Dual Endothelin Receptor Inhibition with Bosentan Does Not Prevent the Early Formation of Post-Traumatic Joint Contracture in a Rat Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Rat Model and Operative Technique
2.3. Joint Angle Measurements
2.4. Tissue Preparation for Histological Analysis
2.5. Tissue Preparation for Quantitative PCR
2.6. Statistical Analysis
2.7. Graphic Illustrations
3. Results
3.1. Perioperative Weight Development and Complications
3.2. Biomechanical Evaluation
3.2.1. Assessment of Physiological Extension Deficit
3.2.2. Effect of Bosentan on Biomechanics

3.3. Gene Expression Analysis of the Posterior Joint Capsule
3.4. Pathohistological Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| Abbreviation | Meaning |
| PTJC | post-traumatic joint contracture |
| CA | contracture angle |
| Col1a1 | Collagen, Type I, Alpha 1 |
| Ctgf | connective tissue growth factor |
| ET-1 | endothelin-1 |
| ETAR | endothelin recptor type a |
| ETBR | endothelin recptor type b |
| fgE | full geometric extension |
| Gapdh | glyceraldehyde-3-phosphate dehydrogenase |
| HPF | high-power field |
| Il-6 | interleukin 6 |
| JA | joint angle |
| NFκ-B | nuclear factor ‘kappa-light-chain-enhancer’ of activated B-cells |
| pEA | physiological extension angle |
| pED | physiological extension deficit |
| rEA | restricted extension deficit |
| Tgf-β1 | transforming growth factor beta1 |
| α-Sma | alpha-smooth muscle actin |
References
- Distler, J.H.W.; Gyorfi, A.H.; Ramanujam, M.; Whitfield, M.L.; Konigshoff, M.; Lafyatis, R. Shared and distinct mechanisms of fibrosis. Nat. Rev. Rheumatol. 2019, 15, 705–730. [Google Scholar] [CrossRef] [PubMed]
- Rockey, D.C.; Bell, P.D.; Hill, J.A. Fibrosis--A Common Pathway to Organ Injury and Failure. N. Engl. J. Med. 2015, 373, 96. [Google Scholar] [CrossRef]
- Usher, K.M.; Zhu, S.; Mavropalias, G.; Carrino, J.A.; Zhao, J.; Xu, J. Pathological mechanisms and therapeutic outlooks for arthrofibrosis. Bone Res. 2019, 7, 9. [Google Scholar] [CrossRef] [PubMed]
- Traut, P. [Clinical diagnostics, differential diagnostics, pathogenesis and stage model of arthrofibrosis]. Unfallchirurgie 2022, 125, 839–848. [Google Scholar] [CrossRef]
- Lee, D.R.; Therrien, E.; Song, B.M.; Camp, C.L.; Krych, A.J.; Stuart, M.J.; Abdel, M.P.; Levy, B.A. Arthrofibrosis Nightmares: Prevention and Management Strategies. Sports Med. Arthrosc. Rev. 2022, 30, 29–41. [Google Scholar] [CrossRef]
- Chen, A.F.; Lee, Y.S.; Seidl, A.J.; Abboud, J.A. Arthrofibrosis and large joint scarring. Connect. Tissue Res. 2019, 60, 21–28. [Google Scholar] [CrossRef]
- Ibrahim, I.O.; Nazarian, A.; Rodriguez, E.K. Clinical Management of Arthrofibrosis: State of the Art and Therapeutic Outlook. JBJS Rev. 2020, 8, e1900223. [Google Scholar] [CrossRef]
- Morrey, M.E.; Abdel, M.P.; Riester, S.M.; Dudakovic, A.; van Wijnen, A.J.; Morrey, B.F.; Sanchez-Sotelo, J. Molecular landscape of arthrofibrosis: Microarray and bioinformatic analysis of the temporal expression of 380 genes during contracture genesis. Gene 2017, 610, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Lambers, C.; Roth, M.; Zhong, J.; Campregher, C.; Binder, P.; Burian, B.; Petkov, V.; Block, L.H. The interaction of endothelin-1 and TGF-beta1 mediates vascular cell remodeling. PLoS One 2013, 8, e73399. [Google Scholar] [CrossRef]
- Widyantoro, B.; Emoto, N.; Nakayama, K.; Anggrahini, D.W.; Adiarto, S.; Iwasa, N.; Yagi, K.; Miyagawa, K.; Rikitake, Y.; Suzuki, T.; et al. Endothelial cell-derived endothelin-1 promotes cardiac fibrosis in diabetic hearts through stimulation of endothelial-to-mesenchymal transition. Circulation 2010, 121, 2407–2418. [Google Scholar] [CrossRef]
- Sin, A.; Tang, W.; Wen, C.Y.; Chung, S.K.; Chiu, K.Y. The emerging role of endothelin-1 in the pathogenesis of subchondral bone disturbance and osteoarthritis. Osteoarthr. Cartil. 2015, 23, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Duangrat, R.; Parichatikanond, W.; Likitnukul, S.; Mangmool, S. Endothelin-1 Induces Cell Proliferation and Myofibroblast Differentiation through the ET(A)R/G(alphaq)/ERK Signaling Pathway in Human Cardiac Fibroblasts. Int. J. Mol. Sci. 2023, 24, 4475. [Google Scholar] [CrossRef]
- Rokni, M.; Sadeghi Shaker, M.; Kavosi, H.; Shokoofi, S.; Mahmoudi, M.; Farhadi, E. The role of endothelin and RAS/ERK signaling in immunopathogenesis-related fibrosis in patients with systemic sclerosis: An updated review with therapeutic implications. Arthritis Res. Ther. 2022, 24, 108. [Google Scholar] [CrossRef] [PubMed]
- Enevoldsen, F.C.; Sahana, J.; Wehland, M.; Grimm, D.; Infanger, M.; Kruger, M. Endothelin Receptor Antagonists: Status Quo and Future Perspectives for Targeted Therapy. J. Clin. Med. 2020, 9, 824. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.K.; Kaur, J.; Kaur, T.; Singh, B.; Yadav, H.N.; Pathak, D.; Singh, A.P. Ameliorative role of bosentan, an endothelin receptor antagonist, against sodium arsenite-induced renal dysfunction in rats. Environ. Sci. Pollut. Res. Int. 2021, 28, 7180–7190. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, L.; Yang, J.; Chen, X.; Guo, X.; Xu, K.; Wang, N.; Zhao, W.; Xia, C.; Lian, H.; et al. Endothelial cell-derived MMP19 promotes pulmonary fibrosis by inducing E(nd)MT and monocyte infiltration. Cell Commun. Signal 2023, 21, 56. [Google Scholar] [CrossRef]
- Li, J.S.; Schiffrin, E.L. Effect of chronic treatment of adult spontaneously hypertensive rats with an endothelin receptor antagonist. Hypertension 1995, 25, 495–500. [Google Scholar] [CrossRef]
- Park, S.H.; Saleh, D.; Giaid, A.; Michel, R.P. Increased endothelin-1 in bleomycin-induced pulmonary fibrosis and the effect of an endothelin receptor antagonist. Am. J. Respir. Crit. Care Med. 1997, 156, 600–608. [Google Scholar] [CrossRef]
- Mulder, P.; Richard, V.; Derumeaux, G.; Hogie, M.; Henry, J.P.; Lallemand, F.; Compagnon, P.; Mace, B.; Comoy, E.; Letac, B.; et al. Role of endogenous endothelin in chronic heart failure: Effect of long-term treatment with an endothelin antagonist on survival, hemodynamics, and cardiac remodeling. Circulation 1997, 96, 1976–1982. [Google Scholar] [CrossRef]
- Wegner, E.; Warnke, D.; Buschmann, V.; Hild, B.; Mais, B.; Ritz, U.; Harper, A.; Gercek, E.; Drees, P.; Baranowski, A. Nintedanib reduces severity of post-traumatic joint contracture by modulating fibrosis and inflammation. J. Mol. Med. 2025. Online ahead of print. [Google Scholar] [CrossRef]
- Baranowski, A.; Schlemmer, L.; Forster, K.; Mattyasovszky, S.G.; Ritz, U.; Wagner, D.; Rommens, P.M.; Hofmann, A. A novel rat model of stable posttraumatic joint stiffness of the knee. J. Orthop. Surg. Res. 2018, 13, 185. [Google Scholar] [CrossRef]
- Trudel, G.; Uhthoff, H.K. Contractures secondary to immobility: Is the restriction articular or muscular? An experimental longitudinal study in the rat knee. Arch. Phys. Med. Rehabil. 2000, 81, 6–13. [Google Scholar] [CrossRef]
- Efird, W.; Kellam, P.; Yeazell, S.; Weinhold, P.; Dahners, L.E. An evaluation of prophylactic treatments to prevent post traumatic joint stiffness. J. Orthop. Res. 2014, 32, 1520–1524. [Google Scholar] [CrossRef]
- Hildebrand, K.A.; Holmberg, M.; Shrive, N. A new method to measure post-traumatic joint contractures in the rabbit knee. J. Biomech. Eng. 2003, 125, 887–892. [Google Scholar] [CrossRef] [PubMed]
- Nesterenko, S.; Morrey, M.E.; Abdel, M.P.; An, K.N.; Steinmann, S.P.; Morrey, B.F.; Sanchez-Sotelo, J. New rabbit knee model of posttraumatic joint contracture: Indirect capsular damage induces a severe contracture. J. Orthop. Res. 2009, 27, 1028–1032. [Google Scholar] [CrossRef]
- Lake, S.P.; Castile, R.M.; Borinsky, S.; Dunham, C.L.; Havlioglu, N.; Galatz, L.M. Development and use of an animal model to study post-traumatic stiffness and contracture of the elbow. J. Orthop. Res. 2016, 34, 354–364. [Google Scholar] [CrossRef]
- Baranowski, A.; Schlemmer, L.; Forster, K.; Slotina, E.; Mickan, T.; Truffel, S.; Klein, A.; Mattyasovszky, S.G.; Hofmann, A.; Ritz, U.; et al. Effects of losartan and atorvastatin on the development of early posttraumatic joint stiffness in a rat model. Drug Des. Devel Ther. 2019, 13, 2603–2618. [Google Scholar] [CrossRef] [PubMed]
- Morikawa, S.; Baluk, P.; Kaidoh, T.; Haskell, A.; Jain, R.K.; McDonald, D.M. Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am. J. Pathol. 2002, 160, 985–1000. [Google Scholar] [CrossRef] [PubMed]
- Mayyas, F.; Niebauer, M.; Zurick, A.; Barnard, J.; Gillinov, A.M.; Chung, M.K.; Van Wagoner, D.R. Association of left atrial endothelin-1 with atrial rhythm, size, and fibrosis in patients with structural heart disease. Circ. Arrhythm. Electrophysiol. 2010, 3, 369–379. [Google Scholar] [CrossRef]
- Iwabuchi, H.; Kasama, T.; Hanaoka, R.; Miwa, Y.; Hatano, Y.; Kobayashi, K.; Mori, Y.; Negishi, M.; Ide, H.; Adachi, M. Downregulation of intercellular adhesion molecule-1 expression on human synovial fibroblasts by endothelin-1. J. Rheumatol. 1999, 26, 522–531. [Google Scholar]
- Wegner, E.; Slotina, E.; Mickan, T.; Truffel, S.; Arand, C.; Wagner, D.; Ritz, U.; Rommens, P.M.; Gercek, E.; Drees, P.; et al. Pleiotropic Long-Term Effects of Atorvastatin on Posttraumatic Joint Contracture in a Rat Model. Pharmaceutics 2022, 14, 523. [Google Scholar] [CrossRef] [PubMed]
- Wegner, E.; Mickan, T.; Truffel, S.; Slotina, E.; Muller, L.; Wunderlich, F.; Harper, A.; Ritz, U.; Rommens, P.M.; Gercek, E.; et al. The effect of losartan on the development of post-traumatic joint stiffness in a rat model. Biomed. Pharmacother. 2023, 166, 115291. [Google Scholar] [CrossRef] [PubMed]
- Clozel, M.; Salloukh, H. Role of endothelin in fibrosis and anti-fibrotic potential of bosentan. Ann. Med. 2005, 37, 2–12. [Google Scholar] [CrossRef]
- Rodriguez-Pascual, F.; Busnadiego, O.; Gonzalez-Santamaria, J. The profibrotic role of endothelin-1: Is the door still open for the treatment of fibrotic diseases? Life Sci. 2014, 118, 156–164. [Google Scholar] [CrossRef]
- Choudhary, G.; Troncales, F.; Martin, D.; Harrington, E.O.; Klinger, J.R. Bosentan attenuates right ventricular hypertrophy and fibrosis in normobaric hypoxia model of pulmonary hypertension. J. Heart Lung Transplant. 2011, 30, 827–833. [Google Scholar] [CrossRef]
- Visnagri, A.; Ghosh, P.; Bodhankar, S. Endothelin receptor blocker bosentan inhibits hypertensive cardiac fibrosis in pressure overload-induced cardiac hypertrophy in rats. Cardiovasc. Endocrinol. 2013, 2, 85–97. [Google Scholar] [CrossRef]
- Zuo, W.L.; Zhao, J.M.; Huang, J.X.; Zhou, W.; Lei, Z.H.; Huang, Y.M.; Huang, Y.F.; Li, H.G. Effect of bosentan is correlated with MMP-9/TIMP-1 ratio in bleomycin-induced pulmonary fibrosis. Biomed. Rep. 2017, 6, 201–205. [Google Scholar] [CrossRef]
- Owen, T.; Carpino, G.; Chen, L.; Kundu, D.; Wills, P.; Ekser, B.; Onori, P.; Gaudio, E.; Alpini, G.; Francis, H.; et al. Endothelin Receptor-A Inhibition Decreases Ductular Reaction, Liver Fibrosis, and Angiogenesis in a Model of Cholangitis. Cell Mol. Gastroenterol. Hepatol. 2023, 16, 513–540. [Google Scholar] [CrossRef]
- Abdel, M.P.; Morrey, M.E.; Barlow, J.D.; Kreofsky, C.R.; An, K.N.; Steinmann, S.P.; Morrey, B.F.; Sanchez-Sotelo, J. Myofibroblast cells are preferentially expressed early in a rabbit model of joint contracture. J. Orthop. Res. 2012, 30, 713–719. [Google Scholar] [CrossRef]
- Kowalczyk, A.; Kleniewska, P.; Kolodziejczyk, M.; Skibska, B.; Goraca, A. The role of endothelin-1 and endothelin receptor antagonists in inflammatory response and sepsis. Arch. Immunol. Ther. Exp. 2015, 63, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Liang, Y.; Hou, J.; Zhang, W.; Jiang, S. Target NF-kappaB p65 for preventing posttraumatic joint contracture in rats. J. Orthop. Res. 2024, 42, 2172–2180. [Google Scholar] [CrossRef]
- Shinde, A.V.; Humeres, C.; Frangogiannis, N.G. The role of alpha-smooth muscle actin in fibroblast-mediated matrix contraction and remodeling. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 298–309. [Google Scholar] [CrossRef]
- Wang, J.; Chen, H.; Seth, A.; McCulloch, C.A. Mechanical force regulation of myofibroblast differentiation in cardiac fibroblasts. Am. J. Physiol. Heart Circ. Physiol. 2003, 285, H1871–H1881. [Google Scholar] [CrossRef]
- Schroll, S.; Arzt, M.; Sebah, D.; Nuchterlein, M.; Blumberg, F.; Pfeifer, M. Improvement of bleomycin-induced pulmonary hypertension and pulmonary fibrosis by the endothelin receptor antagonist Bosentan. Respir. Physiol. Neurobiol. 2010, 170, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.J.; Chen, Y.F.; Meng, Q.C.; Durand, J.; Dicarlo, V.S.; Oparil, S. Endothelin-receptor antagonist bosentan prevents and reverses hypoxic pulmonary hypertension in rats. J. Appl. Physiol. 1995, 79, 2122–2131. [Google Scholar] [CrossRef]
- Stasinopoulou, M.; Kostomitsopoulos, N.; Kadoglou, N.P.E. The Anti-Atherosclerotic Effects of Endothelin Receptor Antagonist, Bosentan, in Combination with Atorvastatin-An Experimental Study. Int. J. Mol. Sci. 2024, 25, 6614. [Google Scholar] [CrossRef]
- Iglarz, M.; Bossu, A.; Wanner, D.; Bortolamiol, C.; Rey, M.; Hess, P.; Clozel, M. Comparison of pharmacological activity of macitentan and bosentan in preclinical models of systemic and pulmonary hypertension. Life Sci. 2014, 118, 333–339. [Google Scholar] [CrossRef]
- Chaumais, M.C.; Guignabert, C.; Savale, L.; Jais, X.; Boucly, A.; Montani, D.; Simonneau, G.; Humbert, M.; Sitbon, O. Clinical pharmacology of endothelin receptor antagonists used in the treatment of pulmonary arterial hypertension. Am. J. Cardiovasc. Drugs 2015, 15, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Agogo, G.O.; Guo, J.; Yan, M. Substance P and fibrotic diseases. Neuropeptides 2019, 76, 101941. [Google Scholar] [CrossRef]
- Koeck, F.X.; Schmitt, M.; Baier, C.; Stangl, H.; Beckmann, J.; Grifka, J.; Straub, R.H. Predominance of synovial sensory nerve fibers in arthrofibrosis following total knee arthroplasty compared to osteoarthritis of the knee. J. Orthop. Surg. Res. 2016, 11, 25. [Google Scholar] [CrossRef]
- Morrey, M.E.; Sanchez-Sotelo, J.; Lewallen, E.A.; An, K.N.; Grill, D.E.; Steinmann, S.P.; Yao, J.J.; Salib, C.G.; Trousdale, W.H.; Reina, N.; et al. Intra-articular injection of a substance P inhibitor affects gene expression in a joint contracture model. J. Cell Biochem. 2018, 119, 1326–1336. [Google Scholar] [CrossRef]
- Liu, Y.; Wen, X.M.; Lui, E.L.; Friedman, S.L.; Cui, W.; Ho, N.P.; Li, L.; Ye, T.; Fan, S.T.; Zhang, H. Therapeutic targeting of the PDGF and TGF-beta-signaling pathways in hepatic stellate cells by PTK787/ZK22258. Lab. Invest. 2009, 89, 1152–1160. [Google Scholar] [CrossRef]
- Nanthakumar, C.B.; Hatley, R.J.; Lemma, S.; Gauldie, J.; Marshall, R.P.; Macdonald, S.J. Dissecting fibrosis: Therapeutic insights from the small-molecule toolbox. Nat. Rev. Drug Discov. 2015, 14, 693–720. [Google Scholar] [CrossRef]
- Lehar, J.; Krueger, A.S.; Avery, W.; Heilbut, A.M.; Johansen, L.M.; Price, E.R.; Rickles, R.J.; Short, G.F., 3rd; Staunton, J.E.; Jin, X.; et al. Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat. Biotechnol. 2009, 27, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Dingemanse, J.; van Giersbergen, P.L. Clinical pharmacology of bosentan, a dual endothelin receptor antagonist. Clin. Pharmacokinet. 2004, 43, 1089–1115. [Google Scholar] [CrossRef] [PubMed]
- Sakr, R.; Abdelaziz, A.; Mazyed, E.; El Maghraby, G. Preparation of orodispersible tablets of bosentan using xylitol and menthol as dissolution enhancers. Sci. Rep. 2024, 14, 10680. [Google Scholar] [CrossRef] [PubMed]
- Rossi, G.P.; Sacchetto, A.; Rizzoni, D.; Bova, S.; Porteri, E.; Mazzocchi, G.; Belloni, A.S.; Bahcelioglu, M.; Nussdorfer, G.G.; Pessina, A.C. Blockade of angiotensin II type 1 receptor and not of endothelin receptor prevents hypertension and cardiovascular disease in transgenic (mREN2)27 rats via adrenocortical steroid-independent mechanisms. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 949–956. [Google Scholar] [CrossRef]
- Cheng, J.; Abdi, S. Complications of Joint, Tendon, and Muscle Injections. Tech. Reg. Anesth. Pain. Manag. 2007, 11, 141–147. [Google Scholar] [CrossRef]





| Gene | Primer | Sequence |
|---|---|---|
| Gapdh | Forward | AACGACCCCTTCATTGACCT |
| Reverse | CCCCATTTGATGTTAGCGGG | |
| α-Sma | Forward | CATCATGCGTCTGGACTTGG |
| Reverse | CCAGGGAAGAAGAGGAAGCA | |
| Il-6 | Forward | CCACCCACAACAGACCAGTA |
| Reverse | ACTCCAGAAGACCAGAGCAG | |
| Tgf-β1 | Forward | CCCTACATTTGGAGCCTGGA |
| Reverse | CGCACGATCATGTTGGACAA | |
| Nfκ-b | Forward | AGAGGATGTGGGGTTTCAGG |
| Reverse | GCTGAGCATGAAGGTGGATG | |
| Ctgf | Forward | TCCCAAAATCTCCAAGCCTA |
| Reverse | GTAATGGCAGGCACAGGTCT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wegner, E.; Warnke, D.; Buschmann, V.; Hild, B.; Pirkl, A.; Ritz, U.; Harper, A.; Gercek, E.; Drees, P.; Baranowski, A. Dual Endothelin Receptor Inhibition with Bosentan Does Not Prevent the Early Formation of Post-Traumatic Joint Contracture in a Rat Model. J. Clin. Med. 2025, 14, 6975. https://doi.org/10.3390/jcm14196975
Wegner E, Warnke D, Buschmann V, Hild B, Pirkl A, Ritz U, Harper A, Gercek E, Drees P, Baranowski A. Dual Endothelin Receptor Inhibition with Bosentan Does Not Prevent the Early Formation of Post-Traumatic Joint Contracture in a Rat Model. Journal of Clinical Medicine. 2025; 14(19):6975. https://doi.org/10.3390/jcm14196975
Chicago/Turabian StyleWegner, Erik, Dennis Warnke, Victoria Buschmann, Benedikt Hild, Alexander Pirkl, Ulrike Ritz, Austin Harper, Erol Gercek, Philipp Drees, and Andreas Baranowski. 2025. "Dual Endothelin Receptor Inhibition with Bosentan Does Not Prevent the Early Formation of Post-Traumatic Joint Contracture in a Rat Model" Journal of Clinical Medicine 14, no. 19: 6975. https://doi.org/10.3390/jcm14196975
APA StyleWegner, E., Warnke, D., Buschmann, V., Hild, B., Pirkl, A., Ritz, U., Harper, A., Gercek, E., Drees, P., & Baranowski, A. (2025). Dual Endothelin Receptor Inhibition with Bosentan Does Not Prevent the Early Formation of Post-Traumatic Joint Contracture in a Rat Model. Journal of Clinical Medicine, 14(19), 6975. https://doi.org/10.3390/jcm14196975

