Comparison Between Surgical and Percutaneous Paddles in Spinal Cord Stimulation for Chronic Neuropathic Pain
Abstract
1. Introduction
2. Materials and Methods
Major Complications | Minor Complications |
---|---|
Infection | Unwanted electric pulse |
Lead migration | Pocket problems |
Epidural hematoma | Impedance increase |
3. Results
3.1. Epidemiological Data
3.2. Comparison Between Surgical and Percutaneous Leads
3.3. Subgroup Analysis
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IASP | International Association for the Study of Pain |
SCS | Spinal cord stimulation |
FBS | Failed back syndrome |
CRPS | Complex regional pain syndrome |
References
- International Association for the Study of Pain (IASP). IASP Announces Revised Definition of Pain. 16 July 2020. Available online: https://www.iasp-pain.org/publications/iasp-news/iasp-announces-revised-definition-of-pain/ (accessed on 15 May 2025).
- Finnerup, N.B.; Kuner, R.; Jensen, T.S. Neuropathic Pain: From Mechanisms to Treatment. Physiol. Rev. 2021, 101, 259–301. [Google Scholar] [CrossRef] [PubMed]
- International Association for the Study of Pain (IASP). Neuropathic Pain. 7 July 2021. Available online: https://www.iasp-pain.org/advocacy/global-year/neuropathic-pain/ (accessed on 15 May 2025).
- Torrance, N.; Smith, B.H.; Bennett, M.I.; Lee, A.J. The Epidemiology of Chronic Pain of Predominantly Neuropathic Origin. Results From a General Population Survey. J. Pain 2006, 7, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Moisset, X. Neuropathic pain: Evidence based recommendations. Presse Med. 2024, 53, 104232. [Google Scholar] [CrossRef] [PubMed]
- Bouhassira, D. Neuropathic pain: Definition, assessment and epidemiology. Rev. Neurol. 2019, 175, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Spirollari, E.; Vazquez, S.; Ng, C.; Naftchi, A.F.; Graifman, G.; Das, A.; Greisman, J.D.; Dominguez, J.F.; Kinon, M.D.; Sukul, V.V. Comparison of Characteristics, Inpatient Outcomes, and Trends in Percutaneous Versus Open Placement of Spinal Cord Stimulators. Neuromodul. Technol. Neural Interface 2023, 26, 1059–1066. [Google Scholar] [CrossRef] [PubMed]
- Rock, A.K.; Truong, H.; Park, Y.L.; Pilitsis, J.G. Spinal Cord Stimulation. Neurosurg. Clin. N. Am. 2019, 30, 169–194. [Google Scholar] [CrossRef] [PubMed]
- Bendersky, D.; Yampolsky, C. Is spinal cord stimulation safe? A review of its complications. World Neurosurg. 2014, 82, 1359–1368. [Google Scholar] [CrossRef] [PubMed]
- Petraglia, F.W., III; Farber, S.H.; Gramer, R.; Verla, T.; Wang, F.; Thomas, S.; Parente, B.; Lad, S.P. The Incidence of Spinal Cord Injury in Implantation of Percutaneous and Paddle Electrodes for Spinal Cord Stimulation. Neuromodul. Technol. Neural Interface 2016, 19, 85–90. [Google Scholar] [CrossRef]
- Cameron, T. Safety and efficacy of spinal cord stimulation for the treatment of chronic pain: A 20-year literature review. J. Neurosurg. Spine 2004, 100 (Suppl. S3), 254–267. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Taylor, R.S.; Jacques, L.; Eldabe, S.; Meglio, M.; Molet, J.; Thomson, S.; O’Callaghan, J.; Eisenberg, E.; Milbouw, G.; et al. Spinal cord stimulation versus conventional medical management for neuropathic pain: A multicentre randomised controlled trial in patients with failed back surgery syndrome. PAIN 2007, 132, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Kinfe, T.M.; Quack, F.; Wille, C.; Schu, S.; Vesper, J. Paddle versus cylindrical leads for percutaneous implantation in spinal cord stimulation for failed back surgery syndrome: A single-center trial. J. Neurol. Surg. Part A Central Eur. Neurosurg. 2014, 75, 467–473. [Google Scholar] [CrossRef] [PubMed]
- The History of Spinal Cord Stimulation For Chronic Pain–The Old and the New-Genesis Research Services. 2023. Available online: https://genesisresearchservices.com/the-history-of-spinal-cord-stimulation-for-chronic-pain-the-old-and-the-new/ (accessed on 15 May 2025).
- Manchikanti, L.; Pampati, V.; Vangala, B.P.; Soin, A.; Sanapati, M.R.; Thota, S.; Hirsch, J.A. Spinal Cord Stimulation Trends of Utilization and Expenditures in Fee-For-Service (FFS) Medicare Population from 2009 to 2018. Pain Physician 2021, 24, 293–308. [Google Scholar] [PubMed]
- Beletsky, A.; Liu, C.; Vickery, K.; Winston, N.; Loomba, M.; Gabriel, R.A.; Chen, J. Spinal Cord Stimulator (SCS) Placement: Examining Outcomes Between the Open and Percutaneous Approach. Neuromodul. Technol. Neural Interface 2023, 26, 1067–1073. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, A.Z.; Chang, H.H.; DiSilvestro, K.; Veeramani, A.; McDonald, C.; Zhang, A.S.; Daniels, A. Spinal Cord Stimulation via Percutaneous and Open Implantation: Systematic Review and Meta-Analysis Examining Complication Rates. World Neurosurg. 2021, 154, 132–143.e1. [Google Scholar] [CrossRef] [PubMed]
- Monlezun, O.; Voirin, J.; Roulaud, M.; Ingrand, P.; Veyrieras, C.; Brandet, C.; Bataille, B.; Guetarni, F.; Prévost, A.; Rigoard, P.; et al. “MAST” prospective study: Value of minimal access spine technologies technique for multicolumn spinal cord stimulation surgical lead implantation in the context of a French multicentre randomized controlled trial (ESTIMET study). Neurochirurgie 2015, 61 (Suppl. 1), S125–S130. [Google Scholar] [CrossRef] [PubMed]
- Villavicencio, A.T.; Leveque, J.C.; Rubin, L.; Bulsara, K.; Gorecki, J.P. Laminectomy versus percutaneous electrode placement for spinal cord stimulation. Neurosurgery 2000, 46, 399–406; discussion in 405–406. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.; Pan, Y.; Wang, L.; Zhang, C.; Sun, B.; Li, D. Spinal Cord Stimulation with Surgical Lead Improves Pain and Gait in Parkinson’s Disease after a Dislocation of Percutaneous Lead: A Case Report. Ster. Funct. Neurosurg. 2020, 98, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Oh, B.H.; Kim, H.T.; Yim, K.H.; Park, Y.S. Percutaneously Inserted Unilateral Lead Migration Salvaged with a Paddle Electrode. Pain Pract. 2020, 20, 544–549. [Google Scholar] [CrossRef] [PubMed]
- Yakovlev, A.E.; Resch, B.E. Spinal cord stimulation with percutaneous leads after loss of coverage with implanted surgical lead. Neuromodul. Technol. Neural Interface 2010, 13, 117–120. [Google Scholar] [CrossRef]
- Rustøen, T.; Wahl, A.K.; Hanestad, B.R.; Lerdal, A.; Paul, S.; Miaskowski, C. Age and the experience of chronic pain: Differences in health and quality of life among younger, middle-aged, and older adults. Clin. J. Pain 2005, 21, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Gómez-González, M.A.; Cordero Tous, N.; De la Cruz Sabido, J.; Sánchez Corral, C.; Lechuga Carrasco, B.; López-Vicente, M.; Olivares Granados, G. Following Up Patients With Chronic Pain Using a Mobile App With a Support Center: Unicenter Prospective Study. JMIR Hum. Factors 2025, 12, e60160. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dworkin, R.H.; Turk, D.C.; Wyrwich, K.W.; Beaton, D.; Cleeland, C.S.; Farrar, J.T.; Haythornthwaite, J.A.; Jensen, M.P.; Kerns, R.D.; Ader, D.N.; et al. Interpreting the clinical importance of treatment outcomes in chronic pain clinical trials: IMMPACT recommendations. J. Pain 2008, 9, 105–121. [Google Scholar] [CrossRef] [PubMed]
- Cordero Tous, N.; Sánchez Corral, C.; Ortiz García, I.M.; Jover Vidal, A.; Gálvez Mateos, R.; Olivares Granados, G. High-frequency spinal cord stimulation as rescue therapy for chronic pain patients with failure of conventional spinal cord stimulation. Eur. J. Pain 2021, 25, 1603–1611. [Google Scholar] [CrossRef] [PubMed]
- Beletsky, A.; Liu, C.; Vickery, K.; Hurlock, N.; Winston, N.; Loomba, M.; Burton, B.N.; Chitneni, A.; Gabriel, R.A.; Chen, J. Factors Associated With Same Day Discharge Post-Spinal Cord Stimulator Placement. Pain Physician 2024, 27, E285–E291. [Google Scholar] [CrossRef] [PubMed]
- Gazelka, H.M.; Freeman, E.D.; Hooten, W.M.; Eldrige, J.S.; Hoelzer, B.C.; Mauck, W.D.; Moeschler, S.M.; Pingree, M.J.; Rho, R.H.; Lamer, T.J. Incidence of clinically significant percutaneous spinal cord stimulator lead migration. Neuromodul. Technol. Neural Interface 2015, 18, 123–125. [Google Scholar] [CrossRef]
- El Hadwe, S.; Wronowski, F.; Rehman, S.; Ansong Snr, Y.O.; Barone, D.G. Cylindrical vs Paddle Leads in Spinal Cord Stimulation for the Long-term Treatment of Chronic Pain: A Systematic Review and Meta-analysis. Neuromodul. Technol. Neural Interface 2025, 28, 204–233. [Google Scholar] [CrossRef] [PubMed]
Variable | Number | Percentage |
---|---|---|
Gender | ||
Male | 106 | 56.38% |
Female | 82 | 43.62% |
Age | ||
Minimum | 15 | |
Maximum | 76 | |
Less than 40 yo | 35 | 18.62% |
40 yo or more | 153 | 81.38% |
Cause of pain | ||
FBS | 120 | 63.83% |
CRPS | 56 | 29.79% |
Others | 12 | 6.38% |
Type of lead | ||
Surgical | 68 | 36.17% |
Percutaneous | 120 | 63.83% |
Lead location | ||
Cervical | 36 | 19.15% |
Dorsal | 152 | 80.85% |
Type of stimulation | ||
Tonic | 153 | 81.38% |
High frequency | 21 | 11.17% |
Change from tonic to high frequency | 14 | 7.45% |
Posterior surgeries | 57 | 30.32% |
Minimum | 1 | |
Maximum | 5 | |
Total | 188 |
Complications | Number | Percentage |
---|---|---|
Major complications | 36 | 100% |
Infections | 19 | 52.78% |
Minimum infections | 1 | |
Maximum infections | 6 | |
Lead migration | 15 | 41.67% |
Epidural hematoma | 2 | 5.56% |
Minor complications | 68 | 100.00% |
Unwanted electric pulse | 8 | 11.76% |
Pocket problems | 36 | 52.94% |
Impedance increase | 24 | 35.29% |
Variable | Number | Percentage |
---|---|---|
Work status | ||
Active | 18 | 11.11% |
Temporal leave | 47 | 29.00% |
Other | 97 | 59.88% |
Work reincorporation | ||
Yes | 10 | 6.17% |
No | 36 | 22.21% |
Does not proceed | 116 | 71.60% |
PGI-C score | ||
Effective | 140 | 86.42% |
Non-effective | 22 | 13.58% |
Pain relief percentage | ||
Effective | 91 | 56.17% |
Non-effective | 71 | 43.83% |
Would implant again | ||
Yes | 131 | 80.86% |
Total | 162 | 100.00% |
Surgical Lead (n = 68) (n, %) (x ± sd) | Percutaneous Lead (n = 120) (n, %) (x ± sd) | p Value | |
---|---|---|---|
Sex | 0.615 | ||
Male | 40 (58.82%) | 66 (55.00%) | |
Female | 28 (41.18%) | 54 (45.00%) | |
Age | 0.898 | ||
Less than 40 yo | 13 (19.12%) | 22 (18.33%) | |
40 yo or older | 55 (80.68%) | 98 (81.67%) | |
Age at implantation | 47.04 ± 9.17 | 47.03 ± 9.72 | 0.999 |
Lead location | 0.054 | ||
Cervical | 8 (11.76%) | 28 (23.33%) | |
Dorsal | 60 (88.24%) | 92 (76.67%) |
Complications | Surgical Lead (n = 68) (n, %) (x ± sd) | Percutaneous Lead (n = 120) (n, %) (x ± sd) | p Value |
---|---|---|---|
Minor complications | 0.322 | ||
Yes | 25 (36.8%) | 43 (35.8%) | |
No | 43 (63.2%) | 77 (64.2%) | |
Major complications | 0.278 | ||
Yes | 12 (17.65%) | 22 (18.33%) | |
No | 56 (82.35%) | 98 (81.67%) | |
Total complications | 0.61 ± 0.84 | 0.68 ± 0.81 | 0.499 |
Infection | 0.111 | ||
Yes | 10 (14.71%) | 9 (7.50%) | |
No | 58 (85.29%) | 111 (92.50%) | |
Number of infections | 2.6 ± 2.01 | 1.88 ± 1.69 | 0.300 |
Lead migration | 0.051 | ||
Yes | 2 (2.94%) | 13 (10.83%) | |
No | 66 (97.06%) | 107 (89.17%) | |
Pocket problems | 0.444 | ||
Yes | 10 (14.71%) | 23 (19.17%) | |
No | 58 (85.29%) | 97 (80.83%) | |
Impedance increase | 0.545 | ||
Yes | 10 (14.71%) | 14 (11.67%) | |
No | 58 (85.29%) | 106 (88.33%) |
Surgical Lead (n = 55) (n, %) (x ± sd) | Percutaneous Lead (n = 107) (n, %) (x ± sd) | p Value | |
---|---|---|---|
PGI-C score | 0.474 | ||
Effective | 49 (89.09%) | 91 (85.05%) | |
Non-effective | 6 (10.91%) | 16 (14.95%) | |
PGI-C score | 2.49 ± 1.19 | 2.46 ± 1.11 | 0.888 |
Pain relief percentage | 0.976 | ||
Effective | 31 (56.36%) | 60 (56.07%) | |
Non-effective | 24 (43.64%) | 47 (43.93%) | |
Pain relief | 56.72 ± 27.75 | 53.92 ± 28.17 | 0.304 |
Work reincorporation | 0.416 | ||
Yes | 1 (1.82%) | 9 (9.41%) | |
No | 10 (18.18%) | 26 (24.30%) | |
Does not proceed | 44 (80.00%) | 72 (67.29%) | |
Would reimplant | 0.297 | ||
Yes | 42 (76.36%) | 89 (83.18%) | |
No | 13 (23.64%) | 18 (16.82%) |
Variable | Surgical Lead (p50 ± iqr) | Percutaneous Lead (p50 ± iqr) | p Value |
---|---|---|---|
PGI-C score | 2 ± 1 | 3 ± 1 | 0.082 |
Pain relief percentage | 70 ± 30 | 45 ± 30 | 0.035 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-González, M.A.; Cordero-Tous, N.; Sánchez-Corral, C.; Lechuga-Carrasco, B.; Sánchez-García, M.A.; Gálvez-Mateos, R.; Olivares-Granados, G. Comparison Between Surgical and Percutaneous Paddles in Spinal Cord Stimulation for Chronic Neuropathic Pain. J. Clin. Med. 2025, 14, 7013. https://doi.org/10.3390/jcm14197013
Gómez-González MA, Cordero-Tous N, Sánchez-Corral C, Lechuga-Carrasco B, Sánchez-García MA, Gálvez-Mateos R, Olivares-Granados G. Comparison Between Surgical and Percutaneous Paddles in Spinal Cord Stimulation for Chronic Neuropathic Pain. Journal of Clinical Medicine. 2025; 14(19):7013. https://doi.org/10.3390/jcm14197013
Chicago/Turabian StyleGómez-González, Marta Antonia, Nicolás Cordero-Tous, Carlos Sánchez-Corral, Beatriz Lechuga-Carrasco, Manuel Alejandro Sánchez-García, Rafael Gálvez-Mateos, and Gonzalo Olivares-Granados. 2025. "Comparison Between Surgical and Percutaneous Paddles in Spinal Cord Stimulation for Chronic Neuropathic Pain" Journal of Clinical Medicine 14, no. 19: 7013. https://doi.org/10.3390/jcm14197013
APA StyleGómez-González, M. A., Cordero-Tous, N., Sánchez-Corral, C., Lechuga-Carrasco, B., Sánchez-García, M. A., Gálvez-Mateos, R., & Olivares-Granados, G. (2025). Comparison Between Surgical and Percutaneous Paddles in Spinal Cord Stimulation for Chronic Neuropathic Pain. Journal of Clinical Medicine, 14(19), 7013. https://doi.org/10.3390/jcm14197013