Oculoplastics and Augmented Intelligence: A Literature Review
Abstract
1. Introduction
2. Methodology
3. Ptosis
4. Eyelid and Conjunctival Cancer
5. Thyroid-Associated Orbitopathy
6. Giant Cell Arteritis
7. Orbital Fractures
8. Administrative Tasks and Patient Counseling
9. Privacy Concerns
10. Conclusions & Future Directions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bazoukis, G.; Hall, J.; Loscalzo, J.; Antman, E.M.; Fuster, V.; Armoundas, A.A. The inclusion of augmented intelligence in medicine: A framework for successful implementation. Cell Rep. Med. 2022, 3, 100485. [Google Scholar] [CrossRef]
- Rajpurkar, P.; Chen, E.; Banerjee, O.; Topol, E.J. AI in health and medicine. Nat. Med. 2022, 28, 31–38. [Google Scholar] [CrossRef]
- Balas, M.; Ing, E.B. Conversational AI Models for ophthalmic diagnosis: Comparison of ChatGPT and the Isabel Pro Differential Diagnosis Generator. JFO Open Ophthalmol. 2023, 1, 100005. [Google Scholar] [CrossRef]
- Ing, E.B.; Balas, M.; Nassrallah, G.; DeAngelis, D.; Nijhawan, N. The Isabel Differential Diagnosis Generator for Orbital Diagnosis. Ophthalmic Plast. Reconstr. Surg. 2023, 39, 461–464. [Google Scholar] [CrossRef]
- Balas, M.; Janic, A.; Daigle, P.; Nijhawan, N.; Hussain, A.; Gill, H.; Lahaie, G.L.; Belliveau, M.J.; Crawford, S.A.; Arjmand, P.; et al. Evaluating ChatGPT on Orbital and Oculofacial Disorders: Accuracy and Readability Insights. Ophthalmic Plast. Reconstr. Surg. 2024, 40, 217–222. [Google Scholar] [CrossRef]
- Yin, J.; Ngiam, K.Y.; Teo, H.H. Role of Artificial Intelligence Applications in Real-Life Clinical Practice: Systematic Review. J. Med. Internet Res. 2021, 23, e25759. [Google Scholar] [CrossRef]
- Abascal Azanza, C.; Barrio-Barrio, J.; Ramos Cejudo, J.; Ybarra Arrospide, B.; Devoto, M.H. Development and validation of a convolutional neural network to identify blepharoptosis. Sci. Rep. 2023, 13, 17585. [Google Scholar] [CrossRef] [PubMed]
- Hung, J.Y.; Perera, C.; Chen, K.W.; Myung, D.; Chiu, H.K.; Fuh, C.S.; Hsu, C.R.; Liao, S.L.; Kossler, A.L. A deep learning approach to identify blepharoptosis by convolutional neural networks. Int. J. Med. Inform. 2021, 148, 104402. [Google Scholar] [CrossRef] [PubMed]
- Lou, L.; Cao, J.; Wang, Y.; Gao, Z.; Jin, K.; Xu, Z.; Zhang, Q.; Huang, X.; Ye, J. Deep learning-based image analysis for automated measurement of eyelid morphology before and after blepharoptosis surgery. Ann. Med. 2021, 53, 2278–2285. [Google Scholar] [CrossRef]
- Lou, L.; Yang, L.; Ye, X.; Zhu, Y.; Wang, S.; Sun, L.; Qian, D.; Ye, J. A Novel Approach for Automated Eyelid Measurements in Blepharoptosis Using Digital Image Analysis. Curr. Eye Res. 2019, 44, 1075–1079. [Google Scholar] [CrossRef]
- Nam, Y.; Song, T.; Lee, J.; Lee, J.K. Development of a neural network-based automated eyelid measurement system. Sci. Rep. 2024, 14, 1202. [Google Scholar] [CrossRef]
- Schulz, C.B.; Clarke, H.; Makuloluwe, S.; Thomas, P.B.; Kang, S. Automated extraction of clinical measures from videos of oculofacial disorders using machine learning: Feasibility, validity and reliability. Eye 2023, 37, 2810–2816. [Google Scholar] [CrossRef]
- Van Brummen, A.; Owen, J.P.; Spaide, T.; Froines, C.; Lu, R.; Lacy, M.; Blazes, M.; Li, E.; Lee, C.S.; Lee, A.Y.; et al. PeriorbitAI: Artificial Intelligence Automation of Eyelid and Periorbital Measurements. Am. J. Ophthalmol. 2021, 230, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.C.; Tzeng, S.S.; Hsiao, Y.C.; Chen, R.F.; Hung, E.C.; Lee, O.K. Smartphone-Based Artificial Intelligence-Assisted Prediction for Eyelid Measurements: Algorithm Development and Observational Validation Study. JMIR mHealth uHealth 2021, 9, e32444. [Google Scholar] [CrossRef]
- Tabuchi, H.; Nagasato, D.; Masumoto, H.; Tanabe, M.; Ishitobi, N.; Ochi, H.; Shimizu, Y.; Kiuchi, Y. Developing an iOS application that uses machine learning for the automated diagnosis of blepharoptosis. Graefes Arch. Clin. Exp. Ophthalmol. 2022, 260, 1329–1335. [Google Scholar] [CrossRef]
- Song, X.; Tong, W.; Lei, C.; Huang, J.; Fan, X.; Zhai, G.; Zhou, H. A clinical decision model based on machine learning for ptosis. BMC Ophthalmol. 2021, 21, 169. [Google Scholar] [CrossRef]
- Balas, M.; Micieli, J.A.; Wulc, A.; Ing, E.B. Text-to-image artificial intelligence models for preoperative counselling in oculoplastics. Can. J. Ophthalmol. 2024, 59, e75–e76. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, X.; Zhang, Q.; Lee, S.Y.; Wang, Y.; Jin, K.; Lou, L.; Ye, J. A Fully Automatic Postoperative Appearance Prediction System for Blepharoptosis Surgery with Image-based Deep Learning. Ophthalmol. Sci. 2022, 2, 100169. [Google Scholar] [CrossRef] [PubMed]
- Bahceci Simsek, I.; Sirolu, C. Analysis of surgical outcome after upper eyelid surgery by computer vision algorithm using face and facial landmark detection. Graefes Arch. Clin. Exp. Ophthalmol. 2021, 259, 3119–3125. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Qiang, W.; Chen, H.; Pei, M.; Yu, X.; Wang, L.; Li, Z.; Xie, W.; Wu, X.; Jiang, J.; et al. Artificial intelligence to detect malignant eyelid tumors from photographic images. NPJ Digit. Med. 2022, 5, 23. [Google Scholar] [CrossRef]
- Monheit, G.; Cognetta, A.B.; Ferris, L.; Rabinovitz, H.; Gross, K.; Martini, M.; Grichnik, J.M.; Mihm, M.; Prieto, V.G.; Googe, P.; et al. The performance of MelaFind: A prospective multicenter study. Arch. Dermatol. 2011, 147, 188–194. [Google Scholar] [CrossRef]
- Hillson, T.R.; Harvey, J.T.; Hurwitz, J.J.; Liu, E.; Oestreicher, J.H.; Pashby, R.C. Sensitivity and specificity of the diagnosis of periocular lesions by oculoplastic surgeons. Can. J. Ophthalmol. 1998, 33, 377–383. [Google Scholar] [PubMed]
- Tan, E.; Lin, F.; Sheck, L.; Salmon, P.; Ng, S. A practical decision-tree model to predict complexity of reconstructive surgery after periocular basal cell carcinoma excision. J. Eur. Acad. Dermatol. Venereol. 2017, 31, 717–723. [Google Scholar] [CrossRef]
- Jiang, Z.; Wang, L.; Wang, Y.; Jia, G.; Zeng, G.; Wang, J.; Li, Y.; Chen, D.; Qian, G.; Jin, Q. A Self-Supervised Learning Based Framework for Eyelid Malignant Melanoma Diagnosis in Whole Slide Images. IEEE/ACM Trans. Comput. Biol. Bioinform. 2024, 21, 701–714. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ding, L.; Liu, Z.; Sun, L.; Chen, L.; Jia, R.; Dai, X.; Cao, J.; Ye, J. Automated identification of malignancy in whole-slide pathological images: Identification of eyelid malignant melanoma in gigapixel pathological slides using deep learning. Br. J. Ophthalmol. 2020, 104, 318–323. [Google Scholar] [CrossRef]
- Stalhammar, G.; Lardner, E.; Georgsson, M.; Seregard, S. Increasing demand for ophthalmic pathology: Time trends in a laboratory with nationwide coverage. BMC Ophthalmol. 2023, 23, 88. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Yang, H.; Douglas, R.S. A New Era in the Treatment of Thyroid Eye Disease. Am. J. Ophthalmol. 2019, 208, 281–288. [Google Scholar] [CrossRef]
- Shin, K.; Choung, H.; Lee, M.J.; Kim, J.; Lee, G.M.; Kim, S.; Kim, J.H.; Oh, R.; Park, J.; Lee, S.M.; et al. A Preliminary Evaluation of the Diagnostic Performance of a Smartphone-Based Machine Learning-Assisted System for Evaluation of Clinical Activity Score in Digital Images of Thyroid-Associated Orbitopathy. Thyroid 2024, 34, 744–752. [Google Scholar] [CrossRef]
- Huang, X.; Ju, L.; Li, J.; He, L.; Tong, F.; Liu, S.; Li, P.; Zhang, Y.; Wang, X.; Yang, Z.; et al. An Intelligent Diagnostic System for Thyroid-Associated Ophthalmopathy Based on Facial Images. Front. Med. 2022, 9, 920716. [Google Scholar] [CrossRef]
- Karlin, J.; Gai, L.; LaPierre, N.; Danesh, K.; Farajzadeh, J.; Palileo, B.; Taraszka, K.; Zheng, J.; Wang, W.; Eskin, E.; et al. Ensemble neural network model for detecting thyroid eye disease using external photographs. Br. J. Ophthalmol. 2023, 107, 1722–1729. [Google Scholar] [CrossRef]
- Moon, J.H.; Shin, K.; Lee, G.M.; Park, J.; Lee, M.J.; Choung, H.; Kim, N. Machine learning-assisted system using digital facial images to predict the clinical activity score in thyroid-associated orbitopathy. Sci. Rep. 2022, 12, 22085. [Google Scholar] [CrossRef]
- Shao, J.; Huang, X.; Gao, T.; Cao, J.; Wang, Y.; Zhang, Q.; Lou, L.; Ye, J. Deep learning-based image analysis of eyelid morphology in thyroid-associated ophthalmopathy. Quant. Imaging Med. Surg. 2023, 13, 1592–1604. [Google Scholar] [CrossRef]
- Yan, C.; Zhang, Z.; Zhang, G.; Liu, H.; Zhang, R.; Liu, G.; Rao, J.; Yang, W.; Sun, B. An ensemble deep learning diagnostic system for determining Clinical Activity Scores in thyroid-associated ophthalmopathy: Integrating multi-view multimodal images from anterior segment slit-lamp photographs and facial images. Front. Endocrinol. 2024, 15, 1365350. [Google Scholar] [CrossRef]
- Zhang, Y.; Rao, J.; Wu, X.; Zhou, Y.; Liu, G.; Zhang, H. Automatic measurement of exophthalmos based orbital CT images using deep learning. Front. Cell Dev. Biol. 2023, 11, 1135959. [Google Scholar] [CrossRef]
- Hanai, K.; Tabuchi, H.; Nagasato, D.; Tanabe, M.; Masumoto, H.; Miya, S.; Nishio, N.; Nakamura, H.; Hashimoto, M. Automated detection of enlarged extraocular muscle in Graves’ ophthalmopathy with computed tomography and deep neural network. Sci. Rep. 2022, 12, 16036. [Google Scholar] [CrossRef]
- Alkhadrawi, A.M.; Lin, L.Y.; Langarica, S.A.; Kim, K.; Ha, S.K.; Lee, N.G.; Do, S. Deep-Learning Based Automated Segmentation and Quantitative Volumetric Analysis of Orbital Muscle and Fat for Diagnosis of Thyroid Eye Disease. Investig. Ophthalmol. Vis. Sci. 2024, 65, 6. [Google Scholar] [CrossRef]
- Lai, P.H.; Hu, R.Y.; Huang, X. Alterations in dynamic regional homogeneity within default mode network in patients with thyroid-associated ophthalmopathy. Neuroreport 2024, 35, 702–711. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Dong, L.; Luo, L.; Zhou, D.; Ling, S.; Li, D. Artificial Intelligence-based quantitative evaluation of retinal vascular parameters in thyroid-associated ophthalmopathy. Endocrine 2024, 85, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Yao, N.; Li, L.; Gao, Z.; Zhao, C.; Li, Y.; Han, C.; Nan, J.; Zhu, Z.; Xiao, Y.; Zhu, F.; et al. Deep learning-based diagnosis of disease activity in patients with Graves’ orbitopathy using orbital SPECT/CT. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 3666–3674. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Song, X.; Li, L.; Li, Y.; Jiang, M.; Sun, R.; Zhou, H.; Fan, X. Detection of active and inactive phases of thyroid-associated ophthalmopathy using deep convolutional neural network. BMC Ophthalmol. 2021, 21, 39. [Google Scholar] [CrossRef]
- Lee, J.; Lee, S.; Lee, W.J.; Moon, N.J.; Lee, J.K. Neural network application for assessing thyroid-associated orbitopathy activity using orbital computed tomography. Sci. Rep. 2023, 13, 13018. [Google Scholar] [CrossRef]
- Wang, M.; Li, G.; Dong, L.; Hou, Z.; Zhang, J.; Li, D. Severity Identification of Graves Orbitopathy via Random Forest Algorithm. Horm. Metab. Res. 2024, 56, 706–711. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ma, J.; Xiao, J.; Wang, Y.; He, W. Use of extreme gradient boosting, light gradient boosting machine, and deep neural networks to evaluate the activity stage of extraocular muscles in thyroid-associated ophthalmopathy. Graefes Arch. Clin. Exp. Ophthalmol. 2024, 262, 203–210. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Li, L.; Li, Y.; Sun, J.; Song, X.; Zhou, H. Novel observational study protocol to develop a prediction model that identifies patients with Graves’ ophthalmopathy insensitive to intravenous glucocorticoids pulse therapy. BMJ Open 2021, 11, e053173. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kim, J.; Ryu, D.; Choi, H.Y. Factors related to steroid treatment responsiveness in thyroid eye disease patients and application of SHAP for feature analysis with XGBoost. Front. Endocrinol. 2023, 14, 1079628. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Chen, L.; Zhang, J.L.; Chen, W.; Chen, H.H.; Liu, H.; Shi, H.B.; Wu, F.Y.; Xu, X.Q. T2-Weighted MR Imaging-Derived Radiomics for Pretreatment Determination of Therapeutic Response to Glucocorticoid in Patients With Thyroid-Associated Ophthalmopathy: Comparison With Semiquantitative Evaluation. J. Magn. Reson. Imaging 2022, 56, 862–872. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, M.; Chan, H.C.; Zhang, H.; Xu, J.; Liu, Y.; Zhu, L.; Tao, X.; Xia, D.; Zhou, L.; et al. Whole-orbit radiomics: Machine learning-based multi- and fused- region radiomics signatures for intravenous glucocorticoid response prediction in thyroid eye disease. J. Transl. Med. 2024, 22, 56. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Wu, Q.; Chen, L.; Chen, W.; Yang, T.; Xu, X.Q.; Wu, F.Y.; Hu, H.; Chen, H.H. Texture analysis of orbital magnetic resonance imaging for monitoring and predicting treatment response to glucocorticoids in patients with thyroid-associated ophthalmopathy. Endocr. Connect. 2021, 10, 676–684. [Google Scholar] [CrossRef]
- Ing, E.B.; Miller, N.R.; Nguyen, A.; Su, W.; Bursztyn, L.; Poole, M.; Kansal, V.; Toren, A.; Albreki, D.; Mouhanna, J.G.; et al. Neural network and logistic regression diagnostic prediction models for giant cell arteritis: Development and validation. Clin. Ophthalmol. 2019, 13, 421–430. [Google Scholar] [CrossRef]
- Fernandez-Fernandez, E.; Monjo-Henry, I.; Bonilla, G.; Plasencia, C.; Miranda-Carus, M.E.; Balsa, A.; De Miguel, E. False positives in the ultrasound diagnosis of giant cell arteritis: Some diseases can also show the halo sign. Rheumatology 2020, 59, 2443–2447. [Google Scholar] [CrossRef]
- Avasarala, J.; Das, S.; Keshavamurthy, S. Point-of-Care Ultrasound With Artificial Intelligence-Driven Diagnostics in Giant Cell Arteritis: Blindness Prevention on a Global Scale. J. Rheumatol. 2024, 51, 1040–1041. [Google Scholar] [CrossRef]
- Roncato, C.; Perez, L.; Brochet-Guegan, A.; Allix-Beguec, C.; Raimbeau, A.; Gautier, G.; Agard, C.; Ploton, G.; Moisselin, S.; Lorcerie, F.; et al. Colour Doppler ultrasound of temporal arteries for the diagnosis of giant cell arteritis: A multicentre deep learning study. Clin. Exp. Rheumatol. 2020, 38 (Suppl. 124), 120–125. [Google Scholar] [PubMed]
- Astion, M.L.; Wener, M.H.; Thomas, R.G.; Hunder, G.G.; Bloch, D.A. Application of neural networks to the classification of giant cell arteritis. Arthritis Rheum. 1994, 37, 760–770. [Google Scholar] [CrossRef]
- Venerito, V.; Emmi, G.; Cantarini, L.; Leccese, P.; Fornaro, M.; Fabiani, C.; Lascaro, N.; Coladonato, L.; Mattioli, I.; Righetti, G.; et al. Validity of Machine Learning in Predicting Giant Cell Arteritis Flare After Glucocorticoids Tapering. Front. Immunol. 2022, 13, 860877. [Google Scholar] [CrossRef]
- Morita, D.; Kawarazaki, A.; Soufi, M.; Otake, Y.; Sato, Y.; Numajiri, T. Automatic detection of midfacial fractures in facial bone CT images using deep learning-based object detection models. J. Stomatol. Oral. Maxillofac. Surg. 2024, 125, 101914. [Google Scholar] [CrossRef]
- Kang, D. Evaluating the Accuracy and Reliability of Blowout Fracture Area Measurement Methods: A Review and the Potential Role of Artificial Intelligence. J. Craniofac. Surg. 2023, 34, 1834–1836. [Google Scholar] [CrossRef]
- Morita, D.; Kawarazaki, A.; Koimizu, J.; Tsujiko, S.; Soufi, M.; Otake, Y.; Sato, Y.; Numajiri, T. Automatic orbital segmentation using deep learning-based 2D U-net and accuracy evaluation: A retrospective study. J. Craniomaxillofac. Surg. 2023, 51, 609–613. [Google Scholar] [CrossRef]
- Ayers, J.W.; Poliak, A.; Dredze, M.; Leas, E.C.; Zhu, Z.; Kelley, J.B.; Faix, D.J.; Goodman, A.M.; Longhurst, C.A.; Hogarth, M.; et al. Comparing Physician and Artificial Intelligence Chatbot Responses to Patient Questions Posted to a Public Social Media Forum. JAMA Intern. Med. 2023, 183, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, C.; Liu, S. Utility of ChatGPT in Clinical Practice. J. Med. Internet Res. 2023, 25, e48568. [Google Scholar] [CrossRef] [PubMed]
- Rajabi, M.T.; Rafizadeh, S.M.; Ghahvehchian, H. Exploring the Use of ChatGPT in Delivering Evidence-Based Information to Patients with Thyroid Eye Disease. Ophthalmic Plast. Reconstr. Surg. 2024, 40, 113–115. [Google Scholar] [CrossRef]
- Shiraishi, M.; Tanigawa, K.; Tomioka, Y.; Miyakuni, A.; Moriwaki, Y.; Yang, R.; Oba, J.; Okazaki, M. Blepharoptosis Consultation with Artificial Intelligence: Aesthetic Surgery Advice and Counseling from Chat Generative Pre-Trained Transformer (ChatGPT). Aesthetic Plast. Surg. 2024, 48, 2057–2063. [Google Scholar] [CrossRef] [PubMed]
- Shiraishi, M.; Tomioka, Y.; Miyakuni, A.; Ishii, S.; Hori, A.; Park, H.; Ohba, J.; Okazaki, M. Performance of ChatGPT in Answering Clinical Questions on the Practical Guideline of Blepharoptosis. Aesthetic Plast. Surg. 2024, 48, 2389–2398. [Google Scholar] [CrossRef] [PubMed]
- Sood, A.C.; Dhull, K.S. The Future of Six Sigma- Integrating AI for Continuous Improvement. Int. J. Innov. Res. Eng. Manag. 2024, 11, 8–15. [Google Scholar] [CrossRef]
- Balas, M.; Rudnisky, C.; Ing, E.B. Hidden in plain sight: AI-driven steganography and watermarking for secure transmission of ophthalmic data. AJO Int. 2024, 1, 100043. [Google Scholar] [CrossRef]
- Balas, M.; Wong, D.T.; Ing, E.B. Blockchain technology: Revolutionizing ophthalmology and patient-centred care. Can. J. Ophthalmol. 2024, 59, e99–e101. [Google Scholar] [CrossRef]
- Sheller, M.J.; Edwards, B.; Reina, G.A.; Martin, J.; Pati, S.; Kotrotsou, A.; Milchenko, M.; Xu, W.; Marcus, D.; Colen, R.R.; et al. Federated learning in medicine: Facilitating multi-institutional collaborations without sharing patient data. Sci. Rep. 2020, 10, 12598. [Google Scholar] [CrossRef]
- Bondok, M.; Selvakumar, R.; Asdo, A.; Naderi, B.; Zhang, C.; Wong, C.; Felfeli, T. Sociodemographic Reporting in Artificial Intelligence Studies of Retinal Diseases: A Critical Appraisal of the Literature. Ophthalmol. Retin. 2025; in press. [Google Scholar] [CrossRef]
- Chen, J.S.; Reddy, A.J.; Al-Sharif, E.; Shoji, M.K.; Kalaw, F.G.P.; Eslani, M.; Lang, P.Z.; Arya, M.; Koretz, Z.A.; Bolo, K.A.; et al. Analysis of ChatGPT Responses to Ophthalmic Cases: Can ChatGPT Think like an Ophthalmologist? Ophthalmol. Sci. 2025, 5, 100600. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ing, E.; Bondok, M. Oculoplastics and Augmented Intelligence: A Literature Review. J. Clin. Med. 2025, 14, 6875. https://doi.org/10.3390/jcm14196875
Ing E, Bondok M. Oculoplastics and Augmented Intelligence: A Literature Review. Journal of Clinical Medicine. 2025; 14(19):6875. https://doi.org/10.3390/jcm14196875
Chicago/Turabian StyleIng, Edsel, and Mostafa Bondok. 2025. "Oculoplastics and Augmented Intelligence: A Literature Review" Journal of Clinical Medicine 14, no. 19: 6875. https://doi.org/10.3390/jcm14196875
APA StyleIng, E., & Bondok, M. (2025). Oculoplastics and Augmented Intelligence: A Literature Review. Journal of Clinical Medicine, 14(19), 6875. https://doi.org/10.3390/jcm14196875