Serum Granulysin Levels in Vitiligo and Alopecia Areata: A Potential Biomarker for Disease Activity and Dermoscopic Evaluation
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Inclusion Criteria
2.3. Exclusion Criteria
2.4. Study Outcomes
2.4.1. Primary Outcomes
2.4.2. Secondary Outcomes
2.5. Biochemical Analysis
2.5.1. Principles of the Assay
2.5.2. Procedures
2.6. Statistical Power/Effect Size
2.7. Statistical Analysis
3. Results
3.1. Analysis of Baseline Demographic Data
3.2. Comparison Between Active Vitiligo and Stable Vitiligo According to the Site and Type of Vitiligo, VIDA, VASI Scores, Dermoscopic Data and Serum GNLY Level
3.3. Comparison of Serum GNLY Level Between All Studied Groups
3.4. Correlation Between Serum GNLY Level with the Duration of the Disease, Age, VIDA Score and VASI Score in All Vitiligo Cases
3.5. Relation Between Serum GNLY and Sex and Dermoscopic Data in Vitiligo Cases
3.6. Figure Analysis of the Studied Groups
3.7. Post Hoc Effect Size Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jafarzadeh, A.; Mohammad, A.P.; Goodarzi, A. A systematic review of Case Series and clinical trials investigating Regenerative Medicine for the Treatment of Vitiligo. J. Cosmet. Dermatol. 2025, 24, e16660. [Google Scholar] [CrossRef]
- Huang, X.; Zhu, J.; Wei, T.; Luo, L.; Li, C.; Zhao, M. Epigenetic Modifications in Vitiligo. Clin. Rev. Allergy Immunol. 2025, 68, 39. [Google Scholar] [CrossRef]
- Malhotra, N.; Dytoc, M. The pathogenesis of vitiligo. J. Cutan. Med. Surg. 2013, 17, 153–172. [Google Scholar] [CrossRef] [PubMed]
- Premkumar, M.; Kalarani, I.B.; Mohammed, V.; Veerabathiran, R. An extensive review of vitiligo-associated conditions. Int. J. Dermatol. Venereol. 2024, 7, 44–51. [Google Scholar] [CrossRef]
- Nouh, A.H.; Behairy, A.A.E.; El-Koumy, F.B.; Aal, A.M.A.; Zhuravlova, M.S. Enhancing hair regrowth in Alopecia areata: The power duo of CO2 fractional laser and Bimatoprost. Arch. Dermatol. Res. 2025, 317, 723. [Google Scholar] [CrossRef] [PubMed]
- Jellard, S.; Moore, S.; Chacón-Martínez, C.A. Novel Electrotrichogenic Device Promotes Hair Growth in Men with Androgenetic Alopecia: A Pilot Study. J. Cosmet. Dermatol. 2025, 24, e70202. [Google Scholar] [CrossRef]
- Ma, T.; Zhang, T.; Miao, F.; Liu, J.; Zhu, Q.; Chen, Z.; Tai, Z.; He, Z. Alopecia Areata: Pathogenesis, Diagnosis, and Therapies. MedComm 2025, 6, e70182. [Google Scholar] [CrossRef]
- Guo, H.; Cheng, Y.; Shapiro, J.; McElwee, K. The role of lymphocytes in the development and treatment of alopecia areata. Expert Rev. Clin. Immunol. 2015, 11, 1335–1351. [Google Scholar] [CrossRef]
- Yamaguchi, H.L.; Yamaguchi, Y.; Peeva, E. Pathogenesis of alopecia areata and vitiligo: Commonalities and differences. Int. J. Mol. Sci. 2024, 25, 4409. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, Y.-X.; Xiong, Y.-Y.; Li, Y.-M. Pathogenesis and regenerative therapy in vitiligo and alopecia areata: Focus on hair follicle. Front. Med. 2025, 11, 1510363. [Google Scholar] [CrossRef]
- Harris, J.E. Vitiligo and alopecia areata: Apples and oranges? Exp. Dermatol. 2013, 22, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, A.I.; Abdel-Halim, W.A.; Osman, M.M.; Rezk, S.M. Serum granulysin as a possible key marker of vitiligo activity and severity. Indian Dermatol. Online J. 2024, 15, 431–436. [Google Scholar] [CrossRef]
- Dotiwala, F.; Mulik, S.; Polidoro, R.B.; Ansara, J.A.; Burleigh, B.A.; Walch, M.; Gazzinelli, R.T.; Lieberman, J. Killer lymphocytes use granulysin, perforin and granzymes to kill intracellular parasites. Nat. Med. 2016, 22, 210–216. [Google Scholar] [CrossRef]
- Tan, I.J.; Podwojniak, A.; Parikh, A.; Cohen, B.A. Precision dermatology: A review of molecular biomarkers and personalized therapies. Curr. Issues Mol. Biol. 2024, 46, 2975–2990. [Google Scholar] [CrossRef]
- Ogawa, K.; Takamori, Y.; Suzuki, K.; Nagasawa, M.; Takano, S.; Kasahara, Y.; Nakamura, Y.; Kondo, S.; Sugamura, K.; Nakamura, M.; et al. Granulysin in human serum as a marker of cell-mediated immunity. Eur. J. Immunol. 2003, 33, 1925–1933. [Google Scholar] [CrossRef] [PubMed]
- Aporta, A.; Catalán, E.; Galán-Malo, P.; Ramírez-Labrada, A.; Pérez, M.; Azaceta, G.; Palomera, L.; Naval, J.; Marzo, I.; Pardo, J. Granulysin induces apoptotic cell death and cleavage of the autophagy regulator Atg5 in human hematological tumors. Biochem. Pharmacol. 2014, 87, 410–423. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Liu, L.; Shan, J.; Li, S.; Shen, C.; Wang, C.; Fan, Y. Increased granulysin in the peripheral blood and tissues of patients with oral lichen planus. Int. J. Clin. Exp. Pathol. 2019, 12, 1634. [Google Scholar]
- Tembhre, M.; Sharma, V. T-helper and regulatory T-cell cytokines in the peripheral blood of patients with active alopecia areata. Br. J. Dermatol. 2013, 169, 543–548. [Google Scholar] [CrossRef]
- Cui, J.; Arita, Y.; Bystryn, J.C. Cytolytic antibodies to melanocytes in vitiligo. J. Investig. Dermatol. 1993, 100, 812–815. [Google Scholar] [CrossRef]
- Njoo, M.D.; Westerhof, W. Vitiligo. pathogenesis and treatment. Am. J. Clin. Dermatol. 2001, 12, 167–181. [Google Scholar] [CrossRef]
- Strzelec, M.; Detka, J.; Mieszczak, P.; Sobocińska, M.K.; Majka, M. Immunomodulation—A general review of the current state-of-the-art and new therapeutic strategies for targeting the immune system. Front. Immunol. 2023, 14, 1127704. [Google Scholar] [CrossRef]
- Di Liberto, D.; Buccheri, S.; Caccamo, N.; Meraviglia, S.; Romano, A.; Di Carlo, P.; Titone, L.; Dieli, F.; Krensky, A.M.; Salerno, A. Decreased serum granulysin levels in childhood tuberculosis which reverse after therapy. Tuberculosis 2007, 87, 322–328. [Google Scholar] [CrossRef]
- Thakur, V.; Bishnoi, A.; Vinay, K.; Kumaran, S.M.; Parsad, D. Vitiligo: Translational research and effective therapeutic strategies. Pigment Cell Melanoma Res. 2021, 34, 814–826. [Google Scholar] [CrossRef]
- Kumar Jha, A.; Sonthalia, S.; Lallas, A.; Chaudhary, R.K.P. Dermoscopy in vitiligo: Diagnosis and beyond. Int. J. Dermatol. 2018, 57, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Laddha, N.C.; Dwivedi, M.; Mansuri, M.S.; Singh, M.; Gani, A.R.; Yeola, A.P.; Panchal, V.N.; Khan, F.; Dave, D.J.; Patel, A. Role of oxidative stress and autoimmunity in onset and progression of vitiligo. Exp. Dermatol. 2014, 23, 352–353. [Google Scholar] [CrossRef] [PubMed]
- Ono, S.; Otsuka, A.; Yamamoto, Y.; Kataoka, T.R.; Koyanagi, I.; Miyachi, Y.; Kabashima, K. Serum granulysin as a possible key marker of the activity of alopecia areata. J. Dermatol. Sci. 2014, 73, 74–79. [Google Scholar] [CrossRef]
- van Geel, N.; Depaepe, L.; Vandaele, V.; Mertens, L.; Van Causenbroeck, J.; De Schepper, S.; Van Coile, L.; Van Reempts, A.; De Vos, A.S.; Papeleu, J. Assessing the dynamic changes in vitiligo: Reliability and validity of the Vitiligo Disease Activity Score (VDAS) and Vitiligo Disease Improvement Score (VDIS). J. Eur. Acad. Dermatol. Venereol. 2022, 36, 1334–1341. [Google Scholar] [CrossRef]
- Gupta, P.; Vinay, K.; Bishnoi, A.; Kumaran, M.S.; Parsad, D. A prospective observational study to sequentially determine the dermoscopic features of vitiligo and its association with disease activity in patients on medical treatment: Dermoscopy and disease activity in vitiligo. Pigment Cell Melanoma Res. 2023, 36, 33–41. [Google Scholar] [CrossRef]
- Ibrahim, S.; Hegazy, R.A.; Gawdat, H.I.; Esmat, S.; Mahmoud, E.; Rashed, L.; Hegazy, A.A.; Saadi, D.G. Differentiating active from stable vitiligo: The role of dermoscopic findings and their relation to CXCL10. J. Cosmet. Dermatol. 2022, 21, 4651–4658. [Google Scholar] [CrossRef] [PubMed]
- Godínez-Chaparro, J.A.; Roldán-Marín, R.; Vidaurri-de la Cruz, H.; Soto-Mota, L.A.; Férez, K. Dermatoscopic patterns in vitiligo. Dermatol. Pract. Concept. 2023, 13, e2023197. [Google Scholar] [CrossRef]
- Purnima, G.; Tejaswitha Gudivada, N.; Narasimharao, T. Dermoscopy—A tool to assess stability in vitiligo. Int. J. Contemp. Med. Res. 2017, 4, 2066–2068. [Google Scholar]
- Chuh, A.A.; Zawar, V. Demonstration of residual perifollicular pigmentation in localized vitiligo--a reverse and novel application of digital epiluminescence dermoscopy. Comput. Med. Imaging Graph. 2004, 28, 213–217. [Google Scholar] [CrossRef]
- Chandrashekhar, L. Dermoscopy: A tool to assess stability in Vitiligo. Biochem. Pharmacol. 2012, 175, 112–113. [Google Scholar]
- Rashighi, M.; Harris, J.E. Interfering with the IFN-γ/CXCL10 pathway to develop new targeted treatments for vitiligo. Ann. Transl. Med. 2015, 3, 343. [Google Scholar]
- Farag, A.; Al-Sharaky, D.; Hassan, R.; Elshafey, E.; Shehata, N. The role of chemokine CXC-motif receptor 3 in vitiligo: A clinical and immunohistochemical study. Menoufia Med. J. 2020, 33, 1031. [Google Scholar]
- Oba, M.C.; Askin, O.; Balci Ekmekci, O.; Serdaroglu, S. Correlation between serum granulysin level and clinical activity in patients with alopecia areata before and after tofacitinib therapy. J. Cosmet. Dermatol. 2021, 20, 971–975. [Google Scholar] [CrossRef]
- Maraee, A.H.; El-Wareth Tolba, D.; Mahrous, E.A.; El-Hefnawy, S.M. Serum granulysin as a possible key marker of activity of alopecia areata. Menoufia Med. J. 2020, 33, 1036–1040. [Google Scholar]
- Xing, L.; Dai, Z.; Jabbari, A.; Cerise, J.E.; Higgins, C.A.; Gong, W.; De Jong, A.; Harel, S.; DeStefano, G.M.; Rothman, L. Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition. Nat. Med. 2014, 20, 1043–1049. [Google Scholar] [CrossRef]
- Younes, A.-K.; Hammad, R.; Othman, M.; Sobhy, A. CD4, CD8 and natural killer cells are depressed in patients with alopecia areata: Their association with disease activity. BMC Immunol. 2022, 23, 13. [Google Scholar] [CrossRef] [PubMed]
- Torkestani, S.; Moghimi, H.; Farsiabi, R.; Khazaei, S.; Eftekharian, M.M.; Dalvand, E. Evaluation of serum levels of IL-6, IL-10, and TNF-alpha in alopecia areata patients: A systematic review and meta-analysis. Biomed. Res. Ther. 2021, 8, 4668–4678. [Google Scholar] [CrossRef]
- Peterle, L.; Sanfilippo, S.; Borgia, F.; Cicero, N.; Gangemi, S. Alopecia areata: A review of the role of oxidative stress, possible biomarkers, and potential novel therapeutic approaches. Antioxidants 2023, 12, 135. [Google Scholar] [CrossRef]
- Silverberg, N. The genetics of pediatric cutaneous autoimmunity: The sister diseases vitiligo and alopecia areata. Clin. Dermatol. 2022, 40, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Sparrow, E.; Bodman-Smith, M. Granulysin: The attractive side of a natural born killer. Immunol. Lett. 2020, 217, 126–132. [Google Scholar] [CrossRef]
- Chen, D.; Xu, Z.; Cui, J.; Chen, T. A mouse model of vitiligo based on endogenous auto-reactive CD8+ T cell targeting skin melanocyte. Cell Regen. 2022, 11, 31. [Google Scholar] [CrossRef] [PubMed]
- Xie, B.; Sun, J.; Song, X. Hair follicle melanocytes initiate autoimmunity in alopecia areata: A trigger point. Clin. Rev. Allergy Immunol. 2022, 63, 417–430. [Google Scholar] [CrossRef] [PubMed]
- Krabbendam, L.; Heesters, B.; Kradolfer, C.; Haverkate, N.; Becker, M.; Buskens, C.; Bemelman, W.; Bernink, J.; Spits, H. CD127+ CD94+ innate lymphoid cells expressing granulysin and perforin are expanded in patients with Crohn’s disease. Nat. Commun. 2021, 12, 5841. [Google Scholar] [CrossRef]
- Thompson, R.; Cao, X. Reassessing granzyme B: Unveiling perforin-independent versatility in immune responses and therapeutic potentials. Front. Immunol. 2024, 15, 1392535. [Google Scholar] [CrossRef]
- Krensky, A.; Clayberger, C. Biology and clinical relevance of granulysin. Tissue Antigens 2009, 73, 193–198. [Google Scholar] [CrossRef]
- Drvar, V.; Ćurko-Cofek, B.; Karleuša, L.; Aralica, M.; Rogoznica, M.; Kehler, T.; Legović, D.; Rukavina, D.; Laskarin, G. Granulysin expression and granulysin-mediated apoptosis in the peripheral blood of osteoarthritis patients. Biomed. Rep. 2022, 16, 44. [Google Scholar] [CrossRef]
- Speeckaert, R.; van Geel, N. Vitiligo: An update on pathophysiology and treatment options. Am. J. Clin. Dermatol. 2017, 18, 733–744. [Google Scholar] [CrossRef]
- Whitton, M.E.; Pinart, M.; Batchelor, J.; Leonardi-Bee, J.; González, U.; Jiyad, Z.; Eleftheriadou, V.; Ezzedine, K. Interventions for vitiligo. Cochrane Database Syst. Rev. 2015, 2, CD003263. [Google Scholar] [CrossRef] [PubMed]
- Nagasawa, M.; Ogawa, K.; Nagata, K.; Shimizu, N. Granulysin and its clinical significance as a biomarker of immune response and NK cell related neoplasms. World J. Hematol. 2014, 3, 128–137. [Google Scholar] [CrossRef]
- Vičić, M.; Kaštelan, M.; Tokmadžić, V.S.; Massari, L.P. Systemic and local increase of granulysin expression in cytotoxic lymphocytes in severe psoriasis. Acta Derm.-Venereol. 2019, 99, 1136–1142. [Google Scholar] [CrossRef] [PubMed]





| Variable | Active Vitiligo (n = 25) | Stable Vitiligo (n = 25) | Active AA (n = 15) | Controls (n = 15) | p-Value | 
|---|---|---|---|---|---|
| Age, years (median [IQR]) | 14 (11–23) | 17 (14–35) | 20 (10.5–32) | 25 (22.5–28) | 0.109 | 
| Sex, n (%) | 0.807 | ||||
| • Male | 10 (40.0) | 12 (48.0) | 8 (53.3) | 8 (53.3) | |
| • Female | 15 (60.0) | 13 (52.0) | 7 (46.7) | 7 (46.7) | |
| Family history, n (%) | 5 (20.0) | 5 (20.0) | 0 (0.0) | – | MC = 0.196 | 
| Duration of disease, years (median [IQR]) | 3 (1–7) | 4 (2–7) | 0.25 (0.08–0.5) | – | <0.001 * | 
| p0 < 0.001 *, p1 = 0.427, p2 < 0.001 *, p3 < 0.001 * | |||||
| Associated diseases, n (%) | 0.966 | ||||
| • None | 22 (88.0) | 24 (96.0) | 15 (100.0) | 15 (100.0) | |
| • Diabetes mellitus | 1 (4.0) | 1 (4.0) | 0 (0.0) | 0 (0.0) | |
| • Helicobacter pylori | 1 (4.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
| • Hypertension | 1 (4.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
| Variable | Active Vitiligo (n = 25) | Stable Vitiligo (n = 25) | p-Value | 
|---|---|---|---|
| Site of lesions, n (%) | |||
| • Head and neck | 12 (48.0) | 7 (28.0) | 0.145 1 | 
| • Trunk | 8 (32.0) | 0 (0.0) | 0.004 *2 | 
| • Extremities | 10 (40.0) | 8 (32.0) | 0.556 1 | 
| • Acral | 13 (52.0) | 17 (68.0) | 0.248 1 | 
| Type of vitiligo, n (%) | |||
| • Segmental | 2 (8.0) | 4 (16.0) | 0.667 2 | 
| • Non-segmental | 23 (92.0) | 21 (84.0) | 0.384 | 
| – Acral | 8 (32.0) | 17 (68.0) | 0.011 *1 | 
| – Acrofacial | 7 (28.0) | 3 (12.0) | 0.157 1 | 
| – Vulgaris | 8 (32.0) | 1 (4.0) | 0.023 *2 | 
| VIDA score, n (%) | <0.001 *3 | ||
| • 0 | 0 (0.0) | 25 (100.0) | |
| • 2+ | 6 (24.0) | 0 (0.0) | |
| • 3+ | 13 (52.0) | 0 (0.0) | |
| • 4+ | 6 (24.0) | 0 (0.0) | |
| VASI (%) (median [IQR]) | 10 (10–10) | 10 (5–15) | 0.731 4 | 
| Dermoscopic findings, n (%) | <0.001 *2 | ||
| • Ill-defined border | 25 (100.0) | 0 (0.0) | <0.001 *2 | 
| • Satellite lesions | 16 (64.0) | 0 (0.0) | <0.001 *2 | 
| • Starburst appearance | 13 (52.0) | 0 (0.0) | <0.001 *2 | 
| • Perifollicular pigmentation | 2 (8.0) | 25 (100.0) | <0.001 *2 | 
| • Reticulate pigment network | 5 (20.0) | 22 (88.0) | 0.001 *2 | 
| Serum GNLY (ng/mL) (median [IQR]) | 17.19 (14.16–26.76) | 26.34 (23.17–30.90) | 0.005 *4 | 
| Group | Serum GNLY (ng/mL), Mean ± SD | Overall p-Value (ANOVA) | 
|---|---|---|
| Active vitiligo (n = 25) | 26.01 ± 8.37 | <0.001 * | 
| Stable vitiligo (n = 25) | 14.10 ± 3.84 | |
| Active AA (n = 15) | 27.05 ± 5.87 | |
| Controls (n = 15) | 6.90 ± 2.08 | |
| Pairwise comparison | p-value | |
| Active vitiligo vs. Stable vitiligo | <0.001 * | |
| Active vitiligo vs. Active AA | 0.947 | |
| Stable vitiligo vs. Active AA | <0.001 * | |
| Vitiligo (all, n = 50) vs. Controls (n = 15) | <0.001 * | |
| Vitiligo (all, n = 50) vs. Active AA | 0.006 * | |
| Active AA vs. Controls | <0.001 * | 
| Factor | Serum GNLY Level (ng/mL) | |
|---|---|---|
| r | p | |
| Duration (years) | −0.267 | 0.061 | 
| Age (years) | −0.160 | 0.268 | 
| VIDA | 0.837 | <0.001 * | 
| VASI (%) | 0.258 | 0.070 | 
| Factor | N | GNLY (ng/mL) | p | |
|---|---|---|---|---|
| Sex | Male | 22 | 19.20 ± 8.48 | 0.550 | 
| Female | 28 | 20.73 ± 9.17 | ||
| Dermoscopic Data | ||||
| Ill-defined border | 28 | 24.65 ± 8.95 | <0.001 * | |
| Satellite lesion | 21 | 23.73 ± 8.81 | 0.011 * | |
| Starburst appearance | 17 | 21.69 ± 8.79 | 0.354 | |
| Per follicular pigmentation | 16 | 15.46 ± 6.41 | 0.004 * | |
| Absent pigment network | 27 | 16.20 ± 6.86 | 0.001 * | |
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AlRasheed, H.A.; Korkor, A.A.; El Attar, Y.A.; Yousef, R.R.; Bahaa, M.M.; Ibrahim, Z.A.S. Serum Granulysin Levels in Vitiligo and Alopecia Areata: A Potential Biomarker for Disease Activity and Dermoscopic Evaluation. J. Clin. Med. 2025, 14, 6894. https://doi.org/10.3390/jcm14196894
AlRasheed HA, Korkor AA, El Attar YA, Yousef RR, Bahaa MM, Ibrahim ZAS. Serum Granulysin Levels in Vitiligo and Alopecia Areata: A Potential Biomarker for Disease Activity and Dermoscopic Evaluation. Journal of Clinical Medicine. 2025; 14(19):6894. https://doi.org/10.3390/jcm14196894
Chicago/Turabian StyleAlRasheed, Hayam Ali, Amira Aboelmakarem Korkor, Yasmina Ahmed El Attar, Rowida Raafat Yousef, Mostafa M. Bahaa, and Zainab Abdel Samad Ibrahim. 2025. "Serum Granulysin Levels in Vitiligo and Alopecia Areata: A Potential Biomarker for Disease Activity and Dermoscopic Evaluation" Journal of Clinical Medicine 14, no. 19: 6894. https://doi.org/10.3390/jcm14196894
APA StyleAlRasheed, H. A., Korkor, A. A., El Attar, Y. A., Yousef, R. R., Bahaa, M. M., & Ibrahim, Z. A. S. (2025). Serum Granulysin Levels in Vitiligo and Alopecia Areata: A Potential Biomarker for Disease Activity and Dermoscopic Evaluation. Journal of Clinical Medicine, 14(19), 6894. https://doi.org/10.3390/jcm14196894
 
        


 
       