exercise group 2: 18 SLE patients | 16 (88.9) | 37 ± 7 | 12 ± 7 | NA | 2.33 ± 3.78 | ||
• Control group: 9 SLE patients | 9 (100) | 46 ± 11 | 16 ± 10 | NA | 1.78 ± 2.72 | ||
Benatti et al. [17] | 2018 | • Exercise group: 9 SLE patients | 9 (100) | 34.8 ± 4.1 | 9.8 ± 4.1 | 26.3 ± 3.4 | 0.22 ± 0.67 |
• Control group: 10 SLE patients | 10 (100) | 32.4 ± 6.5 | 8.5 ± 5.9 | 26.2 ± 3.8 | 0.40 ± 1.26 | ||
Bogdanovic et al. [18] | 2015 | • Exercise group 1: 30 SLE patients | 30 (100) | 38.8 ± 12.6 | 5.5 ± 4.1 | NA | ≤5 in all patients |
• Exercise group 2: 30 SLE patients | 30 (100) | 47.9 ± 11.5 | 7.5 ± 6.9 | NA | |||
Bostrom et al. [19] | 2016 | • Exercise group: 18 SLE patients | 18 (100) | 52 ± 10 | 15 ± 9 | 26.5 ± 5.8 | 1 (0–8) |
• Control group: 17 SLE patients | 17 (100) | 53 ± 9 | 21 ± 14 | 25.8 ± 3.9 | 2 (0–3) | ||
Carvalho et al. [20] | 2005 | • Exercise group: 41 SLE patients | 41 (100) | 36.22 ± 10.79 | 5.84 ± 4.84 | 26.64 ± 4.86 | 1.15 ± 2.01 |
• Control group: 19 SLE patients | 19 (100) | 35.21 ± 9.13 | 6.56 ± 3.57 | 25.81 ± 4.37 | 1.75 ± 2.45 | ||
Keramiotou et al. [22] | 2020 | • Exercise group: 32 SLE patients | 31 (96.9) | 43.34 ± 8.90 | 6 ± 10 | NA | 4.25 ± 3.24 |
• Control group: 30 SLE patients | 27 (90) | 48.77 ± 12.38 | 11 ± 15 | NA | 4.20 ± 3.58 | ||
Li et al. [26] | 2020 | • Exercise immediate group: 16 SLE patients | 13 (81.3) | 49.9 ± 12.2 | NA | 28.1 ± 5.5 | NA |
• Exercise delayed group: 16 SLE patients | 14 (87.5) | 47.1 ± 13.8 | NA | 27.0 ± 10.3 | NA | ||
Lopes-Souza et al. [25] | 2021 | • Exercise group 1: 11 SLE patients | 11 (100) | 48.5 ± 4.7 | 13.5 ± 5.2 | 26.9 ± 5.3 | NA |
• Exercise group 2: 10 SLE patients | 10 (100) | 47.0 ± 7.9 | 14.8 ± 7.1 | 24.8 ± 3.3 | NA | ||
Miossi et al. [21] | 2012 | • Training group:14 SLE patients | 14 (100) | 31.4 ± 5.9 | 6.1 | 25.3 ± 4.7 | 0.9 ± 1.5 |
• Non-trained group: 10 SLE patients | 10 (100) | 31.0 ± 4.8 | 6.4 | 23.6 ± 1.9 | 1.0 ± 1.3 | ||
• Control group: 8 healthy individuals | 8 (100) | 30.9 ± 8.3 | NA | 23.9 ± 3.2 | NA | ||
Wu et al. [23] | 2019 | • Exercise group: 38 SLE patients | 38 (100) | 43.76 ± 9.92 | 11.97 ± 7.41 | 22.68 ± 3.98 | 2.79 ± 2.04 |
• Control group: 38 SLE patients | 38 (100) | 43.45 ± 12.70 | 12.32 ± 8.42 | 22.12 ± 3.20 | 3.39 ± 2.65 | ||
Xie et al. [24] | 2018 | • Exercise group: 64 SLE patients | 57 (89.1) | 35.9 ± 12.3 | ≤3 years: 33 (51.6%) >3 years: 31 (48.4%) | NA | 10.9 ± 4.9 |
• Control group: 61 SLE patients | 54 (88.5) | 38.4 ± 15.8 | ≤3 years: 30 (49.2%) >3 years: 31 (50.8%) | NA | 9.7 ± 3.8 |
Study | Intervention by Study Group | Duration | Outcomes | Main Results |
---|---|---|---|---|
Abrahao et al. [15] |
| 50 min, 3×/week, 12 weeks | Primary outcome: SF-36 Secondary outcomes: severity of depression (BDI), disease activity (SLEDAI), aerobic capacity (12 min walk test) | - Both CT and RT improved SF-36 vs. baseline; CT superior to RT/control. - Aerobic capacity ↑ in CT vs. RT/control (p = 0.001). - No changes in SLEDAI or BDI within exercise groups or compared to the controls. |
Avaux et al. [16] |
| 3 h/week,12 weeks | Primary outcome: change in Krupp’s fatigue severity scale (FSS) Secondary outcomes: aerobic capacity (PWC75%/kg), perceived exertion (Borg scale) | - Both STG (p = 0.007) and HTG (p = 0.003), but not the CG, statistically improved their FSS at month 3. - The PWC75%/kg and the Borg’s scale did not improve in none of the groups. - Compliance low (~50%) but unrelated to benefit. - Improvement in FSS was sustained after 9 months. |
Benatti et al. [17] |
| 2×/week, 12 weeks | Primary outcome: Insulin sensitivity (meal test, HOMA-IR, Matsuda index) Secondary outcomes: muscle biopsies (AMPK, GLUT4), aerobic capacity (peak VO2, time to exhaustion) | - Exercise improved insulin sensitivity (↓fasting insulin, ↓HOMA-IR, ↑Matsuda index) and increased exercise tolerance (time to exhaustion, ventilatory thresholds) compared to controls. - No change in peak VO2 or body composition between groups. |
Bogdanovic et al. [18] |
| 30 min, 3×/week, 6 weeks | Fatigue (FSS), depression (BDI), QoL (SF-36) | - Both exercise types significantly reduced fatigue and depression and improved all SF-36 domains. - No significant differences between aerobic vs. isotonic training. |
Bostrom et al. [19] |
| 3×/week, 12 months | Primary outcomes: Aerobic capacity (VO2 max, ergometer), physical activity (self-report), QoL (SF-36) Secondary outcomes: Disease activity (SLEDAI), organ damage (SLICC) and pharmacological treatment | - VO2 max and submax VO2 increased over time in both groups (training effect, no group × time interaction → no differences in physical activity and aerobic capacity between the groups). - Mental health improved at 6 months in exercise group only; no other QoL changes. - There were no baseline differences between groups in SLEDAI, SLICC and pharmacological treatment. |
Carvalho et al. [20] |
| 3×/week, 12 weeks | Functional capacity (VO2 max, anaerobic threshold, exercise tolerance), QoL (SF-36), fatigue, depression, pain, HAQ | - Training improved VO2 max, exercise tolerance, oxygen pulse, HAQ, fatigue, depression, and SF-36 (physical, vitality, functional capacity) within exercise group and compared to controls. |
Keramiotou et al. [22] |
| 30 min/daily, 12 weeks, follow-up until 24 weeks | Primary outcome: Hand function (DASH score) Secondary outcomes: Hand function (HAQ score, grip/pinch strength, dexterity), QoL (LupusQoL—physical health, fatigue), pain (VAS) | - Exercise group showed significant improvements in daily activity performance, hand strength, dexterity, pain, and LupusQoL domains (physical health, fatigue) at 6, 12 and 24 weeks vs. control. - No interaction was observed between exercise and disease activity or medication. |
Li et al. [26] |
| 8 weeks for each group; assessment at baseline, week 9, 18 and 27 | Primary outcome: MVPA time by accelerometer Secondary outcomes: Physical activity (steps, sedentary time), pain (MPQ-SF), fatigue (FSS), mood (PHQ-9), self-management, habits | - Both immediate and Delay showed: MVPA↑, daily steps ↑, PHQ-9 ↓, MPQ-SF↓ Partners in Health Scale ↑. - No significant between-group effect on MVPA (trend ↑9.4 min/day). - Post hoc analysis revealed a significant effect in MVPA and pain in participants with rheumatoid arthritis, but not those with SLE. |
Lopes-Souza et al. [25] |
| 2×/week, 12 weeks | Fatigue (FACIT-F), functional ability (HAQ, TUG), QoL (SF-36) | - WBVE group significantly improved HAQ vs. control at 6 and 12 weeks (p = 0.03). - No significant differences in fatigue between groups. - No significant changes in TUG or SF-36 domains within and between groups. |
Miossi et al. [21] |
| 2×/week, 12 weeks | Primary outcomes: Chronotropic reserve, HR recovery [difference between HR at peak exercise and at both the first (HRR1) and second (HRR2) minutes after the exercise test] Secondary outcomes: HRR1, HRR2, Functional aerobic capacity (peak VO2), Disease activity (SLEDAI) | -Both SLE groups were comparable at baseline and had lower peak HR, peak VO2, and CR vs. the control group at baseline. - Exercise significantly improved chronotropic reserve, HR recovery, and HR response in both SLE groups vs. the controls. - Neither the non-trained nor the control group presented any change in the CR or in HRR1 and HRR2 (p > 0.05). - No significant changes within the control group. - Trained SLE patients achieved values comparable to healthy controls. - SLEDAI remained stable. |
Wu et al. [23] |
| 12 weeks | Primary outcome: physical activity (daily steps- pedometer) Secondary outcomes: fatigue (FSS), sleep quality (PSQI), QoL (SF-36) | - Exercise group significantly ↑daily steps (+1309 vs. +286, respectively, p < 0.001), improved sleep quality (B = −1.08, p < 0.01 and B = −1.24, p < 0.01, respectively) and SF-36 vitality (B = 7.20, p = 0.01 and B = 9.15, p < 0.01, respectively) at 8 and 12 weeks, and mental health at 8 weeks (B = 4.34, p < 0.05) compared to the controls. - No effect on fatigue or other SF-36 domains within groups or between groups. - Vitality and mental health score changes showed significant positive correlations with daily step changes (r = 0.49, p < 0.01 and r = 0.50, p < 0.01, respectively). |
Xie et al. [24] |
| 3 months | After 30, 60 and 90 days: Self-care (ESCA), QoL (SF-36 PCS/MCS), readmission rates, disease activity (SLEDAI-2K) | - Transitional care significantly improved self-care (↑ ESCA) and SF-36 PCS/MCS vs. control (p < 0.001). - It also reduced 30-, 60-, and 90-day readmissions compared to the controls (p = 0.005). - No significant change in SLEDAI-2K within or between groups. |
Study | Risk of Bias Domains | |||||
---|---|---|---|---|---|---|
Randomization Process | Deviations from Intended Interventions | Missing Outcome Data | Measurement of the Outcome | Selection of the Reported Result | Overall Risk of Bias | |
Abrahao et al. [15] | ||||||
Quality of life | ||||||
Functional capacity | ||||||
Avaux et al. [16] | ||||||
Quality of life | ||||||
Functional capacity | ||||||
Benatti et al. [17] | ||||||
Quality of life | Not assessed | |||||
Functional capacity | ||||||
Bogdanovic et al. [18] | ||||||
Quality of life | ||||||
Functional capacity | Not assessed | |||||
Bostrom et al. [19] | ||||||
Quality of life | ||||||
Functional capacity | ||||||
Carvalho et al. [20] | ||||||
Quality of life | ||||||
Functional capacity | ||||||
Keramiotou et al. [22] | ||||||
Quality of life | ||||||
Functional capacity | Not assessed | |||||
Li et al. [26] | ||||||
Quality of life | Not assessed | |||||
Functional capacity | ||||||
Lopes-Souza et al. [25] | ||||||
Quality of life | ||||||
Functional capacity | ||||||
Miossi et al. [21] | ||||||
Quality of life | Not assessed | |||||
Functional capacity | ||||||
Wu et al. [23] | ||||||
Quality of life | ||||||
Functional capacity | ||||||
Xie et al. [24] | ||||||
Quality of life | ||||||
Functional capacity | Not assessed | |||||
Judgement: |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zouganeli, V.; Dimopoulos, S.; Briasoulis, A.; Karkamanis, A.; Panagiotopoulos, P.; Karatzanos, E.; Boumpas, D.T.; Vasileiadis, I.; Nanas, S.; Kourek, C. The Effects of Exercise Training on Functional Aerobic Capacity and Quality of Life in Patients with Systemic Lupus Erythematosus: A Systematic Review of Randomized Controlled Trials. J. Clin. Med. 2025, 14, 7031. https://doi.org/10.3390/jcm14197031
Zouganeli V, Dimopoulos S, Briasoulis A, Karkamanis A, Panagiotopoulos P, Karatzanos E, Boumpas DT, Vasileiadis I, Nanas S, Kourek C. The Effects of Exercise Training on Functional Aerobic Capacity and Quality of Life in Patients with Systemic Lupus Erythematosus: A Systematic Review of Randomized Controlled Trials. Journal of Clinical Medicine. 2025; 14(19):7031. https://doi.org/10.3390/jcm14197031
Chicago/Turabian StyleZouganeli, Virginia, Stavros Dimopoulos, Alexandros Briasoulis, Achilleas Karkamanis, Panagiotis Panagiotopoulos, Eleftherios Karatzanos, Dimitrios T. Boumpas, Ioannis Vasileiadis, Serafim Nanas, and Christos Kourek. 2025. "The Effects of Exercise Training on Functional Aerobic Capacity and Quality of Life in Patients with Systemic Lupus Erythematosus: A Systematic Review of Randomized Controlled Trials" Journal of Clinical Medicine 14, no. 19: 7031. https://doi.org/10.3390/jcm14197031
APA StyleZouganeli, V., Dimopoulos, S., Briasoulis, A., Karkamanis, A., Panagiotopoulos, P., Karatzanos, E., Boumpas, D. T., Vasileiadis, I., Nanas, S., & Kourek, C. (2025). The Effects of Exercise Training on Functional Aerobic Capacity and Quality of Life in Patients with Systemic Lupus Erythematosus: A Systematic Review of Randomized Controlled Trials. Journal of Clinical Medicine, 14(19), 7031. https://doi.org/10.3390/jcm14197031