Time-Restricted Eating, ANGPTL4, and Reduction in Residual Cardiovascular Risk
Abstract
1. Introduction
2. Residual Cardiovascular Risk
2.1. Main Pathophysiological Mechanisms Explaining RCR
2.1.1. Inflammation
2.1.2. Lipoprotein(a) [Lp(a)]
2.1.3. Insulin Resistance (IR)
2.1.4. Triglyceride-Rich Lipoproteins and Remnants
3. Time-Restricted Eating Represents One of the Most Feasible and Accessible Approaches to Intermittent Fasting
3.1. Intermittent Fasting Modalities
- ∗
- Time-restricted eating/fasting (TRE/TRF): This approach confines daily caloric intake to a defined window within each 24 h period. The most widely researched protocol is the 16 h fasting period, followed by an 8 h eating window, commonly known as the 16:8 method. This modality serves as the core element of our discussion.
- ∗
- Alternate-Day Fasting (ADF) involves alternating between days of normal, unrestricted food consumption and days characterized by either complete fasting or substantial calorie reduction (for example, approximately 500 calories).
- ∗
- 5:2 Intermittent Fasting: Individuals eat normally five days per week, with calorie intake significantly restricted (typically 0–25% of estimated energy needs, or roughly 500–600 calories) on two non-consecutive or consecutive “fasting” days.
- ∗
- Prolonged fasting: This refers to abstaining from caloric intake for periods extending 24 h or more, differing fundamentally from the daily time-restricted approach.
3.2. Health Effects of TRE: Overall Benefits
3.3. Specific Benefits of TRE
3.3.1. Cardiometabolic Health Improvements
- Enhanced insulin sensitivity: TRE has the potential to increase insulin responsiveness and lower blood glucose levels, which may reduce the risk of type 2 diabetes—a key risk factor for heart disease [76].
3.3.2. Effect on Circadian Rhythms
3.3.3. Microbiota
3.3.4. Appetite
3.3.5. Metabolism, Insulin
3.3.6. Other Effects
4. TRL Metabolism: The Pivotal Role of Lipoprotein Lipase in Determining the Fate of Triglyceride-Rich Lipoproteins
4.1. The Function of ANGPTL4 in Regulating LPL Activity During Fed and Fasted States
4.2. Antagonistic Regulation of ANGPTL4 Function by ANGPTL8
4.3. Physiological Role of Circulating ANGPTL4
5. TRE: Achieving the Optimal Balance of ANGPTL4 and ANGPTL8?
6. Chylomicrons vs. VLDL: Role of TRE
7. Clinical Implementation Guidelines
7.1. Patient Assessment and Counseling
7.2. Patient Selection Criteria
7.2.1. Appropriate Candidates for TRE Are as Follows
- Individuals with obesity or metabolic syndrome, where TRE has demonstrated beneficial effects on body composition and cardiometabolic markers.
- Patients with prediabetes or non-insulin-dependent type 2 diabetes, under close medical supervision to ensure safe glycemic control.
- Individuals with cardiovascular risk factors, given evidence of improvements in blood pressure and lipid profiles.
- Individuals seeking straightforward weight management methods without calorie counting.
7.2.2. The Contraindications for TRE Are as Follows
- Pregnant or breastfeeding women, due to increased nutritional requirements.
- Children and adolescents in rapid growth phases, where continuous nutrition is essential.
- Individuals with current or prior eating disorders, as fasting may exacerbate disordered behaviors.
- Patients with type 1 diabetes or insulin-dependent type 2 diabetes, owing to hypoglycemia risk.
- Patients who are underweight or malnourished.
- Patients on medications requiring food intake or those where dosage adjustments are complex; these should be closely monitored by healthcare providers.
7.3. Monitoring Parameters
- Monitor body weight, BMI, and body composition to assess progress.
- Track fasting glucose, insulin, and lipid profile parameters (total LDL and HDL cholesterol, triglycerides).
- Regularly assess blood pressure and, when applicable, HbA1c.
- Evaluate consistency of adherence to the prescribed eating window using digital tools or manual records.
- Record and address side effects such as headache, dizziness, fatigue, nausea, or gastrointestinal complaints.
- Periodically review dietary quality to ensure balanced nutrient intake within the eating timeframe.
- Assess psychological well-being, mood, and energy levels, recognizing that fasting may influence these factors variably.
- Monitor sleep duration and quality, as circadian rhythms may impact or be impacted by TRE.
7.4. Safety Considerations: High-Risk Populations and Contraindications
7.4.1. Medication Interactions
7.4.2. Potential Adverse Effects
7.4.3. Cardiovascular and Metabolic Concerns
- A very recent paper [164] suggests caution with narrow eating windows, particularly in populations with pre-existing heart disease or cancer, pending confirmation and further research validation.
8. Conclusions
- Is our hypothesis correct, or are the proposed mechanisms (namely TRE action on ANGPTL4 and limiting time frame of LPL exposure to CM) simply the result of a better insulin response and kinetics?
- What controls the final integration of the regulatory effects of decreased appetite, increased AMPK activity, and better insulin kinetics during TRE?
- What other nutritional and hormonal factors influence ANGPTL3, ANGPTL4, and ANGPTL8 activity, and what would happen in longer TRE periods?
- Does TRE reduce RCR even when apoCIII levels are elevated?
- What is the final mediator that controls ANGPTL4 expression during TRE?
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADF | Alternate-Day Fasting |
AgRP | Agouti-related neuropeptide |
AMPK | AMP activated kinase |
ANGPTL4 | Angiopoietin-like protein 4 |
ASCVD | Atherosclerotic cardiovascular disease |
BMI | Body mass index |
CVD | Cardiovascular disease |
CART | Cocaine–amphetamine-regulated transcript |
CETP | Cholesteryl-ester transfer protein |
CM | Chylomicrons |
CII | ApoCII |
CIII | ApoCIII |
E | ApoE |
ERK | Extracellular-signal regulated kinase |
FA | Fatty acids |
FOXO | Forkhead box transcription factors |
GLP-1 | Glucagon-like peptide-1 |
GPIHBP1 | Glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 |
HDL | High-density lipoproteins |
HDL-C | High-density lipoprotein cholesterol |
HSPG | Heparan sulfate proteoglycans |
hsCRP | High-sensitivity C-reactive protein |
HSL | Hormone-sensitive lipase |
IGF-1 | Insulin-like growth factor-1 |
IL-1 β | Interleukin-1β |
IDL | Intermediate-density lipoproteins |
IF | Intermittent Fasting |
IR | Insulin resistance |
LDL-C | Low-density lipoprotein cholesterol |
LDL-R | LDL receptor |
Lp(a) | Lipoprotein (a) |
LPL | Lipoprotein lipase |
LRP-1 | LDL-receptor like protein 1 |
mTORc | Mammalian target of rapamycin c |
MetS | Metabolic syndrome |
NPY | Neuropeptide Y |
PCSK3 | Proprotein convertase subtilisin/kexin type 3. |
PPAR | Peroxisome proliferator–activated receptors |
PUFA | Poly-unsaturated fatty acids |
POMC | Pro-opium melanocortin |
PCSK9 | Proprotein convertase subtilisin/kexin type 9 |
RCR | Residual cardiovascular risk |
sd-LDL | Small–dense LDL |
SIRT1 | Sirtuin 1 |
siRNA | Small interfering RNA |
SGLT-2 | Sodium-glucose co-transporter-2 |
SCN | Suprachiasmatic nucleus |
TRE | Time-restricted eating |
TG | Triglyceride |
TRL | Triglyceride-rich lipoprotein |
VLDL | Very low-density lipoproteins. |
WAT | White adipose tissue |
References
- Siri-Tarino, P.W.; Krauss, R.M. Diet, Lipids, and Cardiovascular Disease. Curr. Opin. Lipidol. 2016, 27, 323–328. [Google Scholar] [CrossRef]
- Tokgozoglu, L.; Orringer, C.; Ginsberg, H.N.; Catapano, A.L. The Year in Cardiovascular Medicine 2021: Dyslipidaemia. Eur. Heart J. 2022, 43, 807–817. [Google Scholar] [CrossRef]
- Michaeli, D.T.; Michaeli, J.C.; Albers, S.; Boch, T.; Michaeli, T. Established and Emerging Lipid-Lowering Drugs for Primary and Secondary Cardiovascular Prevention. Am. J. Cardiovasc. Drugs 2023, 23, 477–495. [Google Scholar] [CrossRef]
- Kim, K.; Ginsberg, H.N.; Choi, S.H. New, Novel Lipid-Lowering Agents for Reducing Cardiovascular Risk: Beyond Statins. Diabetes Metab. J. 2022, 46, 517–532. [Google Scholar] [CrossRef]
- Mszar, R.; Bart, S.; Sakers, A.; Soffer, D.; Karalis, D.G. Current and Emerging Therapies for Atherosclerotic Cardiovascular Disease Risk Reduction in Hypertriglyceridemia. J. Clin. Med. 2023, 12, 1382. [Google Scholar] [CrossRef]
- Vallejo-Vaz, A.J.; Corral, P.; Schreier, L.; Ray, K.K. Triglycerides and Residual Risk. Curr. Opin. Endocrinol. Diabetes Obes. 2020, 27, 95–103. [Google Scholar] [CrossRef]
- Reith, C.; Armitage, J. Management of Residual Risk After Statin Therapy. Atherosclerosis 2016, 245, 161–170. [Google Scholar] [CrossRef]
- Nakamura, K.; Miyoshi, T.; Yunoki, K.; Ito, H. Postprandial Hyperlipidemia as a Potential Residual Risk Factor. J. Cardiol. 2016, 67, 335–339. [Google Scholar] [CrossRef]
- Cho, K.I.; Yu, J.; Hayashi, T.; Han, S.H.; Koh, K.K. Strategies to Overcome Residual Risk During Statins Era. Circ. J. 2019, 83, 1973–1979. [Google Scholar] [CrossRef]
- Gugliucci, A. Beyond LDL: Understanding Triglyceride-Rich Lipoproteins to Tackle Residual Risk. J. Clin. Med. 2023, 12, 3991. [Google Scholar] [CrossRef]
- Shah, N.P.; Pajidipati, N.J.; McGarrah, R.W.; Navar, A.M.; Vemulapalli, S.; Blazing, M.A.; Shah, S.H.; Hernandez, A.F.; Patel, M.R. Lipoprotein (a): An Update on a Marker of Residual Risk and Associated Clinical Manifestations. Am. J. Cardiol. 2020, 126, 94–102. [Google Scholar] [CrossRef]
- Rikhi, R.; Shapiro, M.D. Newer and Emerging LDL-C Lowering Agents and Implications for ASCVD Residual Risk. J. Clin. Med. 2022, 11, 4611. [Google Scholar] [CrossRef]
- González-Juanatey, J.R.; Almendro-Delia, M.; Cosín-Sales, J.; Bellmunt-Montoya, S.; Gómez-Doblas, J.J.; Riambau, V.; García-Moll, X.; García-Alegría, J.; Hernández, J.L.; Lozano, F.S.; et al. Residual Risk Reduction Opportunities in Patients with Chronic Coronary Syndrome. Role of Dual Pathway Inhibition. Expert Rev. Clin. Pharmacol. 2020, 13, 695–706. [Google Scholar] [CrossRef]
- Huang, L.; Chen, Y.; Wen, S.; Lu, D.; Shen, X.; Deng, H.; Xu, L. Is Time-Restricted Eating (8/16) Beneficial for Body Weight and Metabolism of Obese and Overweight Adults? A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Food Sci. Nutr. 2023, 11, 1187–1200. [Google Scholar] [CrossRef]
- Termannsen, A.-D.; Varming, A.; Hansen, G.S.; Bjerre, N.; Persson, F.; Bagger, J.I.; Hansen, D.L.; Ewers, B.; Jørgensen, N.B.; Blond, M.B.; et al. Time-Restricted Eating Is a Feasible Dietary Strategy in the Treatment of Complicated Type 2 Diabetes: The RESET2 Pilot Study. J. Nutr. Educ. Behav. 2025, 57, 767–777. [Google Scholar] [CrossRef]
- Christensen, R.A.G.; Kirkham, A.A. Time-Restricted Eating: A Novel and Simple Dietary Intervention for Primary and Secondary Prevention of Breast Cancer and Cardiovascular Disease. Nutrients 2021, 13, 3476. [Google Scholar] [CrossRef]
- Charlot, A.; Hutt, F.; Sabatier, E.; Zoll, J. Beneficial Effects of Early Time-Restricted Feeding on Metabolic Diseases: Importance of Aligning Food Habits with the Circadian Clock. Nutrients 2021, 13, 1405. [Google Scholar] [CrossRef]
- Liang, X.; Zhou, Y.; Kong, Y.; Liu, J.; Li, K.; Xue, L.; Yao, S. Effectiveness of 8-Hour Time-Restricted Eating Combined with Different Dietary Patterns on Body Composition, Lipid Metabolism, and Oxidative Stress in Healthy Adults: An Exploratory Study from an RCT. Nutrition 2025, 136, 112776. [Google Scholar] [CrossRef]
- Fernandes-Alves, D.; Teixeira, G.P.; Guimarães, K.C.; Crispim, C.A. Systematic Review and Meta-Analysis of Randomized Clinical Trials Comparing Time-Restricted Eating with and Without Caloric Restriction for Weight Loss. Nutr. Rev. 2025, nuaf053. [Google Scholar] [CrossRef]
- Moon, S.; Kang, J.; Kim, S.H.; Chung, H.S.; Kim, Y.J.; Yu, J.M.; Cho, S.T.; Oh, C.M.; Kim, T. Beneficial Effects of Time-Restricted Eating on Metabolic Diseases: A Systemic Review and Meta- Analysis. Nutrients 2020, 12, 1267. [Google Scholar] [CrossRef]
- Qi, D.; Nie, X.; Zhang, J. A Systematic Review and Meta-Analysis of the Impacts of Time-Restricted Eating on Metabolic Homeostasis. Angiology 2024, 76, 511–524. [Google Scholar] [CrossRef]
- Chen, W.; Liu, X.; Bao, L.; Yang, P.; Zhou, H. Health Effects of the Time-Restricted Eating in Adults with Obesity: A Systematic Review and Meta-Analysis. Front. Nutr. 2023, 10, 1079250. [Google Scholar] [CrossRef]
- Petersen, M.C.; Gallop, M.R.; Ramos, S.F.; Zarrinpar, A.; Broussard, J.L.; Chondronikola, M.; Chaix, A.; Klein, S. Complex Physiology and Clinical Implications of Time-Restricted Eating. Physiol. Rev. 2022, 102, 1991–2034. [Google Scholar] [CrossRef]
- Duan, D.; Bhat, S.; Jun, J.C.; Sidhaye, A. Time-Restricted Eating in Metabolic Syndrome–Focus on Blood Pressure Outcomes. Curr. Hypertens. Rep. 2022, 24, 485–497. [Google Scholar] [CrossRef]
- Feehan, J.; Mack, A.; Tuck, C.; Tchongue, J.; Holt, D.Q.; Sievert, W.; Moore, G.T.; de Courten, B.; Hodge, A. Time-Restricted Fasting Improves Liver Steatosis in Non-Alcoholic Fatty Liver Disease—A Single Blinded Crossover Trial. Nutrients 2023, 15, 4870. [Google Scholar] [CrossRef]
- Ridker, P.M. Moving Beyond JUPITER: Will Inhibiting Inflammation Reduce Vascular Event Rates? Curr. Atheroscler. Rep. 2013, 15, 295. [Google Scholar] [CrossRef]
- Ridker, P.M.; Everett, B.M.; Pradhan, A.; MacFadyen, J.G.; Solomon, D.H.; Zaharris, E.; Mam, V.; Hasan, A.; Rosenberg, Y.; Iturriaga, E.; et al. Low-Dose Methotrexate for the Prevention of Atherosclerotic Events. N. Engl. J. Med. 2019, 380, 752–762. [Google Scholar] [CrossRef]
- Khan, M.S.; Talha, K.M.; Maqsood, M.H.; Rymer, J.A.; Borlaug, B.A.; Docherty, K.F.; Pandey, A.; Kahles, F.; Cikes, M.; Lam, C.S.P.; et al. Interleukin-6 and Cardiovascular Events in Healthy Adults: MESA. JACC Adv. 2024, 3, 101063. [Google Scholar] [CrossRef]
- Ridker, P.M.; Moorthy, M.V.; Cook, N.R.; Rifai, N.; Lee, I.-M.; Buring, J.E. Inflammation, Cholesterol, Lipoprotein(a), and 30-Year Cardiovascular Outcomes in Women. N. Engl. J. Med. 2024, 391, 2087–2097. [Google Scholar] [CrossRef]
- Ridker, P.M. HsCRP, High-Risk Plaque, and Pan-Coronary Atherosclerosis: Implications for Patient Care During Acute Myocardial Infarction. JACC: Cardiovasc. Interv. 2025, 18, 1229–1231. [Google Scholar] [CrossRef]
- Kraaijenhof, J.M.; Nurmohamed, N.S.; Ridker, P.M. A Stitch in Time: Easily Measured Biomarkers to Enhance Cardiovascular Risk Prediction in Primary Prevention. Eur. Heart J. 2025, ehaf488. [Google Scholar] [CrossRef]
- Ridker, P.M. Colchicine for Cardiovascular Disease: Navigating the Gap Between Evidence, Guidelines, and Clinical Practice. J. Am. Coll. Cardiol. 2025, 85, 2092–2095. [Google Scholar] [CrossRef]
- Small, A.M.; Pournamdari, A.; Melloni, G.E.M.; Scirica, B.M.; Bhatt, D.L.; Raz, I.; Braunwald, E.; Giugliano, R.P.; Sabatine, M.S.; Peloso, G.M.; et al. Lipoprotein(a), C-Reactive Protein, and Cardiovascular Risk in Primary and Secondary Prevention Populations. JAMA Cardiol. 2024, 9, 385–391. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, M.; Wang, R.; Jiang, J.; Hu, Y.; Wang, W.; Wang, Y.; Li, H. The Predictive Value of the Hs-CRP/HDL-C Ratio, an Inflammation-Lipid Composite Marker, for Cardiovascular Disease in Middle-Aged and Elderly People: Evidence from a Large National Cohort Study. Lipids Health Dis. 2024, 23, 66. [Google Scholar] [CrossRef]
- Rocha, V.Z.; Rached, F.H.; Miname, M.H. Insights into the Role of Inflammation in the Management of Atherosclerosis. J. Inflamm. Res. 2023, 16, 2223–2239. [Google Scholar] [CrossRef]
- d’Aiello, A.; Filomia, S.; Brecciaroli, M.; Sanna, T.; Pedicino, D.; Liuzzo, G. Targeting Inflammatory Pathways in Atherosclerosis: Exploring New Opportunities for Treatment. Curr. Atheroscler. Rep. 2024, 26, 707–719. [Google Scholar] [CrossRef]
- Tall, A.R.; Bornfeldt, K.E. Inflammasomes and Atherosclerosis: A Mixed Picture. Circ. Res. 2023, 132, 1505–1520. [Google Scholar] [CrossRef]
- Weber, C.; Habenicht, A.J.R.; Von Hundelshausen, P. Novel Mechanisms and Therapeutic Targets in Atherosclerosis: Inflammation and Beyond. Eur. Heart J. 2023, 44, 2672–2681. [Google Scholar] [CrossRef]
- Paz-Ares, L.; Goto, Y.; Wan-Teck Lim, D.; Halmos, B.; Chul Cho, B.; Cobo, M.; Luis González Larriba, J.; Zhou, C.; Demedts, I.; Atmaca, A.; et al. Canakinumab in Combination with Docetaxel Compared with Docetaxel Alone for the Treatment of Advanced Non-Small Cell Lung Cancer Following Platinum-Based Doublet Chemotherapy and Immunotherapy (CANOPY-2): A Multicenter, Randomized, Double-Blind, Phase 3 Trial. Lung Cancer 2024, 189, 107451. [Google Scholar] [CrossRef]
- Anchouche, K.; Baass, A.; Thanassoulis, G. Lp(a): A Clinical Review. Clin. Biochem. 2025, 137, 110929. [Google Scholar] [CrossRef]
- Anchouche, K.; Thanassoulis, G. Lp(a): A Rapidly Evolving Therapeutic Landscape. Curr. Atheroscler. Rep. 2024, 27, 7. [Google Scholar] [CrossRef]
- Tasdighi, E.; Adhikari, R.; Almaadawy, O.; Leucker, T.M.; Blaha, M.J. LP(a): Structure, Genetics, Associated Cardiovascular Risk, and Emerging Therapeutics. Annu. Rev. Pharmacol. Toxicol. 2024, 64, 135–157. [Google Scholar] [CrossRef]
- Boffa, M.B. Beyond Fibrinolysis: The Confounding Role of Lp(a) in Thrombosis. Atherosclerosis 2022, 349, 72–81. [Google Scholar] [CrossRef]
- Enkhmaa, B.; Berglund, L. Statins and Lp(a): The Plot Thickens. Atherosclerosis 2019, 289, 173–175. [Google Scholar] [CrossRef]
- Clarke, R.; Peden, J.F.; Hopewell, J.C.; Kyriakou, T.; Goel, A.; Heath, S.C.; Parish, S.; Barlera, S.; Franzosi, M.G.; Rust, S.; et al. Genetic Variants Associated with Lp(a) Lipoprotein Level and Coronary Disease. N. Engl. J. Med. 2009, 361, 2518–2528. [Google Scholar] [CrossRef]
- Taskinen, M.R.; Matikainen, N.; Björnson, E.; Söderlund, S.; Inkeri, J.; Hakkarainen, A.; Parviainen, H.; Sihlbom, C.; Thorsell, A.; Andersson, L.; et al. Contribution of Intestinal Triglyceride-Rich Lipoproteins to Residual Atherosclerotic Cardiovascular Disease Risk in Individuals with Type 2 Diabetes on Statin Therapy. Diabetologia 2023, 66, 2307–2319. [Google Scholar] [CrossRef]
- Hein, G.J.; Baker, C.; Hsieh, J.; Farr, S.; Adeli, K. GLP-1 and GLP-2 as Yin and Yang of Intestinal Lipoprotein Production: Evidence for Predominance of GLP-2-Stimulated Postprandial Lipemia in Normal and Insulin-Resistant States. Diabetes 2013, 62, 373–381. [Google Scholar] [CrossRef]
- Hsieh, J.; Hayashi, A.A.; Webb, J.; Adeli, K. Postprandial Dyslipidemia in Insulin Resistance: Mechanisms and Role of Intestinal Insulin Sensitivity. Atheroscler. Suppl. 2008, 9, 7–13. [Google Scholar] [CrossRef]
- Denechaud, P.D.; Dentin, R.; Girard, J.; Postic, C. Role of ChREBP in Hepatic Steatosis and Insulin Resistance. FEBS Lett. 2008, 582, 68–73. [Google Scholar] [CrossRef]
- Ford, R.J.; Fullerton, M.D.; Pinkosky, S.L.; Day, E.A.; Scott, J.W.; Oakhill, J.S.; Bujak, A.L.; Smith, B.K.; Crane, J.D.; Blümer, R.M.; et al. Metformin and Salicylate Synergistically Activate Liver AMPK, Inhibit Lipogenesis and Improve Insulin Sensitivity. Biochem. J. 2015, 468, 125–132. [Google Scholar] [CrossRef]
- Borén, J.; Taskinen, M.R. Metabolism of Triglyceride-Rich Lipoproteins. In Prevention and Treatment of Atherosclerosis; Springer: Cham, Switzerland, 2022; Volume 270, pp. 133–156. [Google Scholar] [CrossRef]
- Zilversmit, D.B. Atherogenic Nature of Triglycerides, Postprandial Lipidemia, and Triglyceride-Rich Remnant, Lipoproteins. Clin. Chem. 1995, 41, 153–158. [Google Scholar] [CrossRef]
- Wierzbicki, A.S.; Clarke, R.E.; Viljoen, A.; Mikhailidis, D.P. Triglycerides: A Case for Treatment? Curr. Opin. Cardiol. 2012, 27, 398–404. [Google Scholar] [CrossRef]
- Baratta, F.; Cocomello, N.; Coronati, M.; Ferro, D.; Pastori, D.; Angelico, F.; Ben, M. Del Cholesterol Remnants, Triglyceride-Rich Lipoproteins and Cardiovascular Risk. Int. J. Mol. Sci. 2023, 24, 4268. [Google Scholar] [CrossRef]
- Dallinga-Thie, G.M.; Kroon, J.; Borén, J.; Chapman, M.J. Triglyceride-Rich Lipoproteins and Remnants: Targets for Therapy? Curr. Cardiol. Rep. 2016, 18, 67. [Google Scholar] [CrossRef]
- Gugliucci, A. Triglyceride-Rich Lipoprotein Metabolism: Key Regulators of Their Flux. J. Clin. Med. 2023, 12, 4399. [Google Scholar] [CrossRef]
- Borén, J.; Taskinen, M.R.; Björnson, E.; Packard, C.J. Metabolism of Triglyceride-Rich Lipoproteins in Health and Dyslipidaemia. Nat. Rev. Cardiol. 2022, 19, 577–592. [Google Scholar] [CrossRef]
- Chait, A.; Ginsberg, H.N.; Vaisar, T.; Heinecke, J.W.; Goldberg, I.J.; Bornfeldt, K.E. Remnants of the Triglyceride-Rich Lipoproteins, Diabetes, and Cardiovascular Disease. Diabetes 2020, 69, 508–516. [Google Scholar] [CrossRef]
- Fann, D.Y.W.; Ng, G.Y.Q.; Poh, L.; Arumugam, T.V. Positive Effects of Intermittent Fasting in Ischemic Stroke. Exp. Gerontol. 2017, 89, 93–102. [Google Scholar] [CrossRef]
- He, Z.; Xu, H.; Li, C.; Yang, H.; Mao, Y. Intermittent Fasting and Immunomodulatory Effects: A Systematic Review. Front. Nutr. 2023, 10, 1048230. [Google Scholar] [CrossRef]
- Antoni, R.; Johnston, K.L.; Collins, A.L.; Robertson, M.D. Effects of Intermittent Fasting on Glucose and Lipid Metabolism. Proc. Nutr. Soc. 2017, 76, 361–368. [Google Scholar] [CrossRef]
- Elsworth, R.L.; Monge, A.; Perry, R.; Hinton, E.C.; Flynn, A.N.; Whitmarsh, A.; Hamilton-Shield, J.P.; Lawrence, N.S.; Brunstrom, J.M. The Effect of Intermittent Fasting on Appetite: A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 2604. [Google Scholar] [CrossRef]
- Chair, S.Y.; Cai, H.; Cao, X.; Qin, Y.; Cheng, H.Y.; Timothy, M.N.G. Intermittent Fasting in Weight Loss and Cardiometabolic Risk Reduction: A Randomized Controlled Trial. J. Nurs. Res. 2022, 30, E185. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Huang, L.; Luo, Y.; Yu, B.; Tian, G. Effects and Possible Mechanisms of Intermittent Fasting on Health and Disease: A Narrative Review. Nutr. Rev. 2023, 81, 1626–1635. [Google Scholar] [CrossRef] [PubMed]
- Semnani-Azad, Z.; Khan, T.A.; Chiavaroli, L.; Chen, V.; Bhatt, H.A.; Chen, A.; Chiang, N.; Oguntala, J.; Kabisch, S.; Lau, D.C.W.; et al. Intermittent Fasting Strategies and Their Effects on Body Weight and Other Cardiometabolic Risk Factors: Systematic Review and Network Meta-Analysis of Randomised Clinical Trials. BMJ 2025, 389, e082007. [Google Scholar] [CrossRef]
- Sharma, S.K.; Mudgal, S.K.; Kalra, S.; Gaur, R.; Thakur, K.; Agarwal, R. Effect of Intermittent Fasting on Glycaemic Control in Patients With Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. touchREVIEWS Endocrinol. 2023, 19, 25–32. [Google Scholar] [CrossRef]
- Silva, A.I.; Direito, M.; Pinto-Ribeiro, F.; Ludovico, P.; Sampaio-Marques, B. Effects of Intermittent Fasting on Regulation of Metabolic Homeostasis: A Systematic Review and Meta-Analysis in Health and Metabolic-Related Disorders. J. Clin. Med. 2023, 12, 3699. [Google Scholar] [CrossRef]
- Maki, K.C.; Kirkpatrick, C.F.; Wilkinson, M.J.; Petersen, K.S. JCL Roundtable: Dietary Recommendations and Intermittent Fasting and Time-Restricted Eating. J. Clin. Lipidol. 2025, 19, 748–758. [Google Scholar] [CrossRef]
- Ezzati, A.; McLaren, C.; Bohlman, C.; Tamargo, J.A.; Lin, Y.; Anton, S.D. Does Time-Restricted Eating Add Benefits to Calorie Restriction? A Systematic Review. Obesity 2024, 32, 640–654. [Google Scholar] [CrossRef]
- Oh, J.H.; Yoon, E.L.; Park, H.; Lee, S.; Jo, A.J.; Cho, S.; Kwon, E.; Nah, E.-H.; Lee, J.H.; Park, J.H.; et al. Efficacy and Safety of Time-Restricted Eating in Metabolic Dysfunction-Associated Steatotic Liver Disease. J. Hepatol. 2025, in press. [Google Scholar] [CrossRef]
- Qiu, Z.; Huang, E.Y.Z.; Li, Y.; Xiao, Y.; Fu, Y.; Du, J.; Kan, J. Beneficial Effects of Time-Restricted Fasting on Cardiovascular Disease Risk Factors: A Meta-Analysis. BMC Cardiovasc. Disord. 2024, 24, 210. [Google Scholar] [CrossRef]
- Jin, X.; Li, T.; Xu, X.; Rong, S. The Effect of Time-Restricted Eating on Sleep: A Systematic Review and Meta-Analysis. Nutr. Rev. 2025, nuaf051. [Google Scholar] [CrossRef]
- Liu, L.; Chen, W.; Wu, D.; Hu, F. Metabolic Efficacy of Time-Restricted Eating in Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Clin. Endocrinol. Metab. 2022, 107, 3428–3441. [Google Scholar] [CrossRef]
- Wang, W.; Wei, R.; Pan, Q.; Guo, L. Beneficial Effect of Time-Restricted Eating on Blood Pressure: A Systematic Meta-Analysis and Meta-Regression Analysis. Nutr. Metab. 2022, 19, 77. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.-C.; Tan, Z.-T.; He, C.-J.; Hu, H.-L.; Zhai, C.-L.; Qian, G. Time-Restricted Eating with Calorie Restriction on Weight Loss and Cardiometabolic Risk: A Systematic Review and Meta-Analysis. Eur. J. Clin. Nutr. 2023, 77, 1014–1025. [Google Scholar] [CrossRef] [PubMed]
- Parrotta, M.E.; Colangeli, L.; Scipione, V.; Vitale, C.; Sbraccia, P.; Guglielmi, V. Time Restricted Eating: A Valuable Alternative to Calorie Restriction for Addressing Obesity? Curr. Obes. Rep. 2025, 14, 17. [Google Scholar] [CrossRef]
- Zhao, L.; Hutchison, A.T.; Liu, B.; Yates, C.L.; Teong, X.T.; Wittert, G.A.; Thompson, C.H.; Nguyen, L.; Au, J.; Manoogian, E.N.C.; et al. Time-Restricted Eating Improves Glycemic Control and Dampens Energy-Consuming Pathways in Human Adipose Tissue. Nutrition 2022, 96, 111583. [Google Scholar] [CrossRef]
- Mena-Hernández, D.R.; Jiménez-Domínguez, G.; Méndez, J.D.; Olvera-Hernández, V.; Martínez-López, M.C.; Guzmán-Priego, C.G.; Reyes-López, Z.; Ramos-García, M.; Juárez-Rojop, I.E.; Zavaleta-Toledo, S.S.; et al. Effect of Early Time-Restricted Eating on Metabolic Markers and Body Composition in Individuals with Overweight or Obesity. Nutrients 2024, 16, 2187. [Google Scholar] [CrossRef]
- Varady, K.A.; Cienfuegos, S.; Ezpeleta, M.; Gabel, K. Cardiometabolic Benefits of Intermittent Fasting. Annu. Rev. Nutr. 2021, 41, 333–361. [Google Scholar] [CrossRef]
- Beaumont, A.; Farías, R.; Fernandez, W.; Lizama, C.; González, J.; Villar, A.; Varady, K.A.; Peirano, P.; Chamorro, R. Time-Restricted Eating Improves Appetite Regulation and Sleep Characteristics in Adults with Poor Sleep Quality. Clin. Nutr. 2025, 50, 66–74. [Google Scholar] [CrossRef]
- Li, X.; Guo, X.; Zhou, Y.; Cao, G.; Chen, M.; Mu, J. Impact of 16/8 Time-Restricted Eating on Body Composition and Lipolytic Hormone Regulation in Female DanceSport Dancers. J. Int. Soc. Sports Nutr. 2025, 22, 2513943. [Google Scholar] [CrossRef]
- Froy, O. Circadian Rhythms, Nutrition and Implications for Longevity in Urban Environments. Proc. Nutr. Soc. 2018, 77, 216–222. [Google Scholar] [CrossRef]
- Kim, B.H.; Joo, Y.; Kim, M.S.; Choe, H.K.; Tong, Q.; Kwon, O. Effects of Intermittent Fasting on the Circulating Levels and Circadian Rhythms of Hormones. Endocrinol. Metab. 2021, 36, 745–756. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Xie, Z.; Ye, Y.; Bahijri, S.; Chen, M. The Beneficial Effects of Intermittent Fasting: An Update on Mechanism, and the Role of Circadian Rhythm and Gut Microbiota. Hepatobiliary Surg. Nutr. 2020, 9, 597–602. [Google Scholar] [CrossRef]
- Lin, S.C.; Hardie, D.G. AMPK: Sensing Glucose as Well as Cellular Energy Status. Cell Metab. 2018, 27, 299–313. [Google Scholar] [CrossRef]
- Guigas, B.; Viollet, B. Targeting AMPK: From Ancient Drugs to New Small-Molecule Activators. In AMP-Activated Protein Kinase; Springer: Cham, Switzerland, 2016; Volume 107, pp. 327–350. [Google Scholar] [CrossRef]
- Hardie, D.G. AMPK: Positive and Negative Regulation, and Its Role in Whole-Body Energy Homeostasis. Curr. Opin. Cell Biol. 2015, 33, 1–7. [Google Scholar] [CrossRef]
- An, H.; Jang, Y.; Choi, J.; Hur, J.; Kim, S.; Kwon, Y. New Insights into AMPK, as a Potential Therapeutic Target in Metabolic Dysfunction-Associated Steatotic Liver Disease and Hepatic Fibrosis. Biomol. Ther. 2025, 33, 18–38. [Google Scholar] [CrossRef]
- Steinberg, G.R.; Hardie, D.G. New Insights into Activation and Function of the AMPK. Nat. Rev. Mol. Cell Biol. 2023, 24, 255–272. [Google Scholar] [CrossRef]
- Rovira-Llopis, S.; Luna-Marco, C.; Perea-Galera, L.; Bañuls, C.; Morillas, C.; Victor, V.M. Circadian Alignment of Food Intake and Glycaemic Control by Time-Restricted Eating: A Systematic Review and Meta-Analysis. Rev. Endocr. Metab. Disord. 2024, 25, 325–337. [Google Scholar] [CrossRef]
- Dong, T.A.; Sandesara, P.B.; Dhindsa, D.S.; Mehta, A.; Arneson, L.C.; Dollar, A.L.; Taub, P.R.; Sperling, L.S. Intermittent Fasting: A Heart Healthy Dietary Pattern? Am. J. Med. 2020, 133, 901–907. [Google Scholar] [CrossRef]
- Adafer, R.; Messaadi, W.; Meddahi, M.; Patey, A.; Haderbache, A.; Bayen, S.; Messaadi, N. Food Timing, Circadian Rhythm and Chrononutrition: A Systematic Review of Time-Restricted Eating’s Effects on Human Health. Nutrients 2020, 12, 3770. [Google Scholar] [CrossRef]
- Paukkonen, I.; Törrönen, E.-N.; Lok, J.; Schwab, U.; El-Nezami, H. The Impact of Intermittent Fasting on Gut Microbiota: A Systematic Review of Human Studies. Front. Nutr. 2024, 11, 1342787. [Google Scholar] [CrossRef]
- Ferrocino, I.; Pelleagrini, M.; D’eusebio, C.; Goitre, I.; Ponzo, V.; Fadda, M.; Rosato, R.; Mengozzi, G.; Beccuti, G.; Merlo, F.D.; et al. The Effects of Time-Restricted Eating on Metabolism and Gut Microbiota: A Real-Life Study. Nutrients 2022, 14, 2569. [Google Scholar] [CrossRef]
- Huang, C.; Liu, D.; Yang, S.; Huang, Y.; Wei, X.; Zhang, P.; Lin, J.; Xu, B.; Liu, Y.; Guo, D.; et al. Effect of Time-Restricted Eating Regimen on Weight Loss Is Mediated by Gut Microbiome. iScience 2024, 27, 110202. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Yang, M.; Jia, C.; He, Z.; Zhou, S.; Ruan, P.; Wang, Y.; Tang, C.; Pan, W.; et al. Time-Restricted Eating Reveals a “Younger” Immune System and Reshapes the Intestinal Microbiome in Human. Redox Biol. 2024, 78, 103422. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Zhang, M.; Luo, H. Regulation of Metabolism by Circadian Rhythms: Support from Time-Restricted Eating, Intestinal Microbiota & Omics Analysis. Life Sci. 2024, 351, 122814. [Google Scholar] [CrossRef] [PubMed]
- Angoorani, P.; Ejtahed, H.-S.; Hasani-Ranjbar, S.; Siadat, S.D.; Soroush, A.R.; Larijani, B. Gut Microbiota Modulation as a Possible Mediating Mechanism for Fasting-Induced Alleviation of Metabolic Complications: A Systematic Review. Nutr. Metab. 2021, 18, 105. [Google Scholar] [CrossRef]
- Habe, B.; Črešnovar, T.; Hladnik, M.; Pražnikar, J.; Kenig, S.; Bandelj, D.; Mohorko, N.; Petelin, A.; Jenko Pražnikar, Z. Effects of Time-Restricted Eating (Early and Late) Combined with Energy Restriction vs. Energy Restriction Alone on the Gut Microbiome in Adults with Obesity. Nutrients 2025, 17, 2284. [Google Scholar] [CrossRef]
- Gasmi, M.; Silvia Hardiany, N.; van der Merwe, M.; Martins, I.J.; Sharma, A.; Williams-Hooker, R. The Influence of Time-Restricted Eating/Feeding on Alzheimer’s Biomarkers and Gut Microbiota. Nutr. Neurosci. 2025, 28, 156–170. [Google Scholar] [CrossRef]
- Steger, F.L.; Jamshed, H.; Martin, C.K.; Richman, J.S.; Bryan, D.R.; Hanick, C.J.; Salvy, S.J.; Warriner, A.H.; Peterson, C.M. Impact of Early Time-Restricted Eating on Diet Quality, Meal Frequency, Appetite, and Eating Behaviors: A Randomized Trial. Obesity 2023, 31, 127–138. [Google Scholar] [CrossRef]
- Vizthum, D.; Katz, S.E.; Pacanowski, C.R. The Impact of Time Restricted Eating on Appetite and Disordered Eating in Adults: A Mixed Methods Systematic Review. Appetite 2023, 183, 106452. [Google Scholar] [CrossRef]
- Ribas-Latre, A.; Fernández-Veledo, S.; Vendrell, J. Time-Restricted Eating, the Clock Ticking Behind the Scenes. Front. Pharmacol. 2024, 15, 1428601. [Google Scholar] [CrossRef]
- Cheng, W.Y.; Desmet, L.; Depoortere, I. Time-Restricted Eating for Chronodisruption-Related Chronic Diseases. Acta Physiol. 2023, 239, e14027. [Google Scholar] [CrossRef]
- Saini, S.K.; Singh, A.; Saini, M.; Gonzalez-Freire, M.; Leeuwenburgh, C.; Anton, S.D. Time-Restricted Eating Regimen Differentially Affects Circulatory MiRNA Expression in Older Overweight Adults. Nutrients 2022, 14, 1843. [Google Scholar] [CrossRef]
- Wilkinson, M.J.; Manoogian, E.N.C.; Zadourian, A.; Lo, H.; Fakhouri, S.; Shoghi, A.; Wang, X.; Fleischer, J.G.; Navlakha, S.; Panda, S.; et al. Ten-Hour Time-Restricted Eating Reduces Weight, Blood Pressure, and Atherogenic Lipids in Patients with Metabolic Syndrome. Cell Metab. 2020, 31, 92–104.e5. [Google Scholar] [CrossRef] [PubMed]
- Sylvers-Davie, K.L.; Davies, B.S.J. Regulation of Lipoprotein Metabolism by ANGPTL3, ANGPTL4, and ANGPTL8. Am. J. Physiol. Endocrinol. Metab. 2021, 321, E493–E508. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liang, J.; Li, Z.; Zuo, Y.; Dai, L. ANGPTL4-the Link Binding Lipid Metabolism and Inflammation. Curr. Med. Chem. 2024, 32, 2931–2949. [Google Scholar] [CrossRef]
- Zhang, R. The ANGPTL3-4-8 Model, a Molecular Mechanism for Triglyceride Trafficking. Open Biol. 2016, 6, 150272. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, K. An Updated ANGPTL3-4-8 Model as a Mechanism of Triglyceride Partitioning Between Fat and Oxidative Tissues. Prog. Lipid Res. 2022, 85, 101140. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Zhen, E.Y.; Russell, A.M.; Ehsani, M.; Siegel, R.W.; Qian, Y.; Konrad, R.J. Decoding the Role of Angiopoietin-like Protein 4/8 Complex-Mediated Plasmin Generation in the Regulation of LPL Activity. J. Lipid Res. 2023, 64, 100441. [Google Scholar] [CrossRef]
- Gugliucci, A. Angiopoietin-like Proteins and Lipoprotein Lipase: The Waltz Partners That Govern Triglyceride-Rich Lipoprotein Metabolism? Impact on Atherogenesis, Dietary Interventions, and Emerging Therapies. J. Clin. Med. 2024, 13, 5229. [Google Scholar] [CrossRef]
- Moon, J.H.; Kim, K.; Choi, S.H. Lipoprotein Lipase: Is It a Magic Target for the Treatment of Hypertriglyceridemia. Endocrinol. Metab. 2022, 37, 575–586. [Google Scholar] [CrossRef] [PubMed]
- He, P.P.; Jiang, T.; OuYang, X.P.; Liang, Y.Q.; Zou, J.Q.; Wang, Y.; Shen, Q.Q.; Liao, L.; Zheng, X.L. Lipoprotein Lipase: Biosynthesis, Regulatory Factors, and Its Role in Atherosclerosis and Other Diseases. Clin. Chim. Acta 2018, 480, 126–137. [Google Scholar] [CrossRef] [PubMed]
- Wheless, A.; Gunn, K.H.; Neher, S.B. Macromolecular Interactions of Lipoprotein Lipase (LPL). In Macromolecular Protein Complexes V.; Springer: Cham, Switzerland, 2024; Volume 104, pp. 139–179. [Google Scholar] [CrossRef]
- Wu, S.A.; Kersten, S.; Qi, L. Lipoprotein Lipase and Its Regulators: An Unfolding Story. Trends Endocrinol. Metab. 2021, 32, 48–61. [Google Scholar] [CrossRef] [PubMed]
- Kumari, A.; Kristensen, K.K.; Ploug, M.; Winther, A.-M.L. The Importance of Lipoprotein Lipase Regulation in Atherosclerosis. Biomedicines 2021, 9, 782. [Google Scholar] [CrossRef]
- Shang, R.; Rodrigues, B. Lipoprotein Lipase as a Target for Obesity/Diabetes Related Cardiovascular Disease. J. Pharm. Pharm. Sci. 2024, 27, 13199. [Google Scholar] [CrossRef]
- Shang, R.; Rodrigues, B. Lipoprotein Lipase and Its Delivery of Fatty Acids to the Heart. Biomolecules 2021, 11, 1016. [Google Scholar] [CrossRef]
- Song, W.; Beigneux, A.P.; Weston, T.A.; Chen, K.; Yang, Y.; Nguyen, L.P.; Guagliardo, P.; Jung, H.; Tran, A.P.; Tu, Y.; et al. The Lipoprotein Lipase That Is Shuttled into Capillaries by GPIHBP1 Enters the Glycocalyx Where It Mediates Lipoprotein Processing. Proc. Natl. Acad. Sci. USA 2023, 120, e2313825120. [Google Scholar] [CrossRef]
- Gunn, K.H.; Neher, S.B. Structure of Dimeric Lipoprotein Lipase Reveals a Pore Adjacent to the Active Site. Nat. Commun. 2023, 14, 2569. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, K. A Unified Model for Regulating Lipoprotein Lipase Activity. Trends Endocrinol. Metab. 2024, 35, 490–504. [Google Scholar] [CrossRef]
- Ploug, M. ANGPTL4: A New Mode in the Regulation of Intravascular Lipolysis. Curr. Opin. Lipidol. 2022, 33, 112–119. [Google Scholar] [CrossRef]
- Aryal, B.; Price, N.L.; Suarez, Y.; Fernández-Hernando, C. ANGPTL4 in Metabolic and Cardiovascular Disease. Trends Mol. Med. 2019, 25, 723–734. [Google Scholar] [CrossRef] [PubMed]
- Wulff, A.B. Safely Lowering Triglycerides Through ANGPTL4 Inhibition. Lancet 2025, 405, 1885–1887. [Google Scholar] [CrossRef] [PubMed]
- Dewey, F.E.; Gusarova, V.; O’Dushlaine, C.; Gottesman, O.; Trejos, J.; Hunt, C.; Van Hout, C.V.; Habegger, L.; Buckler, D.; Lai, K.-M.V.; et al. Inactivating Variants in ANGPTL4 and Risk of Coronary Artery Disease. N. Engl. J. Med. 2016, 374, 1123–1133. [Google Scholar] [CrossRef] [PubMed]
- Morieri, M.L.; Shah, H.; Doria, A. Variants in ANGPTL4 and the Risk of Coronary Artery Disease. N. Engl. J. Med. 2016, 375, 2303–2306. [Google Scholar] [CrossRef]
- Gusarova, V.; O’Dushlaine, C.; Teslovich, T.M.; Benotti, P.N.; Mirshahi, T.; Gottesman, O.; Van Hout, C.V.; Murray, M.F.; Mahajan, A.; Nielsen, J.B.; et al. Genetic Inactivation of ANGPTL4 Improves Glucose Homeostasis and Is Associated with Reduced Risk of Diabetes. Nat. Commun. 2018, 9, 2252. [Google Scholar] [CrossRef]
- Swarnakar, R.; Sahu, D.; Bahinipati, J.; Pradhan, T.; Meher, D.; Sarangi, R.; Mahapatra, S. The Significance of ANGPTL3 and ANGPTL4 Proteins in the Development of Dyslipidemia in Type 2 Diabetes Mellitus. J. Fam. Med. Prim. Care 2025, 14, 947–953. [Google Scholar] [CrossRef]
- Kristensen, K.K.; Leth-Espensen, K.Z.; Kumari, A.; Grønnemose, A.L.; Lund-Winther, A.-M.; Young, S.G.; Ploug, M. GPIHBP1 and ANGPTL4 Utilize Protein Disorder to Orchestrate Order in Plasma Triglyceride Metabolism and Regulate Compartmentalization of LPL Activity. Front. Cell Dev. Biol. 2021, 9, 702508. [Google Scholar] [CrossRef]
- Kersten, S.; Lichtenstein, L.; Steenbergen, E.; Mudde, K.; Hendriks, H.F.J.; Hesselink, M.K.; Schrauwen, P.; Müller, M. Caloric Restriction and Exercise Increase Plasma ANGPTL4 Levels in Humans via Elevated Free Fatty Acids. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 969–974. [Google Scholar] [CrossRef]
- Kersten, S. Role and Mechanism of the Action of Angiopoietin-like Protein ANGPTL4 in Plasma Lipid Metabolism. J. Lipid Res. 2021, 62, 100150. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Pottanat, T.G.; Siegel, R.W.; Ehsani, M.; Qian, Y.W.; Zhen, E.Y.; Regmi, A.; Roell, W.C.; Guo, H.; Jane Luo, M.; et al. Angiopoietin-like Protein 8 Differentially Regulates ANGPTL3 and ANGPTL4 During Postprandial Partitioning of Fatty Acids. J. Lipid Res. 2020, 61, 1203–1220. [Google Scholar] [CrossRef]
- Hoffmann, W.G.; Chen, Y.Q.; Schwartz, C.S.; Barber, J.L.; Dev, P.K.; Reasons, R.J.; Miranda Maravi, J.S.; Armstrong, B.; Gerszten, R.E.; Silbernagel, G.; et al. Effects of Exercise Training on ANGPTL3/8 and ANGPTL4/8 and Their Associations with Cardiometabolic Traits. J. Lipid Res. 2024, 65, 100495. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Pottanat, T.G.; Zhen, E.Y.; Siegel, R.W.; Ehsani, M.; Qian, Y.W.; Konrad, R.J. ApoA5 Lowers Triglyceride Levels via Suppression of ANGPTL3/8-Mediated LPL Inhibition. J. Lipid Res. 2021, 62, 100068. [Google Scholar] [CrossRef] [PubMed]
- Haller, J.F.; Mintah, I.J.; Shihanian, L.M.; Stevis, P.; Buckler, D.; Alexa-Braun, C.A.; Kleiner, S.; Banfi, S.; Cohen, J.C.; Hobbs, H.H.; et al. ANGPTL8 Requires ANGPTL3 to Inhibit Lipoprotein Lipase and Plasma Triglyceride Clearance. J. Lipid Res. 2017, 58, 1166–1173. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Wang, C.; Deng, X.; He, J.; Yang, L.; Yuan, G. ANGPTL8 in Metabolic Homeostasis: More Friend than Foe? Open Biol. 2021, 11, 210106. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Yang, Y.; Zhen, E.Y.; Beyer, T.P.; Li, H.; Wen, Y.; Ehsani, M.; Jackson, N.; Xie, K.; Jung, H.; et al. Carboxyl-Terminal Sequences in APOA5 Are Important for Suppressing ANGPTL3/8 Activity. Proc. Natl. Acad. Sci. USA 2024, 121, e2322332121. [Google Scholar] [CrossRef]
- Oldoni, F.; Cheng, H.; Banfi, S.; Gusarova, V.; Cohen, J.C.; Hobbs, H.H. ANGPTL8 Has Both Endocrine and Autocrine Effects on Substrate Utilization. JCL Insight 2020, 5, e138777. [Google Scholar] [CrossRef]
- Kumari, A.; Larsen, S.W.R.; Bondesen, S.; Qian, Y.; Tian, H.D.; Walker, S.G.; Davies, B.S.J.; Remaley, A.T.; Young, S.G.; Konrad, R.J.; et al. ANGPTL3/8 Is an Atypical Unfoldase That Regulates Intravascular Lipolysis by Catalyzing Unfolding of Lipoprotein Lipase. Proc. Natl. Acad. Sci. USA 2025, 122, e2420721122. [Google Scholar] [CrossRef]
- Wang, Y.; Quagliarini, F.; Gusaroèa, È.; Gromada, J.; Èalenzuela, D.M.; Cohen, J.C.; Hobbs, H.H. Mice Lacking ANGPTL8 (Betatrophin) Manifest Disrupted Triglyceride Metabolism Without Impaired Glucose Homeostasis. Proc. Natl. Acad. Sci. USA 2013, 110, 16109–16114. [Google Scholar] [CrossRef]
- Ye, H.; Zong, Q.; Zou, H.; Zhang, R. Emerging Insights into the Roles of ANGPTL8 Beyond Glucose and Lipid Metabolism. Front. Physiol. 2023, 14, 1275485. [Google Scholar] [CrossRef]
- Rodríguez-Mortera, R.; Caccavello, R.; Garay-Sevilla, M.E.; Gugliucci, A. Higher ANGPTL3, ApoC-III, and ApoB48 Dyslipidemia, and Lower Lipoprotein Lipase Concentrations Are Associated with Dysfunctional Visceral Fat in Adolescents with Obesity. Clin. Chim. Acta 2020, 508, 61–68. [Google Scholar] [CrossRef]
- Abu-Farha, M.; Cherian, P.; Qaddoumi, M.G.; AlKhairi, I.; Sriraman, D.; Alanbaei, M.; Abubaker, J. Increased Plasma and Adipose Tissue Levels of ANGPTL8/Betatrophin and ANGPTL4 in People with Hypertension. Lipids Health Dis. 2018, 17, 35. [Google Scholar] [CrossRef] [PubMed]
- Arefanian, H.; Al-Khairi, I.; Khalaf, N.A.; Cherian, P.; Kavalakatt, S.; Madhu, D.; Mathur, A.; Qaddoumi, M.G.; Al-Mulla, F.; Abubaker, J.; et al. Increased Expression Level of ANGPTL8 in White Adipose Tissue Under Acute and Chronic Cold Treatment. Lipids Health Dis. 2021, 20, 117. [Google Scholar] [CrossRef] [PubMed]
- Abu-Farha, M.; Ghosh, A.; Al-Khairi, I.; Madiraju, S.R.M.; Abubaker, J.; Prentki, M. The Multi-Faces of Angptl8 in Health and Disease: Novel Functions Beyond Lipoprotein Lipase Modulation. Prog. Lipid Res. 2020, 80, 101067. [Google Scholar] [CrossRef] [PubMed]
- Balasubramaniam, D.; Schroeder, O.; Russell, A.M.; Fitchett, J.R.; Austin, A.K.; Beyer, T.P.; Chen, Y.Q.; Day, J.W.; Ehsani, M.; Heng, A.R.; et al. An Anti-ANGPTL3/8 Antibody Decreases Circulating Triglycerides by Binding to a LPL-Inhibitory Leucine Zipper-like Motif. J. Lipid Res. 2022, 63, 100198. [Google Scholar] [CrossRef]
- Gugliucci, A. The Chylomicron Saga: Time to Focus on Postprandial Metabolism. Front. Endocrinol. 2023, 14, 1322869. [Google Scholar] [CrossRef]
- Gusarova, V.; Banfi, S.; Alexa-Braun, C.A.; Shihanian, L.M.; Mintah, I.J.; Lee, J.S.; Xin, Y.; Su, Q.; Kamat, V.; Cohen, J.C.; et al. ANGPTL8 Blockade with a Monoclonal Antibody Promotes Triglyceride Clearance, Energy Expenditure, and Weight Loss in Mice. Endocrinology 2017, 158, 1252–1259. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, N.H. New Therapeutic Approaches to the Treatment of Dyslipidemia 1: ApoC-III and ANGPTL3. J. Lipid Atheroscler. 2023, 12, 23–36. [Google Scholar] [CrossRef]
- Geladari, E.; Tsamadia, P.; Vallianou, N.G. ANGPTL3 Inhibitors: Their Role in Cardiovascular Disease Through Regulation of Lipid Metabolism. Circ. J. 2019, 83, 267–273. [Google Scholar] [CrossRef]
- Ginsberg, H.N.; Goldberg, I.J. Broadening the Scope of Dyslipidemia Therapy by Targeting APOC3 (Apolipoprotein C3) and ANGPTL3 (Angiopoietin-Like Protein 3). Arterioscler. Thromb. Vasc. Biol. 2023, 43, 388–398. [Google Scholar] [CrossRef]
- Cummings, B.B.; Bouchard, P.R.; Milton, M.N.; Moesta, P.F.; Ramanan, V.; Trauger, J.W.; Maratos-Flier, E.; Voznesensky, A.; Splawski, I.; Nimonkar, A.V.; et al. An ANGPTL4 Inhibitory Antibody Safely Improves Lipid Profiles in Non-Human Primates. EBioMedicine 2025, 117, 105748. [Google Scholar] [CrossRef]
- Cummings, B.B.; Joing, M.P.; Bouchard, P.R.; Milton, M.N.; Moesta, P.F.; Ramanan, V.; Lane, A.; Hirman, J.; Trauger, J.W.; Maratos-Flier, E.; et al. Safety and Efficacy of a Novel ANGPTL4 Inhibitory Antibody for Lipid Lowering: Results from Phase 1 and Phase 1b/2a Clinical Studies. Lancet 2025, 405, 1923–1934. [Google Scholar] [CrossRef]
- Bains, Y.; Erkin-Cakmak, A.; Caccavello, R.; Mulligan, K.; Noworolski, S.; Schwarz, J.-M.; Lustig, R.; Gugliucci, A. Isocaloric Fructose Restriction Improves Postprandial Chylomicron and VLDL Excursions in Adolescents With Obesity by Reducing Angiopoietin-Like Protein 3 and Apolipoprotein CIII. Circulation 2020, 142, A16511. [Google Scholar] [CrossRef]
- Jones, G.M.; Caccavello, R.; Palii, S.P.; Pullinger, C.R.; Kane, J.P.; Mulligan, K.; Gugliucci, A.; Schwarz, J.M. Separation of Postprandial Lipoproteins: Improved Purification of Chylomicrons Using an ApoB100 Immunoaffinity Method. J. Lipid Res. 2020, 61, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Chye Ooi, T.; Nordestgaard, B.G. Methods to Study Postprandial Lipemia. Curr. Vasc. Pharmacol. 2011, 9, 302–308. [Google Scholar] [CrossRef]
- Masuda, D.; Yamashita, S. Postprandial Hyperlipidemia and Remnant Lipoproteins. J. Atheroscler. Thromb. 2017, 24, 95–109. [Google Scholar] [CrossRef] [PubMed]
- Leohr, J.; Kjellsson, M.C. Evaluation of Postprandial Total Triglycerides Within the TIGG Model for Characterizing Postprandial Response of Glucose, Insulin, and GLP-1. CPT Pharmacomet. Syst. Pharmacol. 2023, 12, 1529–1540. [Google Scholar] [CrossRef]
- Yanai, H.; Adachi, H.; Hakoshima, M.; Katsuyama, H. Postprandial Hyperlipidemia: Its Pathophysiology, Diagnosis, Atherogenesis, and Treatments. Int. J. Mol. Sci. 2023, 24, 13942. [Google Scholar] [CrossRef]
- Higgins, V.; Adeli, K. Postprandial Dyslipidemia in Insulin Resistant States in Adolescent Populations. J. Biomed. Res. 2020, 34, 328–342. [Google Scholar] [CrossRef]
- May-Zhang, L.; Liu, M.; Black, D.; Tso, P. Apolipoprotein A5, a Unique Modulator of Fasting and Postprandial Triglycerides. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2022, 1867, 159185. [Google Scholar] [CrossRef]
- Nakajima, K.; Tanaka, A. Postprandial Remnant Lipoproteins as Targets for the Prevention of Atherosclerosis. Curr. Opin. Endocrinol. Diabetes Obes. 2018, 25, 108–117. [Google Scholar] [CrossRef]
- Chen, M.; Xu, L.; Van Horn, L.; Manson, J.E.; Tucker, K.L.; Du, X.; Feng, N.; Rong, S.; Zhong, V.W. Association of eating duration less than 8 h with all-cause, cardiovascular, and cancer mortality. Diabetes Metab. Syndr. 2025, 19, 103278. [Google Scholar] [CrossRef]
- Malick, W.A.; Do, R.; Rosenson, R.S. Severe Hypertriglyceridemia: Existing and Emerging Therapies. Pharmacol. Ther. 2023, 251, 108544. [Google Scholar] [CrossRef] [PubMed]
- Ginsberg, H.N.; Packard, C.J.; Chapman, M.J.; Borén, J.; Aguilar-Salinas, C.A.; Averna, M.; Ference, B.A.; Gaudet, D.; Hegele, R.A.; Kersten, S.; et al. Triglyceride-Rich Lipoproteins and Their Remnants: Metabolic Insights, Role in Atherosclerotic Cardiovascular Disease, and Emerging Therapeutic Strategies-a Consensus Statement from the European Atherosclerosis Society. Eur. Heart J. 2021, 42, 4791–4806. [Google Scholar] [CrossRef] [PubMed]
- Gallo, A.; Béliard, S.; D’Erasmo, L.; Bruckert, E. Familial Chylomicronemia Syndrome (FCS): Recent Data on Diagnosis and Treatment. Curr. Atheroscler. Rep. 2020, 22, 63. [Google Scholar] [CrossRef] [PubMed]
- Esan, O.; Wierzbicki, A.S. Volanesorsen in the Treatment of Familial Chylomicronemia Syndrome or Hypertriglyceridaemia: Design, Development and Place in Therapy. Drug Des. Dev. Ther. 2020, 14, 2623–2636. [Google Scholar] [CrossRef]
- Wang, K.; Wang, R.; Yang, J.; Liu, X.; Shen, H.; Sun, Y.; Zhou, Y.; Fang, Z.; Ge, H. Remnant Cholesterol and Atherosclerotic Cardiovascular Disease: Metabolism, Mechanism, Evidence, and Treatment. Front. Cardiovasc. Med. 2022, 9, 913869. [Google Scholar] [CrossRef]
- Tybjærg-Hansen, A.; Nordestgaard, B.G.; Christoffersen, M. Triglyceride-Rich Remnant Lipoproteins Are More Atherogenic than LDL per Particle: Is This Important? Eur. Heart J. 2023, 44, 4196–4198. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gugliucci, A. Time-Restricted Eating, ANGPTL4, and Reduction in Residual Cardiovascular Risk. J. Clin. Med. 2025, 14, 7026. https://doi.org/10.3390/jcm14197026
Gugliucci A. Time-Restricted Eating, ANGPTL4, and Reduction in Residual Cardiovascular Risk. Journal of Clinical Medicine. 2025; 14(19):7026. https://doi.org/10.3390/jcm14197026
Chicago/Turabian StyleGugliucci, Alejandro. 2025. "Time-Restricted Eating, ANGPTL4, and Reduction in Residual Cardiovascular Risk" Journal of Clinical Medicine 14, no. 19: 7026. https://doi.org/10.3390/jcm14197026
APA StyleGugliucci, A. (2025). Time-Restricted Eating, ANGPTL4, and Reduction in Residual Cardiovascular Risk. Journal of Clinical Medicine, 14(19), 7026. https://doi.org/10.3390/jcm14197026