Biologic Augmentation in Anterior Cruciate Ligament Reconstruction and Beyond: A Review of PRP and BMAC
Abstract
1. Introduction
Introduction and Background
2. Methods
3. Discussion
3.1. Biologic Mechanisms of PRP and BMAC
3.2. Clinical Applications & Delivery Techniques
3.3. Clinical Evidence and Comparative Outcomes
3.4. Safety, Cost, and Regulatory Issues
3.5. Practical Implications and Rehabilitation Integration
4. Conclusions
Future Directions and Research Gaps
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACL | Anterior Cruciate Ligament |
PRP | Platelet-Rich Plasma |
PRF | Platelet-Rich Fibrin |
BMAC | Bone Marrow Aspirate Concentrate |
MSC | Mesenchymal Stem Cell |
EVs | Extracellular Vesicles |
ADSCs | Adipose-Derived Stem Cells |
ADRCs | Adipose-Derived Regenerative Cells |
MRI | Magnetic Resonance Imaging |
US | Ultrasound |
UTE-T2* | Ultrashort Echo Time T2-star (advanced MRI mapping sequence) |
T2* | T2-star relaxation time (MRI parameter sensitive to tissue microstructure and field inhomogeneity) |
CRISPR-Cas9 | Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9 (gene editing tool) |
RCT | Randomized Controlled Trial |
IKDC | International Knee Documentation Committee score |
KOOS | Knee Injury and Osteoarthritis Outcome Score |
Lysholm | Lysholm Knee Scoring Scale |
PROs | Patient Reported Outcomes |
DBM | Demineralized Bone Matrix |
LP-PRP | Leukocyte-Poor Platelet Rich Plasma |
LR-PRP | Leukocyte-Rich Platelet Rich Plasma |
BLA | Biologics License Application |
FDA | U.S. Food and Drug Administration |
HCT/P | Human Cells, Tissues, and Cellular and Tissue-Based Products |
VEGF | Vascular Endothelial Growth Factor |
PDGF | Platelet-Derived Growth Factor |
TGF-β | Transforming Growth Factor Beta |
IL-1β | Interleukin-1 Beta |
TNF-α | Tumor Necrosis Factor Alpha |
MMPs | Matrix Metalloproteinases |
TIMP-1 | Tissue Inhibitor of Metalloproteinase-1 |
References
- Silvers-Granelli, H. Why Female Athletes Injure Their ACL’s More Frequently? What can we do to mitigate their risk? Int. J. Sports Phys. Ther. 2021, 16, 971–977. [Google Scholar] [CrossRef]
- Looney, A.M.; Leider, J.D.; Horn, A.R.; Bodendorfer, B.M. Bioaugmentation in the surgical treatment of anterior cruciate ligament injuries: A review of current concepts and emerging techniques. SAGE Open Med. 2020, 8, 2050312120921057. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.J.; Zeng, N.; Yan, Z.P.; Li, J.T.; Ni, G.X. Post-traumatic osteoarthritis following ACL injury. Arthritis Res. Ther. 2020, 22, 57. [Google Scholar] [CrossRef] [PubMed]
- Bosco, F.; Rovere, G.; Giustra, F.; Masoni, V.; Cassaro, S.; Capella, M.; Risitano, S.; Sabatini, L.; Lucenti, L.; Camarda, L. Advancements in Anterior Cruciate Ligament Repair—Current State of the Art. Surgeries 2024, 5, 234–247. [Google Scholar] [CrossRef]
- Yao, S.; Yung, P.S.H.; Lui, P.P.Y. Tackling the Challenges of Graft Healing After Anterior Cruciate Ligament Reconstruction-Thinking from the Endpoint. Front. Bioeng. Biotechnol. 2021, 9, 756930. [Google Scholar] [CrossRef]
- Moretti, L.; Bizzoca, D.; Cassano, G.D.; Caringella, N.; Delmedico, M.; Moretti, B. Graft Intra-Articular Remodeling and Bone Incorporation in ACL Reconstruction: The State of the Art and Clinical Implications. J. Clin. Med. 2022, 11, 6704. [Google Scholar] [CrossRef]
- Boyd, E.; Endres, N.K.; Geeslin, A.G. Postoperative healing and complications based on anterior cruciate ligament reconstruction graft type. Ann. Jt. 2024, 9, 30. [Google Scholar] [CrossRef]
- Goulian, A.J.; Goldstein, B.; Saad, M.A. Advancements in Regenerative Therapies for Orthopedics: A Comprehensive Review of Platelet-Rich Plasma, Mesenchymal Stem Cells, Peptide Therapies, and Biomimetic Applications. J. Clin. Med. 2025, 14, 2061. [Google Scholar] [CrossRef]
- Anz, A.W.; Branch, E.A.; Jordan, S.E.; Ostrander, R.V.; Kindle, B.J.; Presley, J.C.; Hackel, J.G.; Maggi, E.; Plummer, H.A. Preoperative Platelet-Rich Plasma Injections Decrease Inflammatory and Chondrodegenerative Biomarkers in Patients with Acute Anterior Cruciate Ligament Tears: A Pilot Randomized Controlled Trial. Orthop. J. Sports Med. 2025, 13, 23259671241312754. [Google Scholar] [CrossRef]
- Park, J.Y.; Ng Hing Cheung, J.A.; Todorov, D.; Park, S.J.; Lim, H.; Shin, E.; Yoon, A.; Ha, J. Biological augmentation of anterior cruciate ligament reconstruction with bone marrow aspirate concentrate: A systematic review and meta-analysis of randomised controlled trials. Int. Orthop. 2025, 49, 35–43. [Google Scholar] [CrossRef]
- Andriolo, L.; Reale, D.; Di Martino, A.; De Fillippis, R.; Sessa, A.; Zaffagnini, S.; Filarddo, G. Long-term Results of Arthroscopic Matrix-Assisted Autologous Chondrocyte Transplantation: A Prospective Follow-up at 15 Years. Am. J. Sports Med. 2020, 48, 2994–3001. [Google Scholar] [CrossRef]
- Rodriguez-Merchan, E.C. Anterior Cruciate Ligament Reconstruction: Is Biological Augmentation Beneficial? Int. J. Mol. Sci. 2021, 22, 12566. [Google Scholar] [CrossRef]
- Dulic, O.; Abazovic, D.; Matijevic, S.; Rasovic, P.; Obradovic, M.; Bjelobrk, M.; Tosic, M.; Lalic, I.; Baljak, B.; Milinkov, M. Quality of life changes in patients suffering from knee osteoarthritis treated with bone marrow aspirate concentrate, platelet-rich plasma and hyaluronic acid injections. Regen. Med. 2025, 20, 87–96. [Google Scholar] [CrossRef]
- El Zouhbi, A.; Yammine, J.; Hemdanieh, M.; Korbani, E.T.; Nassereddine, M. Utility of Platelet-Rich Plasma Therapy in the Management of Meniscus Injuries: A narrative review. Orthop. Rev. 2024, 16, 94240. [Google Scholar] [CrossRef]
- Chalidis, B.; Givissis, P.; Papadopoulos, P.; Pitsilos, C. Molecular and biologic effects of platelet-rich plasma (PRP) in ligament and tendon healing and regeneration: A systematic review. Int. J. Mol. Sci. 2023, 24, 2744. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.S.; Cenci, G.; Falcinelli, S.; Marzano, F.; Carriero, B.; Filippi, N.; Pace, V. Platelet rich plasma and anterior cruciate ligament repair: A new frontier, or a short term adjunct. World J. Orthop. 2025, 16, 100693. [Google Scholar] [CrossRef] [PubMed]
- Beyzadeoglu, T.; Pehlivanoglu, T.; Yildirim, K.; Buldu, H.; Tandogan, R.; Tuzun, U. Does the Application of Platelet-Rich Fibrin in Anterior Cruciate Ligament Reconstruction Enhance Graft Healing and Maturation? A Comparative MRI Study of 44 Cases. Orthop. J. Sports Med. 2020, 8, 2325967120902013. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Han, Y.-H.; Pan, J.-K.; Yang, W.-Y.; Zeng, L.-F.; Liang, G.-H.; Liu, J. The clinical efficacy of leukocyte-poor platelet-rich plasma in arthroscopic rotator cuff repair: A meta-analysis of randomized controlled trials. J. Shoulder Elb. Surg. 2021, 30, 918–928. [Google Scholar] [CrossRef]
- Weng, P.W.; Chen, C.H.; Lin, Y.C.; Chen, K.-H.; Yeh, Y.-Y.; Lai, J.-M.; Chiang, C.-J.; Wong, C.-C. Platelet-Rich Fibrin-Augmented Gap-Bridging Strategy in Rabbit Anterior Cruciate Ligament Repair. Am. J. Sports Med. 2023, 51, 642–655. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Q.; Cui, L.; Wu, L.; Gao, S. Kartogenin Combined Platelet-Rich Plasma (PRP) Promoted Tendon-Bone Healing for Anterior Cruciate Ligament (ACL) Reconstruction by Suppressing Inflammatory Response Via targeting AKT/PI3K/NF-kappaB. Appl. Biochem. Biotechnol. 2023, 195, 1284–1296. [Google Scholar] [CrossRef]
- Sample, S.J.; Racette, M.A.; Hans, E.C.; Volstad, N.J.; Schaefer, S.L.; Bleedorn, J.A.; Little, J.P.; Waller, K.R., III; Hao, Z.; Block, W.F.; et al. Use of a platelet-rich plasma-collagen scaffold as a bioenhanced repair treatment for management of partial cruciate ligament rupture in dogs. PLoS ONE 2018, 13, e0197204. [Google Scholar] [CrossRef]
- Ye, Z.; Chen, H.; Qiao, Y.; Wu, C.; Cho, E.; Wu, X.; Li, Z.; Wu, J.; Lu, S.; Xie, G.; et al. Intra-Articular Platelet-Rich Plasma Injection After Anterior Cruciate Ligament Reconstruction: A Randomized Clinical Trial. JAMA Netw. Open 2024, 7, e2410134. [Google Scholar] [CrossRef]
- Jordan, S.E.; Anz, A.W.; Ostrander, R.V.; Branch, E.A.; Denney, T.S.; Cohen, A.; Truett, J.; Andrews, J.R. Augmenting an Allograft for ACL Reconstruction with a Collagen Matrix and BMAC Injection Appears Safe and Produces Favorable Clinical Outcomes at 2-year Follow Up. Arthrosc. Sports Med. Rehabil. 2025, in press. [Google Scholar] [CrossRef]
- Narayanaswamy, R.; Patro, B.P.; Jeyaraman, N.; Gangadaran, P.; Rajendran, R.L.; Nallakumarasamy, A.; Jeyaraman, M.; Ramani, P.; Ahn, B.-C. Evolution and Clinical Advances of Platelet-Rich Fibrin in Musculoskeletal Regeneration. Bioengineering 2023, 10, 58. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.-Y.; Vy, V.P.T.; Tang, S.-L.; Hung, T.N.K.; Wang, C.-W.; Liang, J.-Y.; Wong, C.-C.; Chan, W.P. Current Progress of Platelet-Rich Derivatives in Cartilage and Joint Repairs. Int. J. Mol. Sci. 2023, 24, 12608. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Teng, Y.; Geng, B.; Xiao, H.; Chen, C.; Chen, R.; Yang, F.; Xia, Y. Strategies for promoting tendon-bone healing: Current status and prospects. Review. Front. Bioeng. Biotechnol. 2023, 11, 1118468. [Google Scholar] [CrossRef] [PubMed]
- Wasilczyk, C. Nanosurgical and Bioengineering Treatment of Human Anterior Cruciate Ligament Tears with Ultrasound-Guided Injection of Modified Platelet-Rich Plasma Using Human Cell Memory Based on Clinical, Ultrasound, MRI, and Nanoscope Analyses: A Double-Blind Randomized Trial. J. Clin. Med. 2024, 13, 2475. [Google Scholar] [CrossRef]
- Lv, Z.-t.; Zhang, J.-M.; Pang, Z.-Y.; Wang, Z.; Huang, J.-M.; Zhu, W.-T. The efficacy of platelet rich plasma on anterior cruciate ligament reconstruction: A systematic review and meta-analysis. Platelets 2021, 33, 229–241. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, P.; Xue, X.; Zhang, Z.; Wang, L.; Jiang, Y.; Zhang, C.; Zhou, H.; Lv, S.; Shen, W.; et al. The role of platelet-rich plasma in biomedicine: A comprehensive overview. iScience 2025, 28, 111705. [Google Scholar] [CrossRef]
- Zhu, T.; Zhou, J.; Hwang, J.; Xu, X. Effects of Platelet-Rich Plasma on Clinical Outcomes After Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-analysis. Orthop. J. Sports Med. 2022, 10, 23259671211061535. [Google Scholar] [CrossRef]
- Kasl, J.; Zeman, P.; Pavelka, T.; Cibulková, J.; Pilný, J.; Matějka, J. Clinical Outcomes of the Application of Platelet-Rich Fibrin during Anatomic Anterior Cruciate Ligament Reconstruction: Results of Prospective Randomised Study. Acta Chir. Orthop. Traumatol. Cechoslov. 2022, 89, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Milovanovic, D.; Vukman, P.; Gavrilovic, D.; Begovic, N.; Stijak, L.; Sreckovic, S.; Kadija, M. The Influence of Platelet-Rich Fibrin on the Healing of Bone Defects after Harvesting Bone-Patellar Tendon-Bone Grafts. Medicina 2024, 60, 154. [Google Scholar] [CrossRef] [PubMed]
- Forsythe, B.; Chahla, J.; Korrapati, A.; Lavoie-Gagne, O.; Forlenza, E.; Diaz, C.C.; Beletsky, A.; Chung, C.B.; Bae, W.C.; Bach, B.R.; et al. Bone Marrow Aspirate Concentrate Augmentation May Accelerate Allograft Ligamentization in Anterior Cruciate Ligament Reconstruction: A Double-Blinded Randomized Controlled Trial. Arthroscopy 2022, 38, 2255–2264. [Google Scholar] [CrossRef] [PubMed]
- Glinkowski, W.M.; Gut, G.; Śladowski, D. Platelet-Rich Plasma for Knee Osteoarthritis: A Comprehensive Narrative Review of the Mechanisms, Preparation Protocols, and Clinical Evidence. J. Clin. Med. 2025, 14, 3983. [Google Scholar] [CrossRef] [PubMed]
- Utrilla, G.S.; Degano, I.R.; D’Ambrosi, R. Efficacy of platelet-rich plasma in meniscal repair surgery: A systematic review of randomized controlled trials. J. Orthop. Traumatol. 2024, 25, 63. [Google Scholar] [CrossRef]
- Lavender, C.D.; Schaver, A.L.; Taylor, S.; Peluso, R.; Berdis, G.; Singh, V.; Cipriani, K.; Lycans, D.; Jasko, J.; Hewett, T.E. Anterior Cruciate Ligament Reconstruction Augmentation With Bone Marrow Aspirate Concentrate, Demineralized Bone Matrix, and Suture Tape Shows No Difference in Outcomes-But Faster Functional Recovery-Versus Non-augmented Anterior Cruciate Ligament Reconstruction. Arthroscopy. 2025, 41, 1496–1508. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services. Regulatory Considerations for Human Cells, Tissues, and Cellular and Tissue-Based Products: Minimal Manipulation and Homologous Use; U.S. Department of Health and Human Services: Washington, DC, USA, 2020.
- Oeding, J.F.; Berlinberg, E.J.; Lu, Y.; Marigi, E.M.; Okoroha, K.R.; Camp, C.L.; Barlow, J.D.; Krych, A.J. Platelet-Rich Plasma and Marrow Venting May Serve as Cost-Effective Augmentation Techniques for Isolated Meniscal Repair: A Decision-Analytical Markov Model-Based Analysis. Arthroscopy 2023, 39, 2058–2068. [Google Scholar] [CrossRef]
- Zhou, T.; Xu, Y.; Zhang, A.; Zhang, X.; Deng, K.; Wu, H.; Xu, W. Association of Graft Maturity on MRI With Return to Sports at 9 Months After Primary Single-Bundle ACL Reconstruction with Autologous Hamstring Graft. Orthop. J. Sports Med. 2024, 12, 23259671241248202. [Google Scholar] [CrossRef]
- Ricupito, R.; Grassi, A.; Mourad, F.; Di Filippo, L.; Gobbo, M.; Maselli, F. Anterior Cruciate Ligament Return to Play: “A Framework for Decision Making”. J. Clin. Med. 2025, 14, 2146. [Google Scholar] [CrossRef]
- D’Ambrosi, R.; Sconfienza, L.M.; Albano, D.; Meena, A.; Abermann, E.; Fink, C. Can MRI predict return to sport after anterior cruciate ligament reconstruction? A systematic review of the literature. Radiol. Med. 2025, 130, 638–649. [Google Scholar] [CrossRef]
- Spierings, J.; van Doeselaar, M.; Buenen, M.; Abinzano, F.; van der Steen, M.; Janssen, R.; Ito, K.; Foolen, J. Inflammatory factors released by ACL reconstruction tendon grafts and their potential for macrophage polarization. Sci. Rep. 2025, 15, 19091. [Google Scholar] [CrossRef]
- Sinkler, M.A.; Furdock, R.J.; McMellen, C.J.; Calcei, J.G.; Voos, J.E. Biologics, Stem Cells, Growth Factors, Platelet-Rich Plasma, Hemarthrosis, and Scaffolds May Enhance Anterior Cruciate Ligament Surgical Treatment. Arthroscopy 2023, 39, 166–175. [Google Scholar] [CrossRef]
- Tan, T.; Gatti, A.A.; Fan, B.; Shea, K.G.; Sherman, S.L.; Uhlrich, S.D.; Hicks, J.L.; Delp, S.L.; Shull, P.B.; Chaudhari, A.S. A scoping review of portable sensing for out-of-lab anterior cruciate ligament injury prevention and rehabilitation. npj Digit. Med. 2023, 6, 46. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Hu, J.; Li, Y.; Wen, Y.; Li, B. ACL injury management: A comprehensive review of novel biotherapeutics. Front. Bioeng. Biotechnol. 2024, 12, 1455225. [Google Scholar] [CrossRef] [PubMed]
- Fujino, K.; Yamamoto, N.; Yoshimura, Y.; Yokota, A.; Hirano, Y.; Neo, M. Repair potential of self-assembling peptide hydrogel in a mouse model of anterior cruciate ligament reconstruction. J. Exp. Orthop. 2024, 11, e12061. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Tian, J.; Li, L.; Huang, L.; Shen, Q.; Guo, S.; Jiang, Y. Biomimetic Biphasic Electrospun Scaffold for Anterior Cruciate Ligament Tissue Engineering. Tissue Eng. Regen. Med. 2021, 18, 819–830. [Google Scholar] [CrossRef]
- Yu, C.; Chen, R.; Chen, J.; Wang, T.; Wang, Y.; Zhang, X.; Wang, Y.; Wu, T.; Yu, T. Enhancing tendon-bone integration and healing with advanced multi-layer nanofiber-reinforced 3D scaffolds for acellular tendon complexes. Mater. Today Bio. 2024, 26, 101099. [Google Scholar] [CrossRef]
- Wang, C.; Hu, Y.; Zhang, S.; Ruan, D.; Huang, Z.; He, P.; Cai, H.; Heng, B.C.; Chen, X.; Shen, W. Application of Stem Cell Therapy for ACL Graft Regeneration. Stem Cells Int. 2021, 2021, 6641818. [Google Scholar] [CrossRef]
- Matsumoto, T.; Sato, Y.; Kobayashi, T.; Suzuki, K.; Kimura, A.; Soma, T.; Ito, E.; Kikuchi, T.; Kobayashi, S.; Harato, K.; et al. Adipose-Derived Stem Cell Sheets Improve Early Biomechanical Graft Strength in Rabbits After Anterior Cruciate Ligament Reconstruction. Am. J. Sports Med. 2021, 49, 3508–3518. [Google Scholar] [CrossRef]
- Xu, Z.; Xu, W.; Zhang, T.; Luo, L. Mechanisms of tendon-bone interface healing: Biomechanics, cell mechanics, and tissue engineering approaches. J. Orthop. Surg. Res. 2024, 19, 817. [Google Scholar] [CrossRef]
- Amini, M.; Venkatesan, J.K.; Liu, W.; Leroux, A.; Nguyen, T.N.; Madry, H.; Migonney, V.; Cucchiarini, M. Advanced Gene Therapy Strategies for the Repair of ACL Injuries. Int. J. Mol. Sci. 2022, 23, 14467. [Google Scholar] [CrossRef]
- Zou, M.; Wang, J.; Shao, Z. Therapeutic Potential of Exosomes in Tendon and Tendon-Bone Healing: A Systematic Review of Preclinical Studies. J. Funct. Biomater. 2023, 14, 299. [Google Scholar] [CrossRef]
- Lin, Y.C.; Chen, Y.J.; Fan, T.Y.; Chou, P.H.; Lu, C.C. Effect of bone marrow aspiration concentrate and platelet-rich plasma combination in anterior cruciate ligament reconstruction: A randomized, prospective, double-blinded study. J. Orthop. Surg. Res. 2024, 19, 4. [Google Scholar] [CrossRef]
- Retzky, J.S.; Koff, M.F.; Nwawka, O.K.; Rodeo, S.A. Novel Noninvasive Imaging Techniques to Assess Structural, Functional, and Material Properties of Tendon, Ligament, and Cartilage: A Narrative Review of Current Concepts. Orthop. J. Sports Med. 2025, 13, 23259671251317223. [Google Scholar] [CrossRef]
- Di Paolo, S.; Lopomo, N.F.; Della Villa, F.; Paolini, G.; Figari, G.; Bragonzoni, L.; Grassi, A.; Zaffagnini, S. Rehabilitation and Return to Sport Assessment after Anterior Cruciate Ligament Injury: Quantifying Joint Kinematics during Complex High-Speed Tasks through Wearable Sensors. Sensors 2021, 21, 2331. [Google Scholar] [CrossRef]
Biological Augmentation | Platelet-Rich Plasma (PRP) | Bone Marrow Aspirate Concentrate (BMAC) |
---|---|---|
Core Composition | Concentrate of autologous platelets, growth factors, and fibrinogen. | Heterogeneous concentrate of autologous cells including mesenchymal stem cells (MSCs), hematopoietic stem cells, platelets, and growth factors. |
Primary Mechanism of Action | Delivery of a supraphysiologic dose of growth factors (e.g., VEGF, TGF-β, PDGF) to stimulate and accelerate native healing processes like angiogenesis, cell proliferation, and collagen synthesis. | Provides a cellular scaffold with osteogenic and chondrogenic potential. Stem cells can differentiate into target tissues, modulate the immune response, and secrete paracrine factors to orchestrate regeneration. |
Key Advantages |
|
|
Key Limitations/Challenges |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pham, G.M. Biologic Augmentation in Anterior Cruciate Ligament Reconstruction and Beyond: A Review of PRP and BMAC. J. Clin. Med. 2025, 14, 6959. https://doi.org/10.3390/jcm14196959
Pham GM. Biologic Augmentation in Anterior Cruciate Ligament Reconstruction and Beyond: A Review of PRP and BMAC. Journal of Clinical Medicine. 2025; 14(19):6959. https://doi.org/10.3390/jcm14196959
Chicago/Turabian StylePham, Grant M. 2025. "Biologic Augmentation in Anterior Cruciate Ligament Reconstruction and Beyond: A Review of PRP and BMAC" Journal of Clinical Medicine 14, no. 19: 6959. https://doi.org/10.3390/jcm14196959
APA StylePham, G. M. (2025). Biologic Augmentation in Anterior Cruciate Ligament Reconstruction and Beyond: A Review of PRP and BMAC. Journal of Clinical Medicine, 14(19), 6959. https://doi.org/10.3390/jcm14196959