Differential MicroRNA Expression in the Anterior Lens Capsule of Patients with Glucocorticoid-Induced Cataracts: A Preliminary Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Sample Collection
2.3. Total RNA Extraction, Complementary DNA (cDNA) Synthesis, and Real-Time Polymerase Chain Reaction
2.4. Normalization and Relative Quantification of Anterior Lens Capsule miRNA Ex-Pression
2.5. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics of the Study Population
3.2. Expression of MicroRNAs in Patients with GIC, Age-Related PSC, GC-Treated ARC, and Normal Controls
3.3. Correlation Between Clinical Parameters and miRNA Expression in GIC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
mRNA | microRNA |
GIC | Glucocorticoid-induced cataracts |
GC | Glucocorticoid |
PSC | Posterior subcapsular cataract |
ARC | Age-related cataract |
qRT-PCR | quantitative real-time polymerase chain reaction |
BCVA | Best-corrected visual acuity |
LOCS | Lens Opacities Classification System |
cDNA | complementary DNA |
SD | Standard deviation |
IPTW | Inverse probability of treatment weighting |
ANOVA | One-way analysis of variance |
logMAR | logarithm of the minimum angle of resolution |
SE | Spherical equivalent |
LEC | Lens epithelial cell |
FGF | Fibroblast growth factors |
TGF-β | Transforming growth factor-beta |
References
- Bourne, R.R.; Stevens, G.A.; White, R.A.; Smith, J.L.; Flaxman, S.R.; Price, H.; Jonas, J.B.; Keeffe, J.; Leasher, J.; Naidoo, K.; et al. Causes of vision loss worldwide, 1990–2010: A systematic analysis. Lancet Glob. Health 2013, 1, e339–e349. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.C.; Wilkins, M.; Kim, T.; Malyugin, B.; Mehta, J.S. Cataracts. Lancet 2017, 390, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Chylack, L.T., Jr.; Wolfe, J.K.; Singer, D.M.; Leske, M.C.; Bullimore, M.A.; Bailey, I.L.; Friend, J.; McCarthy, D.; Wu, S.Y. The Lens Opacities Classification System III. The Longitudinal Study of Cataract Study Group. Arch. Ophthalmol. 1993, 111, 831–836. [Google Scholar] [CrossRef] [PubMed]
- Delcourt, C.; Cristol, J.P.; Tessier, F.; Léger, C.L.; Michel, F.; Papoz, L. Risk factors for cortical, nuclear, and posterior subcapsular cataracts: The POLA study. Pathologies Oculaires Liées à l’Age. Am. J. Epidemiol. 2000, 151, 497–504. [Google Scholar] [CrossRef]
- Shi, Z.; Zhao, X.; Su, Y.; Wang, C.; Liu, P.; Ge, H. Screening of Biological Target Molecules Related to Glucocorticoid-Induced Cataract (GIC) on the Basis of Constructing ceRNA Network. Biochem. Genet. 2022, 60, 24–38. [Google Scholar] [CrossRef]
- Gupta, V.; Wagner, B.J. Expression of the functional glucocorticoid receptor in mouse and human lens epithelial cells. Investig. Ophthalmol. Vis. Sci. 2003, 44, 2041–2046. [Google Scholar] [CrossRef]
- Jobling, A.I.; Augusteyn, R.C. What causes steroid cataracts? A review of steroid-induced posterior subcapsular cataracts. Clin. Exp. Optom. 2002, 85, 61–75. [Google Scholar] [CrossRef]
- Wang, C.; Dawes, L.J.; Liu, Y.; Wen, L.; Lovicu, F.J.; McAvoy, J.W. Dexamethasone influences FGF-induced responses in lens epithelial explants and promotes the posterior capsule coverage that is a feature of glucocorticoid-induced cataract. Exp. Eye Res. 2013, 111, 79–87. [Google Scholar] [CrossRef]
- James, E.R. The etiology of steroid cataract. J. Ocul. Pharmacol. Ther. 2007, 23, 403–420. [Google Scholar] [CrossRef]
- Sulaiman, R.S.; Kadmiel, M.; Cidlowski, J.A. Glucocorticoid receptor signaling in the eye. Steroids 2018, 133, 60–66. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [PubMed]
- Brennecke, J.; Hipfner, D.R.; Stark, A.; Russell, R.B.; Cohen, S.M. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 2003, 113, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Peters, L.; Meister, G. Argonaute proteins: Mediators of RNA silencing. Mol. Cell. 2007, 26, 611–623. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Rajewsky, N. The evolution of gene regulation by transcription factors and microRNAs. Nat. Rev. Genet. 2007, 8, 93–103. [Google Scholar] [CrossRef]
- Romano, G.L.; Platania, C.B.M.; Forte, S.; Salomone, S.; Drago, F.; Bucolo, C. MicroRNA target prediction in glaucoma. Prog. Brain Res. 2015, 220, 217–240. [Google Scholar] [CrossRef]
- Romano, G.L.; Platania, C.B.M.; Drago, F.; Salomone, S.; Ragusa, M.; Barbagallo, C.; Di Pietro, C.; Purrello, M.; Reibaldi, M.; Avitabile, T.; et al. Retinal and Circulating miRNAs in Age-Related Macular Degeneration: An In vivo Animal and Human Study. Front. Pharmacol. 2017, 8, 168. [Google Scholar] [CrossRef]
- Russo, A.; Ragusa, M.; Barbagallo, C.; Longo, A.; Avitabile, T.; Uva, M.G.; Bonfiglio, V.; Toro, M.D.; Caltabiano, R.; Mariotti, C.; et al. miRNAs in the vitreous humor of patients affected by idiopathic epiretinal membrane and macular hole. PLoS ONE 2017, 12, e0174297. [Google Scholar] [CrossRef]
- Kim, Y.J.; Lee, W.J.; Ko, B.-W.; Lim, H.W.; Yeon, Y.; Ahn, S.J.; Lee, B.R. Investigation of MicroRNA Expression in Anterior Lens Capsules of Senile Cataract Patients and MicroRNA Differences According to the Cataract Type. Transl. Vis. Sci. Technol. 2021, 10, 14. [Google Scholar] [CrossRef]
- Mestdagh, P.; Van Vlierberghe, P.; De Weer, A.; Muth, D.; Westermann, F.; Speleman, F.; Vandesompele, J. A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol. 2009, 10, R64. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef] [PubMed]
- Giuffrè, G.; Giammanco, R.; Di Pace, F.; Ponte, F. Casteldaccia eye study: Prevalence of cataract in the adult and elderly population of a Mediterranean town. Int. Ophthalmol. 1994, 18, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.R.; Koo, E.; Agrón, E.; Hallak, J.; Clemons, T.; Azar, D.; Sperduto, R.D.; Ferris, F.L.; Chew, E.Y. Risk factors associated with incident cataracts and cataract surgery in the Age-Related Eye Disease Study (AREDS): AREDS report number 32. Ophthalmology 2011, 118, 2113–2119. [Google Scholar] [CrossRef] [PubMed]
- Richardson, R.B.; Ainsbury, E.A.; Prescott, C.R.; Lovicu, F.J. Etiology of posterior subcapsular cataracts based on a review of risk factors including aging, diabetes, and ionizing radiation. Int. J. Radiat. Biol. 2020, 96, 1339–1361. [Google Scholar] [CrossRef]
- Li, J.; Buonfiglio, F.; Zeng, Y.; Pfeiffer, N.; Gericke, A. Oxidative stress in cataract formation: Is there a treatment approach on the horizon? Antioxidants 2024, 13, 1249. [Google Scholar] [CrossRef]
- Fu, D.; Yang, S.; Lu, J.; Lian, H.; Qin, K. LncRNA NORAD promotes bone marrow stem cell differentiation and proliferation by targeting miR-26a-5p in steroid-induced osteonecrosis of the femoral head. Stem Cell Res. Ther. 2021, 12, 18. [Google Scholar] [CrossRef]
- Brown, C.J.; Akaichi, F. Vitamin D deficiency and posterior subcapsular cataract. Clin. Ophthalmol. 2015, 9, 1093–1098. [Google Scholar] [CrossRef]
- Duncan, G.; Wormstone, I.M. Calcium cell signalling and cataract: Role of the endoplasmic reticulum. Eye 1999, 13 Pt 3b, 480–483. [Google Scholar] [CrossRef]
- Park, S.; Raghunathan, V.K.; Ramarapu, R.; Moshiri, A.; Yiu, G.; Casanova, M.I.; Cosert, K.; McCorkell, M.; Leonard, B.C.; Thomasy, S.M. Biomechanic, proteomic and miRNA transcriptional changes in the trabecular meshwork of primates injected with intravitreal triamcinolone. Vis. Res. 2024, 222, 108456. [Google Scholar] [CrossRef]
- Volk, N.; Pape, J.C.; Engel, M.; Zannas, A.S.; Cattane, N.; Cattaneo, A.; Binder, E.B.; Chen, A. Amygdalar MicroRNA-15a Is Essential for Coping with Chronic Stress. Cell Rep. 2016, 17, 1882–1891. [Google Scholar] [CrossRef]
- Rainer, J.; Ploner, C.; Jesacher, S.; Ploner, A.; Eduardoff, M.; Mansha, M.; Wasim, M.; Panzer-Grümayer, R.; Trajanoski, Z.; Niederegger, H.; et al. Glucocorticoid-regulated microRNAs and mirtrons in acute lymphoblastic leukemia. Leukemia 2009, 23, 746–752. [Google Scholar] [CrossRef]
- Zhou, W.; Xu, J.; Wang, C.; Shi, D.; Yan, Q. miR-23b-3p regulates apoptosis and autophagy via suppressing SIRT1 in lens epithelial cells. J. Cell Biochem. 2019, 120, 19635–19646. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Dou, S.; Li, W.; Huang, Y. Profiling of circular RNAs in age-related cataract reveals circZNF292 as an antioxidant by sponging miR-23b-3p. Aging 2020, 12, 17271–17287. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Liu, Q.; Li, C.; He, P. miR-125a-5p Regulates Osteogenic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells under Oxidative Stress. BioMed Res Int. 2021, 2021, 6684709. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Zhang, Y.; Ran, F.; Liu, J.; Lin, J.; Hao, X.; Ding, L.; Ye, Q. Let-7a-5p inhibits triple-negative breast tumor growth and metastasis through GLUT12-mediated Warburg effect. Cancer Lett. 2020, 495, 53–65. [Google Scholar] [CrossRef]
- Gao, X.; Liu, H.; Wang, R.; Huang, M.; Wu, Q.; Wang, Y.; Zhang, W.; Liu, Y. Hsa-let-7d-5p Promotes Gastric Cancer Progression by Targeting PRDM5. J. Oncol. 2022, 2022, 2700651. [Google Scholar] [CrossRef]
Before IPTW | After IPTW | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Group † 1 | Group 2 | Group 3 | Group 4 | p | Group 1 | Group 2 | Group 3 | Group 4 | p | |
Age (years) | 48.80 ± 13.90 | 64.67 ± 6.19 | 62.84 ± 7.54 | 61.00 ± 4.83 | 0.005 * | 57.68 ± 10.48 | 62.75 ± 4.64 | 61.61 ± 6.69 | 60.68 ± 4.72 | 0.353 |
Sex (No. Female/Male) | 10/0 | 2/4 | 5/2 | 10/0 | 0.002 * | 10/0 | 1/3 | 5/2 | 9/0 | 0.003 * |
BCVA (logMAR) | 0.56 ± 0.51 | 0.82 ± 0.59 | 0.26 ± 0.14 | 0.00 ± 0.01 | 0.001 * | 0.53 ± 0.37 | 0.81 ± 0.50 | 0.26 ± 0.12 | 0.00 ± 0.01 | 0.005 * |
SE (diopters) | −0.39 ± 2.86 | 0.04 ± 2.22 | 0.04 ± 2.22 | 0.53 ± 1.23 | 0.617 | −2.52 ± 3.12 | −0.39 ± 1.77 | −0.71 ± 1.54 | 0.55 ± 1.13 | 0.040 * |
Duration of GC Intake (years) | 8.60 ± 5.91 | 6.57 ± 5.68 | 0.490 | 9.27 ± 5.55 | 6.31 ± 6.37 | 0.320 | ||||
GC Cumulative Dose (g) | 44.24 ± 52.26 | 15.65 ± 15.57 | 0.131 | 34.82 ± 42.84 | 16.77 ± 16.83 | 0.258 | ||||
GC Intake per Day (mg) | 30.62 ± 62.08 | 7.97 ± 9.51 | 0.284 | 20.44 ± 48.76 | 9.08 ± 10.32 | 0.501 |
ΔCt | p | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Group † 1 | Group 2 | Group 3 | Group 4 | Among the Groups | Group 1 vs. 2 | Group 1 vs. 3 | Group 1 vs. 4 | Group 2 vs. 3 | Group 2 vs. 4 | Group 3 vs. 4 | |
let-7a-5p | −1.26 ± 4.12 | 3.02 ± 4.63 | −1.68 ± 2.92 | 5.74 ± 1.88 | 0.000 * | 0.094 | 0.826 | 0.000 * | 0.064 | 0.262 | 0.000 * |
let-7d-5p | −3.41 ± 6.25 | −5.67 ± 6.07 | −4.13 ± 6.65 | −9.37 ± 1.90 | 0.013 * | 0.519 | 0.828 | 0.015 * | 0.696 | 0.243 | 0.096 |
let-7g-5p | −0.93 ± 1.41 | −1.32 ± 1.48 | −0.29 ± 1.40 | −1.28 ± 1.21 | 0.363 | 0.635 | 0.383 | 0.574 | 0.262 | 0.959 | 0.161 |
miR-15a-5p | 4.57 ± 6.32 | 0.86 ± 5.94 | 4.83 ± 6.07 | −2.86 ± 0.82 | 0.002 * | 0.297 | 0.935 | 0.005 * | 0.296 | 0.227 | 0.018 * |
miR-16-5p | 2.40 ± 3.13 | −0.46 ± 3.07 | 2.20 ± 2.69 | −2.42 ± 1.86 | 0.000 * | 0.119 | 0.898 | 0.001 * | 0.152 | 0.165 | 0.001 * |
miR-22-3p | 1.53 ± 4.61 | 1.50 ± 5.55 | 3.38 ± 3.29 | 0.94 ± 0.65 | 0.638 | 0.992 | 0.393 | 0.699 | 0.500 | 0.834 | 0.113 |
miR-23a-3p | −2.52 ± 2.18 | −2.03 ± 1.18 | −2.01 ± 1.47 | −1.47 ± 0.91 | 0.285 | 0.648 | 0.609 | 0.189 | 0.977 | 0.344 | 0.390 |
miR-23b-3p | −3.33 ± 2.22 | −2.60 ± 0.24 | −2.45 ± 1.91 | −1.24 ± 0.78 | 0.045 * | 0.329 | 0.421 | 0.017 * | 0.850 | 0.000 * | 0.172 |
miR-26a-5p | −1.62 ± 2.86 | 0.81 ± 2.54 | −1.32 ± 1.91 | 4.58 ± 1.66 | 0.000 * | 0.131 | 0.813 | 0.000 * | 0.139 | 0.005 * | 0.000 * |
miR-34a-5p | 5.13 ± 3.54 | 6.92 ± 5.13 | 3.85 ± 3.16 | 4.92 ± 1.52 | 0.791 | 0.453 | 0.468 | 0.872 | 0.248 | 0.439 | 0.386 |
miR-125a-5p | −1.96 ± 1.05 | −2.02 ± 0.91 | −1.46 ± 0.68 | −0.26 ± 1.47 | 0.018 * | 0.910 | 0.301 | 0.010 * | 0.262 | 0.031 * | 0.079 |
miR-125b-5p | −2.65 ± 1.13 | −2.23 ± 1.44 | −1.59 ± 1.28 | −2.26 ± 0.72 | 0.534 | 0.554 | 0.100 | 0.383 | 0.450 | 0.963 | 0.211 |
Age | GC Cumulative Dose | GC Intake per Day | ||||
---|---|---|---|---|---|---|
r | p | r | p | r | p | |
let-7a-5p | −0.403 | 0.248 | 0.256 | 0.475 | 0.364 | 0.301 |
let-7d-5p | 0.313 | 0.379 | −0.216 | 0.549 | −0.307 | 0.388 |
let-7g-5p | −0.240 | 0.505 | 0.122 | 0.738 | 0.388 | 0.268 |
miR-15a-5p | 0.260 | 0.468 | −0.194 | 0.592 | −0.190 | 0.599 |
miR-16-5p | 0.294 | 0.409 | −0.228 | 0.526 | 0.035 | 0.925 |
miR-22-3p | −0.079 | 0.828 | 0.161 | 0.657 | 0.201 | 0.578 |
miR-23a-3p | −0.563 | 0.090 | 0.406 | 0.245 | 0.639 | 0.047 * |
miR-23b-3p | −0.530 | 0.115 | 0.369 | 0.293 | 0.487 | 0.154 |
miR-26a-5p | −0.483 | 0.157 | 0.281 | 0.432 | 0.520 | 0.124 |
miR-34a-5p | 0.081 | 0.824 | −0.160 | 0.659 | −0.084 | 0.817 |
miR-125a-5p | −0.569 | 0.086 | 0.283 | 0.428 | 0.688 | 0.028 * |
miR-125b-5p | −0.287 | 0.422 | 0.003 | 0.994 | 0.544 | 0.104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeon, Y.; Ryu, S.R.; Cha, M.-J.; Lee, W.J.; Lim, H.W.; Kim, J.H.; Kim, Y.J. Differential MicroRNA Expression in the Anterior Lens Capsule of Patients with Glucocorticoid-Induced Cataracts: A Preliminary Study. J. Clin. Med. 2025, 14, 6909. https://doi.org/10.3390/jcm14196909
Yeon Y, Ryu SR, Cha M-J, Lee WJ, Lim HW, Kim JH, Kim YJ. Differential MicroRNA Expression in the Anterior Lens Capsule of Patients with Glucocorticoid-Induced Cataracts: A Preliminary Study. Journal of Clinical Medicine. 2025; 14(19):6909. https://doi.org/10.3390/jcm14196909
Chicago/Turabian StyleYeon, Yeji, Soo Rack Ryu, Min-Ji Cha, Won June Lee, Han Woong Lim, Ji Hong Kim, and Yu Jeong Kim. 2025. "Differential MicroRNA Expression in the Anterior Lens Capsule of Patients with Glucocorticoid-Induced Cataracts: A Preliminary Study" Journal of Clinical Medicine 14, no. 19: 6909. https://doi.org/10.3390/jcm14196909
APA StyleYeon, Y., Ryu, S. R., Cha, M.-J., Lee, W. J., Lim, H. W., Kim, J. H., & Kim, Y. J. (2025). Differential MicroRNA Expression in the Anterior Lens Capsule of Patients with Glucocorticoid-Induced Cataracts: A Preliminary Study. Journal of Clinical Medicine, 14(19), 6909. https://doi.org/10.3390/jcm14196909