Unraveling the Intestinal Microbiota Conundrum in Allogeneic Hematopoietic Stem Cell Transplantation: Fingerprints, Clinical Implications and Future Directions
Abstract
1. Introduction
Brief Overview of Human Intestinal Microbiota
2. The Dynamics of Intestinal Microbiota Through the Patient Journey
3. Intestinal Microbiota Fingerprints Prior to Allo-HSCT
4. Intestinal Microbiota Fingerprints During Allo-HSCT
4.1. Intestinal Diversity and Implications to Clinical Outcomes
4.2. SCFA-Producing Bacteria and Implications to Clinical Outcomes
4.3. Intestinal Domination and Implications to Clinical Outcomes
5. Mechanistic Insights Modulating the Relationship Between Intestinal Microbiota and Allo-HSCT
6. Strategies to Modulate the Intestinal Microbiota During Allo-HSCT
7. Challenges in Translating Intestinal Microbiota Research into Allo-HSCT Clinical Practice
8. Conclusions and Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Allo-HSCT | Allogeneic hematopoietic stem cell transplantation |
BSI | Bloodstream infection |
CI | Confidence interval |
CMV | Cytomegalovirus |
D | Day |
FDA | Food and Drug Administration |
FMT | Fecal microbiota transplantation |
NR | Not Reported |
LRTI | Lower respiratory tract infection |
SCFA | Short-chain fatty acid |
SE | Standard error |
STORMS | Strengthening The Organization and Reporting of Microbiome Studies |
GvHD | Graft versus host disease |
GFO | Glutamine, fiber and oligosaccharides |
HR | Hazard Ratio |
HLA | Human Leukocyte Antigen |
TRM | Transplantation-related mortality |
References
- Hill, G.R.; Betts, B.C.; Tkachev, V.; Kean, L.S.; Blazar, B.R. Current Concepts and Advances in Graft-Versus-Host Disease Immunology. Annu. Rev. Immunol. 2021, 39, 19–49. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, J.L.; Levine, J.E.; Reddy, P.; Holler, E. Graft-versus-Host Disease. Lancet 2009, 373, 1550–1561. [Google Scholar] [CrossRef]
- Jagasia, M.; Arora, M.; Flowers, M.E.D.; Chao, N.J.; McCarthy, P.L.; Cutler, C.S.; Urbano-Ispizua, A.; Pavletic, S.Z.; Haagenson, M.D.; Zhang, M.-J.; et al. Risk Factors for Acute GVHD and Survival after Hematopoietic Cell Transplantation. Blood 2012, 119, 296–307. [Google Scholar] [CrossRef]
- Ilett, E.E.; Jørgensen, M.; Noguera-Julian, M.; Nørgaard, J.C.; Daugaard, G.; Helleberg, M.; Paredes, R.; Murray, D.D.; Lundgren, J.; MacPherson, C.; et al. Associations of the Gut Microbiome and Clinical Factors with Acute GVHD in Allogeneic HSCT Recipients. Blood Adv. 2020, 4, 5797–5809. [Google Scholar] [CrossRef]
- Nesher, L.; Rolston, K.V.I. Febrile Neutropenia in Transplant Recipients. In Principles and Practice of Transplant Infectious Diseases; Safdar, A., Ed.; Springer: New York, NY, USA, 2019; pp. 185–198; ISBN 978-1-4939-9032-0. [Google Scholar]
- Barrett, A.J.; Battiwalla, M. Relapse after Allogeneic Stem Cell Transplantation. Expert. Rev. Hematol. 2010, 3, 429–441. [Google Scholar] [CrossRef]
- Horowitz, M.; Schreiber, H.; Elder, A.; Heidenreich, O.; Vormoor, J.; Toffalori, C.; Vago, L.; Kröger, N. Epidemiology and Biology of Relapse after Stem Cell Transplantation. Bone Marrow Transpl. 2018, 53, 1379–1389. [Google Scholar] [CrossRef] [PubMed]
- Lynch, S.V.; Pedersen, O. The Human Intestinal Microbiome in Health and Disease. N. Engl. J. Med. 2016, 375, 2369–2379. [Google Scholar] [CrossRef]
- Malard, F.; Holler, E.; Sandmaier, B.M.; Huang, H.; Mohty, M. Acute Graft-versus-Host Disease. Nat. Rev. Dis. Primers 2023, 9, 27. [Google Scholar] [CrossRef]
- Fujiwara, H. Crosstalk Between Intestinal Microbiota Derived Metabolites and Tissues in Allogeneic Hematopoietic Cell Transplantation. Front. Immunol. 2021, 12, 703298. [Google Scholar] [CrossRef]
- Nobels, A.; Van Marcke, C.; Jordan, B.F.; Van Hul, M.; Cani, P.D. The Gut Microbiome and Cancer: From Tumorigenesis to Therapy. Nat. Metab. 2025, 7, 895–917. [Google Scholar] [CrossRef] [PubMed]
- Rashidi, A.; Kaiser, T.; Shields-Cutler, R.; Graiziger, C.; Holtan, S.G.; Rehman, T.U.; Wasko, J.; Weisdorf, D.J.; Dunny, G.; Khoruts, A.; et al. Dysbiosis Patterns during Re-Induction/Salvage versus Induction Chemotherapy for Acute Leukemia. Sci. Rep. 2019, 9, 6083. [Google Scholar] [CrossRef]
- Galloway-Peña, J.R.; Smith, D.P.; Sahasrabhojane, P.; Ajami, N.J.; Wadsworth, W.D.; Daver, N.G.; Chemaly, R.F.; Marsh, L.; Ghantoji, S.S.; Pemmaraju, N.; et al. The Role of the Gastrointestinal Microbiome in Infectious Complications during Induction Chemotherapy for Acute Myeloid Leukemia. Cancer 2016, 122, 2186–2196. [Google Scholar] [CrossRef] [PubMed]
- Kusakabe, S.; Fukushima, K.; Maeda, T.; Motooka, D.; Nakamura, S.; Fujita, J.; Yokota, T.; Shibayama, H.; Oritani, K.; Kanakura, Y. Pre- and Post-serial Metagenomic Analysis of Gut Microbiota as a Prognostic Factor in Patients Undergoing Haematopoietic Stem Cell Transplantation. Br. J. Haematol. 2020, 188, 438–449. [Google Scholar] [CrossRef]
- Henig, I.; Yehudai-Ofir, D.; Zuckerman, T. The Clinical Role of the Gut Microbiome and Fecal Microbiota Transplantation in Allogeneic Stem Cell Transplantation. Haematologica 2020, 106, 933. [Google Scholar] [CrossRef]
- Liu, C.; Frank, D.N.; Horch, M.; Chau, S.; Ir, D.; Horch, E.A.; Tretina, K.; Van Besien, K.; Lozupone, C.A.; Nguyen, V.H. Associations between Acute Gastrointestinal GvHD and the Baseline Gut Microbiota of Allogeneic Hematopoietic Stem Cell Transplant Recipients and Donors. Bone Marrow Transpl. 2017, 52, 1643–1650. [Google Scholar] [CrossRef] [PubMed]
- Peled, J.U.; Gomes, A.L.C.; Devlin, S.M.; Littmann, E.R.; Taur, Y.; Sung, A.D.; Weber, D.; Hashimoto, D.; Slingerland, A.E.; Slingerland, J.B.; et al. Microbiota as Predictor of Mortality in Allogeneic Hematopoietic-Cell Transplantation. N. Engl. J. Med. 2020, 382, 822–834. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, C.; Zhang, A. Gut Microbiota in Acute Leukemia: Current Evidence and Future Directions. Front. Microbiol. 2022, 13, 1045497. [Google Scholar] [CrossRef] [PubMed]
- Holler, E.; Butzhammer, P.; Schmid, K.; Hundsrucker, C.; Koestler, J.; Peter, K.; Zhu, W.; Sporrer, D.; Hehlgans, T.; Kreutz, M.; et al. Metagenomic Analysis of the Stool Microbiome in Patients Receiving Allogeneic Stem Cell Transplantation: Loss of Diversity Is Associated with Use of Systemic Antibiotics and More Pronounced in Gastrointestinal Graft-versus-Host Disease. Biol. Blood Marrow Transplant. 2014, 20, 640–645. [Google Scholar] [CrossRef]
- Mancini, N.; Greco, R.; Pasciuta, R.; Barbanti, M.C.; Pini, G.; Morrow, O.B.; Morelli, M.; Vago, L.; Clementi, N.; Giglio, F.; et al. Enteric Microbiome Markers as Early Predictors of Clinical Outcome in Allogeneic Hematopoietic Stem Cell Transplant: Results of a Prospective Study in Adult Patients. Open Forum Infect. Dis. 2017, 4, ofx215. [Google Scholar] [CrossRef]
- Masetti, R.; Leardini, D.; Muratore, E.; Fabbrini, M.; D’Amico, F.; Zama, D.; Baccelli, F.; Gottardi, F.; Belotti, T.; Ussowicz, M.; et al. Gut Microbiota Diversity before Allogeneic Hematopoietic Stem Cell Transplantation as a Predictor of Mortality in Children. Blood 2023, 142, 1387–1398. [Google Scholar] [CrossRef]
- Messina, J.A.; Tan, C.Y.; Ren, Y.; Hill, L.; Bush, A.; Lew, M.; Andermann, T.; Peled, J.U.; Gomes, A.; Van Den Brink, M.R.M.; et al. Enterococcus Intestinal Domination Is Associated with Increased Mortality in the Acute Leukemia Chemotherapy Population. Clin. Infect. Dis. 2024, 78, 414–422. [Google Scholar] [CrossRef]
- Taur, Y.; Jenq, R.R.; Perales, M.-A.; Littmann, E.R.; Morjaria, S.; Ling, L.; No, D.; Gobourne, A.; Viale, A.; Dahi, P.B.; et al. The Effects of Intestinal Tract Bacterial Diversity on Mortality Following Allogeneic Hematopoietic Stem Cell Transplantation. Blood 2014, 124, 1174–1182. [Google Scholar] [CrossRef]
- Gu, Z.; Xiong, Q.; Wang, L.; Wang, L.; Li, F.; Hou, C.; Dou, L.; Zhu, B.; Liu, D. The Impact of Intestinal Microbiota in Antithymocyte Globulin–Based Myeloablative Allogeneic Hematopoietic Cell Transplantation. Cancer 2022, 128, 1402–1410. [Google Scholar] [CrossRef]
- Romick-Rosendale, L.E.; Haslam, D.B.; Lane, A.; Denson, L.; Lake, K.; Wilkey, A.; Watanabe, M.; Bauer, S.; Litts, B.; Luebbering, N.; et al. Antibiotic Exposure and Reduced Short Chain Fatty Acid Production after Hematopoietic Stem Cell Transplant. Biol. Blood Marrow Transplant. 2018, 24, 2418–2424. [Google Scholar] [CrossRef]
- Payen, M.; Nicolis, I.; Robin, M.; Michonneau, D.; Delannoye, J.; Mayeur, C.; Kapel, N.; Berçot, B.; Butel, M.-J.; Le Goff, J.; et al. Functional and Phylogenetic Alterations in Gut Microbiome Are Linked to Graft-versus-Host Disease Severity. Blood Adv. 2020, 4, 1824–1832. [Google Scholar] [CrossRef] [PubMed]
- Sardzikova, S.; Andrijkova, K.; Svec, P.; Beke, G.; Klucar, L.; Minarik, G.; Bielik, V.; Kolenova, A.; Soltys, K. Gut Diversity and the Resistome as Biomarkers of Febrile Neutropenia Outcome in Paediatric Oncology Patients Undergoing Hematopoietic Stem Cell Transplantation. Sci. Rep. 2024, 14, 5504. [Google Scholar] [CrossRef]
- Jenq, R.R.; Taur, Y.; Devlin, S.M.; Ponce, D.M.; Goldberg, J.D.; Ahr, K.F.; Littmann, E.R.; Ling, L.; Gobourne, A.C.; Miller, L.C.; et al. Intestinal Blautia Is Associated with Reduced Death from Graft-versus-Host Disease. Biol. Blood Marrow Transplant. 2015, 21, 1373–1383. [Google Scholar] [CrossRef] [PubMed]
- Haak, B.W.; Littmann, E.R.; Chaubard, J.-L.; Pickard, A.J.; Fontana, E.; Adhi, F.; Gyaltshen, Y.; Ling, L.; Morjaria, S.M.; Peled, J.U.; et al. Impact of Gut Colonization with Butyrate Producing Microbiota on Respiratory Viral Infection Following Allo-HCT. Blood 2018, 131, 2978–2986. [Google Scholar] [CrossRef]
- Meedt, E.; Hiergeist, A.; Gessner, A.; Dettmer, K.; Liebisch, G.; Ghimire, S.; Poeck, H.; Edinger, M.; Wolff, D.; Herr, W.; et al. Prolonged Suppression of Butyrate-Producing Bacteria Is Associated with Acute Gastrointestinal Graft-vs-Host Disease and Transplantation-Related Mortality After Allogeneic Stem Cell Transplantation. Clin. Infect. Dis. 2022, 74, 614–621. [Google Scholar] [CrossRef] [PubMed]
- Chhabra, S.; Szabo, A.; Clurman, A.; McShane, K.; Waters, N.; Eastwood, D.; Samanas, L.; Fei, T.; Armijo, G.; Abedin, S.; et al. Mitigation of Gastrointestinal Graft-versus-Host Disease with Tocilizumab Prophylaxis Is Accompanied by Preservation of Microbial Diversity and Attenuation of Enterococcal Domination. Haematologica 2022, 108, 250–256. [Google Scholar] [CrossRef]
- Stein-Thoeringer, C.K.; Nichols, K.B.; Lazrak, A.; Docampo, M.D.; Slingerland, A.E.; Slingerland, J.B.; Clurman, A.G.; Armijo, G.; Gomes, A.L.C.; Shono, Y.; et al. Lactose Drives Enterococcus Expansion to Promote Graft-versus-Host Disease. Science 2019, 366, 1143–1149. [Google Scholar] [CrossRef]
- Fujimoto, K.; Hayashi, T.; Yamamoto, M.; Sato, N.; Shimohigoshi, M.; Miyaoka, D.; Yokota, C.; Watanabe, M.; Hisaki, Y.; Kamei, Y.; et al. An Enterococcal Phage-Derived Enzyme Suppresses Graft-versus-Host Disease. Nature 2024, 632, 174–181. [Google Scholar] [CrossRef]
- Taur, Y.; Xavier, J.B.; Lipuma, L.; Ubeda, C.; Goldberg, J.; Gobourne, A.; Lee, Y.J.; Dubin, K.A.; Socci, N.D.; Viale, A.; et al. Intestinal Domination and the Risk of Bacteremia in Patients Undergoing Allogeneic Hematopoietic Stem Cell Transplantation. Clin. Infect. Dis. 2012, 55, 905–914. [Google Scholar] [CrossRef]
- Biagi, E.; Zama, D.; Rampelli, S.; Turroni, S.; Brigidi, P.; Consolandi, C.; Severgnini, M.; Picotti, E.; Gasperini, P.; Merli, P.; et al. Early Gut Microbiota Signature of aGvHD in Children given Allogeneic Hematopoietic Cell Transplantation for Hematological Disorders. BMC Med. Genom. 2019, 12, 49. [Google Scholar] [CrossRef]
- Doki, N.; Suyama, M.; Sasajima, S.; Ota, J.; Igarashi, A.; Mimura, I.; Morita, H.; Fujioka, Y.; Sugiyama, D.; Nishikawa, H.; et al. Clinical Impact of Pre-Transplant Gut Microbial Diversity on Outcomes of Allogeneic Hematopoietic Stem Cell Transplantation. Ann. Hematol. 2017, 96, 1517–1523. [Google Scholar] [CrossRef]
- Luo, Y.; Sheikh, T.M.M.; Li, X.; Yuan, Y.; Yao, F.; Wang, M.; Guo, X.; Wu, J.; Shafiq, M.; Xie, Q.; et al. Exploring the Dynamics of Gut Microbiota, Antibiotic Resistance, and Chemotherapy Impact in Acute Leukemia Patients: A Comprehensive Metagenomic Analysis. Virulence 2024, 15, 2428843. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, P.; Curtis, N. The Effect of Antibiotics on the Composition of the Intestinal Microbiota—A Systematic Review. J. Infect. 2019, 79, 471–489. [Google Scholar] [CrossRef] [PubMed]
- Taur, Y.; Coyte, K.; Schluter, J.; Robilotti, E.; Figueroa, C.; Gjonbalaj, M.; Littmann, E.R.; Ling, L.; Miller, L.; Gyaltshen, Y.; et al. Reconstitution of the Gut Microbiota of Antibiotic-Treated Patients by Autologous Fecal Microbiota Transplant. Sci. Transl. Med. 2018, 10, eaap9489. [Google Scholar] [CrossRef]
- Masetti, R.; D’Amico, F.; Zama, D.; Leardini, D.; Muratore, E.; Ussowicz, M.; Fraczkiewicz, J.; Cesaro, S.; Caddeo, G.; Pezzella, V.; et al. Febrile Neutropenia Duration Is Associated with the Severity of Gut Microbiota Dysbiosis in Pediatric Allogeneic Hematopoietic Stem Cell Transplantation Recipients. Cancers 2022, 14, 1932. [Google Scholar] [CrossRef] [PubMed]
- Galloway-Peña, J.R.; Peterson, C.B.; Malik, F.; Sahasrabhojane, P.V.; Shah, D.P.; Brumlow, C.E.; Carlin, L.G.; Chemaly, R.F.; Im, J.S.; Rondon, G.; et al. Fecal Microbiome, Metabolites, and Stem Cell Transplant Outcomes: A Single-Center Pilot Study. Open Forum Infect. Dis. 2019, 6, ofz173. [Google Scholar] [CrossRef]
- Artacho, A.; González-Torres, C.; Gómez-Cebrián, N.; Moles-Poveda, P.; Pons, J.; Jiménez, N.; Casanova, M.J.; Montoro, J.; Balaguer, A.; Villalba, M.; et al. Multimodal Analysis Identifies Microbiome Changes Linked to Stem Cell Transplantation-Associated Diseases. Microbiome 2024, 12, 229. [Google Scholar] [CrossRef]
- Biagi, E.; Zama, D.; Nastasi, C.; Consolandi, C.; Fiori, J.; Rampelli, S.; Turroni, S.; Centanni, M.; Severgnini, M.; Peano, C.; et al. Gut Microbiota Trajectory in Pediatric Patients Undergoing Hematopoietic SCT. Bone Marrow Transpl. 2015, 50, 992–998. [Google Scholar] [CrossRef]
- Azhar Ud Din, M.; Lin, Y.; Lyu, C.; Yi, C.; Fang, A.; Mao, F. Advancing Therapeutic Strategies for Graft-versus-Host Disease by Targeting Gut Microbiome Dynamics in Allogeneic Hematopoietic Stem Cell Transplantation: Current Evidence and Future Directions. Mol. Med. 2025, 31, 2. [Google Scholar] [CrossRef] [PubMed]
- Rashidi, A.; Ebadi, M.; Rehman, T.U.; Elhusseini, H.; Kazadi, D.; Halaweish, H.; Khan, M.H.; Hoeschen, A.; Cao, Q.; Luo, X.; et al. Randomized Double-Blind Phase II Trial of Fecal Microbiota Transplantation Versus Placebo in Allogeneic Hematopoietic Cell Transplantation and AML. J. Clin. Oncol. 2023, 41, 5306–5319. [Google Scholar] [CrossRef] [PubMed]
- Golob, J.L.; Pergam, S.A.; Srinivasan, S.; Fiedler, T.L.; Liu, C.; Garcia, K.; Mielcarek, M.; Ko, D.; Aker, S.; Marquis, S.; et al. Stool Microbiota at Neutrophil Recovery Is Predictive for Severe Acute Graft vs Host Disease After Hematopoietic Cell Transplantation. Clin. Infect. Dis. 2017, 65, 1984–1991. [Google Scholar] [CrossRef]
- Du, Y.; He, C.; An, Y.; Huang, Y.; Zhang, H.; Fu, W.; Wang, M.; Shan, Z.; Xie, J.; Yang, Y.; et al. The Role of Short Chain Fatty Acids in Inflammation and Body Health. Int. J. Mol. Sci. 2024, 25, 7379. [Google Scholar] [CrossRef]
- Xiong, R.-G.; Zhou, D.-D.; Wu, S.-X.; Huang, S.-Y.; Saimaiti, A.; Yang, Z.-J.; Shang, A.; Zhao, C.-N.; Gan, R.-Y.; Li, H.-B. Health Benefits and Side Effects of Short-Chain Fatty Acids. Foods 2022, 11, 2863. [Google Scholar] [CrossRef]
- Mann, E.R.; Lam, Y.K.; Uhlig, H.H. Short-Chain Fatty Acids: Linking Diet, the Microbiome and Immunity. Nat. Rev. Immunol. 2024, 24, 577–595. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Lao, J.; Wang, L.; Liu, S. Research Advances on Short-Chain Fatty Acids in Gastrointestinal Acute Graft- versus -Host Disease. Ther. Adv. Hematol. 2024, 15, 20406207241237602. [Google Scholar] [CrossRef]
- Rolling, T.; Zhai, B.; Gjonbalaj, M.; Tosini, N.; Yasuma-Mitobe, K.; Fontana, E.; Amoretti, L.A.; Wright, R.J.; Ponce, D.M.; Perales, M.A.; et al. Haematopoietic Cell Transplantation Outcomes Are Linked to Intestinal Mycobiota Dynamics and an Expansion of Candida Parapsilosis Complex Species. Nat. Microbiol. 2021, 6, 1505–1515. [Google Scholar] [CrossRef]
- Yang, S.-Y.; Han, S.M.; Lee, J.-Y.; Kim, K.S.; Lee, J.-E.; Lee, D.-W. Advancing Gut Microbiome Research: The Shift from Metagenomics to Multi-Omics and Future Perspectives. J. Microbiol. Biotechnol. 2025, 35, e2412001. [Google Scholar] [CrossRef]
- de Vos, W.M.; Tilg, H.; Van Hul, M.; Cani, P.D. Gut Microbiome and Health: Mechanistic Insights. Gut 2022, 71, 1020–1032. [Google Scholar] [CrossRef] [PubMed]
- Masetti, R.; Zama, D.; Leardini, D.; Muratore, E.; Turroni, S.; Brigidi, P.; Pession, A. Microbiome-Derived Metabolites in Allogeneic Hematopoietic Stem Cell Transplantation. Int. J. Mol. Sci. 2021, 22, 1197. [Google Scholar] [CrossRef]
- Yu, J.; Sun, H.; Cao, W.; Han, L.; Song, Y.; Wan, D.; Jiang, Z. Applications of Gut Microbiota in Patients with Hematopoietic Stem-Cell Transplantation. Exp. Hematol. Oncol. 2020, 9, 35. [Google Scholar] [CrossRef]
- Metafuni, E.; Di Marino, L.; Giammarco, S.; Bellesi, S.; Limongiello, M.A.; Sorà, F.; Frioni, F.; Maggi, R.; Chiusolo, P.; Sica, S. The Role of Fecal Microbiota Transplantation in the Allogeneic Stem Cell Transplant Setting. Microorganisms 2023, 11, 2182. [Google Scholar] [CrossRef]
- Yoshifuji, K.; Inamoto, K.; Kiridoshi, Y.; Takeshita, K.; Sasajima, S.; Shiraishi, Y.; Yamashita, Y.; Nisaka, Y.; Ogura, Y.; Takeuchi, R.; et al. Prebiotics Protect against Acute Graft-versus-Host Disease and Preserve the Gut Microbiota in Stem Cell Transplantation. Blood Adv. 2020, 4, 4607–4617. [Google Scholar] [CrossRef]
- Yazdandoust, E.; Hajifathali, A.; Roshandel, E.; Zarif, M.N.; Pourfathollah, A.A.; Parkhideh, S.; Mehdizadeh, M.; Amini-Kafiabad, S. Gut Microbiota Intervention by Pre and Probiotics Can Induce Regulatory T Cells and Reduce the Risk of Severe Acute GVHD Following Allogeneic Hematopoietic Stem Cell Transplantation. Transpl. Immunol. 2023, 78, 101836. [Google Scholar] [CrossRef]
- Beckerson, J.; Szydlo, R.M.; Hickson, M.; Mactier, C.E.; Innes, A.J.; Gabriel, I.H.; Palanicawandar, R.; Kanfer, E.J.; Macdonald, D.H.; Milojkovic, D.; et al. Impact of Route and Adequacy of Nutritional Intake on Outcomes of Allogeneic Haematopoietic Cell Transplantation for Haematologic Malignancies. Clin. Nutr. 2019, 38, 738–744. [Google Scholar] [CrossRef] [PubMed]
- Van Lier, Y.F.; Davids, M.; Haverkate, N.J.E.; De Groot, P.F.; Donker, M.L.; Meijer, E.; Heubel-Moenen, F.C.J.I.; Nur, E.; Zeerleder, S.S.; Nieuwdorp, M.; et al. Donor Fecal Microbiota Transplantation Ameliorates Intestinal Graft-versus-Host Disease in Allogeneic Hematopoietic Cell Transplant Recipients. Sci. Transl. Med. 2020, 12, eaaz8926. [Google Scholar] [CrossRef] [PubMed]
- Karimi, M.; Shirsalimi, N.; Hashempour, Z.; Salehi Omran, H.; Sedighi, E.; Beigi, F.; Mortezazadeh, M. Safety and Efficacy of Fecal Microbiota Transplantation (FMT) as a Modern Adjuvant Therapy in Various Diseases and Disorders: A Comprehensive Literature Review. Front. Immunol. 2024, 15, 1439176. [Google Scholar] [CrossRef]
- Michailidis, L. Adverse Events of Fecal Microbiota Transplantation: A Metaanalysis of High-Quality Studies. Ann. Gastroenterol. 2021, 34, 802–814. [Google Scholar] [CrossRef]
- DeFilipp, Z.; Bloom, P.P.; Torres Soto, M.; Mansour, M.K.; Sater, M.R.A.; Huntley, M.H.; Turbett, S.; Chung, R.T.; Chen, Y.-B.; Hohmann, E.L. Drug-Resistant E. Coli Bacteremia Transmitted by Fecal Microbiota Transplant. N. Engl. J. Med. 2019, 381, 2043–2050. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xu, M.; Wang, W.; Cao, X.; Piao, M.; Khan, S.; Yan, F.; Cao, H.; Wang, B. Systematic Review: Adverse Events of Fecal Microbiota Transplantation. PLoS ONE 2016, 11, e0161174. [Google Scholar] [CrossRef]
- Biernat, M.M.; Urbaniak-Kujda, D.; Dybko, J.; Kapelko-Słowik, K.; Prajs, I.; Wróbel, T. Fecal Microbiota Transplantation in the Treatment of Intestinal Steroid-Resistant Graft-versus-Host Disease: Two Case Reports and a Review of the Literature. J. Int. Med. Res. 2020, 48, 0300060520925693. [Google Scholar] [CrossRef]
- Battipaglia, G.; Malard, F.; Rubio, M.T.; Ruggeri, A.; Mamez, A.C.; Brissot, E.; Giannotti, F.; Dulery, R.; Joly, A.C.; Baylatry, M.T.; et al. Fecal Microbiota Transplantation before or after Allogeneic Hematopoietic Transplantation in Patients with Hematologic Malignancies Carrying Multidrug-Resistance Bacteria. Haematologica 2019, 104, 1682–1688. [Google Scholar] [CrossRef]
- Innes, A.J.; Mullish, B.H.; Fernando, F.; Adams, G.; Marchesi, J.R.; Apperley, J.F.; Brannigan, E.; Davies, F.; Pavlů, J. Faecal Microbiota Transplant: A Novel Biological Approach to Extensively Drug-Resistant Organism-Related Non-Relapse Mortality. Bone Marrow Transpl. 2017, 52, 1452–1454. [Google Scholar] [CrossRef]
- Ghani, R.; Mullish, B.H.; McDonald, J.A.K.; Ghazy, A.; Williams, H.R.T.; Brannigan, E.T.; Mookerjee, S.; Satta, G.; Gilchrist, M.; Duncan, N.; et al. Disease Prevention Not Decolonization: A Model for Fecal Microbiota Transplantation in Patients Colonized with Multidrug-Resistant Organisms. Clin. Infect. Dis. 2021, 72, 1444–1447. [Google Scholar] [CrossRef]
- Neemann, K.; Eichele, D.D.; Smith, P.W.; Bociek, R.; Akhtari, M.; Freifeld, A. Fecal Microbiota Transplantation for Fulminant CLostridium Difficile Infection in an Allogeneic Stem Cell Transplant Patient. Transpl. Infect. Dis. 2012, 14, E161–E165. [Google Scholar] [CrossRef] [PubMed]
- De Castro, C.G.; Ganc, A.J.; Ganc, R.L.; Petrolli, M.S.; Hamerschlack, N. Fecal Microbiota Transplant after Hematopoietic SCT: Report of a Successful Case. Bone Marrow Transpl. 2015, 50, 145. [Google Scholar] [CrossRef]
- Bluestone, H.; Kronman, M.P.; Suskind, D.L. Fecal Microbiota Transplantation for Recurrent Clostridium Difficile Infections in Pediatric Hematopoietic Stem Cell Transplant Recipients. J. Pediatr. Infect. Dis. Soc. 2018, 7, e6–e8. [Google Scholar] [CrossRef] [PubMed]
- Innes, A.J.; Mullish, B.H.; Ghani, R.; Szydlo, R.M.; Apperley, J.F.; Olavarria, E.; Palanicawandar, R.; Kanfer, E.J.; Milojkovic, D.; McDonald, J.A.K.; et al. Fecal Microbiota Transplant Mitigates Adverse Outcomes Seen in Patients Colonized with Multidrug-Resistant Organisms Undergoing Allogeneic Hematopoietic Cell Transplantation. Front. Cell. Infect. Microbiol. 2021, 11, 684659. [Google Scholar] [CrossRef] [PubMed]
- Carlson, P.E. Regulatory Considerations for Fecal Microbiota Transplantation Products. Cell Host Microbe 2020, 27, 173–175. [Google Scholar] [CrossRef]
- Yadegar, A.; Bar-Yoseph, H.; Monaghan, T.M.; Pakpour, S.; Severino, A.; Kuijper, E.J.; Smits, W.K.; Terveer, E.M.; Neupane, S.; Nabavi-Rad, A.; et al. Fecal Microbiota Transplantation: Current Challenges and Future Landscapes. Clin. Microbiol. Rev. 2024, 37, e00060-22. [Google Scholar] [CrossRef] [PubMed]
- Iyama, S.; Tatsumi, H.; Shiraishi, T.; Yoshida, M.; Tatekoshi, A.; Endo, A.; Ishige, T.; Shiwa, Y.; Ibata, S.; Goto, A.; et al. Possible Clinical Outcomes Using Early Enteral Nutrition in Individuals with Allogeneic Hematopoietic Stem Cell Transplantation: A Single-Center Retrospective Study. Nutrition 2021, 83, 111093. [Google Scholar] [CrossRef]
- D’Amico, F.; Biagi, E.; Rampelli, S.; Fiori, J.; Zama, D.; Soverini, M.; Barone, M.; Leardini, D.; Muratore, E.; Prete, A.; et al. Enteral Nutrition in Pediatric Patients Undergoing Hematopoietic SCT Promotes the Recovery of Gut Microbiome Homeostasis. Nutrients 2019, 11, 2958. [Google Scholar] [CrossRef]
- Iyama, S.; Sato, T.; Tatsumi, H.; Hashimoto, A.; Tatekoshi, A.; Kamihara, Y.; Horiguchi, H.; Ibata, S.; Ono, K.; Murase, K.; et al. Efficacy of Enteral Supplementation Enriched with Glutamine, Fiber, and Oligosaccharide on Mucosal Injury Following Hematopoietic Stem Cell Transplantation. Case Rep. Oncol. 2014, 7, 692–699. [Google Scholar] [CrossRef]
- Riwes, M.M.; Golob, J.L.; Magenau, J.; Shan, M.; Dick, G.; Braun, T.; Schmidt, T.M.; Pawarode, A.; Anand, S.; Ghosh, M.; et al. Feasibility of a Dietary Intervention to Modify Gut Microbial Metabolism in Patients with Hematopoietic Stem Cell Transplantation. Nat. Med. 2023, 29, 2805–2813. [Google Scholar] [CrossRef]
- Porcari, S.; Ng, S.C.; Zitvogel, L.; Sokol, H.; Weersma, R.K.; Elinav, E.; Gasbarrini, A.; Cammarota, G.; Tilg, H.; Ianiro, G. The Microbiome for Clinicians. Cell 2025, 188, 2836–2844. [Google Scholar] [CrossRef] [PubMed]
- Porcari, S.; Mullish, B.H.; Asnicar, F.; Ng, S.C.; Zhao, L.; Hansen, R.; O’Toole, P.W.; Raes, J.; Hold, G.; Putignani, L.; et al. International Consensus Statement on Microbiome Testing in Clinical Practice. Lancet Gastroenterol. Hepatol. 2025, 10, 154–167. [Google Scholar] [CrossRef] [PubMed]
- Mirzayi, C.; Renson, A.; Genomic Standards Consortium; Massive Analysis and Quality Control Society; Zohra, F.; Elsafoury, S.; Geistlinger, L.; Kasselman, L.J.; Eckenrode, K.; van de Wijgert, J.; et al. Reporting Guidelines for Human Microbiome Research: The STORMS Checklist. Nat. Med. 2021, 27, 1885–1892. [Google Scholar] [CrossRef]
Outcomes | Author, Year N | Finding |
---|---|---|
Overall Survival [16,17,21] | Peled 2020 [17] 606 | ↓ Overall Mortality Higher alpha diversity prior to allo-HSCT was associated with a lower risk of mortality (HR 0.41; 95% CI 0.24–0.71) |
Liu 2017 [16] 57 | ↓ Overall Mortality Patients with higher phylogenetic diversity had lower overall mortality rates (HR 0.37; 95% CI 0.18–0.77; p = 0.008) | |
Masetti 2023 [21] β 90 | ↑ Overall Survival Patients with higher intestinal diversity exhibited a higher probability of overall survival (88.9% ± 5.7% vs. 62.7% ± 8.2%; p = 0.011). | |
Transplantation-related mortality [17] | Peled 2020 [17] 606 | ↓ Transplant-related mortality Higher alpha diversity prior to allo-HSCT was associated with a lower risk of transplant-related mortality (HR 0.44; 95% CI 0.22–0.87). |
aGvHD [21] | Masetti 2023 [21] β 90 | ↓ aGvHD The cumulative incidence of grade 2 to 4 aGvHD was significantly lower in the higher diversity group than in the lower diversity group (20.0% ± 6.0% [SE] vs. 44.4% ± 7.4% [SE]; p = 0.017). The cumulative incidence of grade 3 to 4 aGvHD was significantly lower in the higher diversity group than in the lower diversity group (2.2% ± 2.2% [SE] vs. 20.0% ± 6.0% [SE]; p = 0.007). |
Biagi 2019 [35] 36 | The diversity between pre-HSCT samples were greater in individuals who developed intestinal GvHD (0.86 ± 0.15) than in individuals without GvHD (0.72 ± 0.15, p = 0.001) and individuals who developed less severe skin GvHD (0.77 ± 0.15, p = 0.02). |
Outcome | Author, Year N Sample Timing | Finding |
---|---|---|
Overall Survival [17,23,24] | Peled 2020 [17] 704 At engraftment | ↑ Overall Survival Patients were categorized into low- vs. high-diversity groups based on the median value. High diversity at engraftment was associated with a significant improve in overall survival (HR 0.75; 95% CI 0.58–0.96). This association was also identified after multivariable adjustment for age, intensity of the conditioning regimen, graft source and HCT-CI (HR 0.71; 95% CI 0.55–0.92). When considered as a continuous variable, high intestinal diversity was also associated with improved overall survival in both univariate (HR 0.58; 95% CI 0.37–0.91) and multivariate (HR 0.50; 95% CI 0.31–0.80) analysis. |
Taur 2014 [23] 80 At engraftment | ↑ Overall Survival Overall survival at 3 years was 36%, 60% and 67% for low, intermediate and high diversity groups (p = 0.19). Patients with low diversity (inverse Simpson < 2) were 3 times more likely to die within the follow-up when compared to those with higher microbial diversity (HR 3.13, 95% CI 1.39–7.98; p = 0.05; adjusted HR 2.56; 95% CI 1.03–7.23; p = 0.42). Low diversity showed a strong effect on mortality after multivariate adjustment for other clinical predictors (transplant related mortality: adjusted hazard ratio, 5.25; p = 0.014). | |
Gu 2022 [24] 86 At engraftment | ↑ Overall Survival Patients were categorized into low- vs. high- diversity groups based on the median Shannon Index value. When compared to patients with low diversity, patients with high diversity had significantly higher two-year overall survival (83.7% vs. 60.6%; p = 0.026). After adjusting for disease risk, pretransplant comorbidity, and previous chemotherapy, low intestinal diversity was an independent predictor of all-cause death (HR 2.62; 95% CI 1.06–6.49; p = 0.038) in a multivariate analysis. | |
Transplantation-related mortality [23,24,41] | Taur 2014 [23] 80 At engraftment | ↑ Transplant-related mortality Transplant-related mortality was 9%, 23%, and 53% for high, intermediate and low diversity groups, respectively (p = 0.03). Patients with low diversity (inverse Simpson < 2) were 7.5 times more likely to experience transplant-related mortality within the follow-up when compared to those with higher microbial diversity (HR 7.54; 95% CI 2.12–47.88; p = 0.001; adjusted hazard ratio, 5.25; 95% CI 1.36–35.07; p = 0.014). |
Gu 2022 [24] 86 At engraftment | ↑ Transplantation-related Mortality When compared to patients in the high diversity group, patients in the low-diversity group had higher estimated 2-year transplanted related mortality (20.0% vs. 4.7%; p = 0.04). After adjusting for pretransplant comorbidity, disease status at the time of allo-HSCT and previous chemotherapy, low intestinal diversity was an independent predictor of transplant-related mortality (HR 4.95; 95% CI 1.03–23.76; p = 0.046). | |
Galloway-Pena 2019 [41] 44 At engraftment | ↓ Transplantation-related Mortality The Shannon diversity index at the time of engraftment was significantly associated with transplantation-related mortality (coefficient = −1.44; p = 0.02) | |
aGvHD [20,23,26,28,41,46] | Jenq 2015 [28] 64 D + 12 | ↓ GvHD-related mortality Increased intestinal diversity was associated with reduced GvHD-related mortality (p = 0.005). |
Mancini 2017 [20] 96 D + 10 | ↑ aGvHD Decreased intestinal diversity at D + 10 was associated with increased risk of early onset aGvHD (OR 7.833; 95% CI 2.141–28.658; p = 0.038). | |
Taur 2014 [23] 80 At engraftment | ↑ GvHD-related mortality GvHD-related mortality was higher in patients with low diversity (p = 0.018). | |
Payen 2020 [26] 70 At the onset of GvHD | ↑ aGvHD severity Patients with severe aGvHD had significantly lower indexes of alpha diversity: Chao1 (p = 0.039) and Simpson (p = 0.013) | |
Golob 2017 [46] 66 At engraftment Weekly samples from prior to allo-HSCT until D + 100 | ↑ aGvHD severity Patients with severe aGvHD had a significantly lower alpha diversity index compared to both the control group and patients without severe aGvHD (p < 0.05). This finding was statistically significant when analyzing all stool samples collected over the allo-HSCT and when analyzing only samples collected at the engraftment period. | |
Galloway-Pena 2019 [41] 44 At engraftment | The Shannon diversity index at the time of engraftment was significantly associated with the incidence of aGvHD (p = 0.02) | |
Infections [23] | Taur 2014 [23] 80 At engraftment | ↑ Infection-related mortality Infection related mortality was higher in patients with low diversity (p = 0.018). |
Outcomes | Author, Year N Sample Timing | Finding |
---|---|---|
Overall Survival [28] | Jenq 2015 [28] 64 D + 12 | ↑ Overall Survival Increased Blautia abundance was strongly associated with improved overall survival (p < 0.001). |
Transplantation-related Mortality [30] | Meedt, 2022 [30] 201 aGvHD onset//D + 30 | ↑ Transplant-related Mortality Low BCoAT copy numbers at D + 30/GvHD were significantly associated with increased risk of transplant-related mortality (HR 4.459; 95% CI 1.1018–19.530; p = 0.047). |
aGvHD [25,26,28,30,42] | Jenq 2015 [28] 64 D + 12 | ↓ GvHD-related mortality By using a taxonomic discovery analysis, increase in the genus Blautia was significantly associated with reduced GvHD-related mortality (p = 0.01). By stratifying patients based on Blautia median abundance, patients with higher abundance had reduced GvHD-related mortality (p = 0.04). In a multivariable analysis, Blautia abundance remained associated with GvHD-related mortality (HR 0.18; 95% CI 0.05–0.63; p = 0.007). ↓ Refractory GvHD Increased Blautia abundance was associated with reduced development of acute GvHD that required treatment with systemic corticosteroids or was steroid refractory (p = 0.01). In a multivariable analysis, Blautia abundance remained associated with refractory GvHD (HR 0.3; 95% CI 0.14–0.64; p = 0.002). ↓ Liver GvHD Increased Blautia abundance was associated with reduced liver GvHD (p = 0.02). |
Payen 2020 [26] 70 aGvHD onset | ↑ aGvHD severity When compared to controls (patients undergoing allo-HSCT without GvHD), patients with severe GvHD had a significant depletion of the Blautia coccoides group (p = 0.07). Similar findings were found when compared to patients with mild aGvHD (p = 0.036). ↑ aGvHD severity When compared to controls (patients undergoing allo-HSCT without GvHD), patients with severe GvHD had a significant depletion of Anaerostipes (p = 0.015). ↑ aGvHD severity When compared to controls (patients undergoing allo-HSCT without GvHD), patients with severe GvHD had a significant depletion of Faecalibacterium (p = 0.011). ↑ aGvHD severity When compared to controls (patients undergoing allo-HSCT without GvHD), patients with severe GvHD had a significant depletion of Lachnoclostridium (p = 0.019). ↑ GvHD severity When compared to controls (patients undergoing allo-HSCT without GvHD), patients with severe GvHD had significantly lower levels of total SCFAs (12.50 vs. 2.42; p = 0.0003), acetate (8.87 vs. 2.15; p = 0.002), butyrate (1.11 vs. 0.06; p = 0.001), and propionate (2.33 vs. 0.10; p = 0.0009). | |
Romick-Rosendale 2018 [25] 42 D + 14 | ↓ GvHD When compared to patients that developed GvHD, patients without GvHD had significantly higher levels of butyrate (1.77 vs. 0.0550; p = 0.0142), propionate (6.63 vs. 0.208; p = 0.0108) and acetate (39.6 vs. 7.92; p = 0.047) at samples collected at D + 14. | |
Meedt, 2022 [30] 201 aGvHD onset//D + 30 | ↑ GI-GvHD severity Low BCoAT copy numbers at GvHD onset were correlated with GI-GvHD severity (p = 002; r = 0.3). ↑ GI-GvHD Patients with GI-GvHD had lower BCoAT copy numbers than patients with other organs manifestations (0 copies vs. 3.16 × 106 copies; p = 0.006; r = 0.3). ↑ GvHD-related Mortality Patients with low BCoAT copy numbers displayed significantly higher GvHD-associated mortality rate than those with high BCoAT concentrations (p = 0.04). | |
Artacho 2024 [42] 70 Prior to allo-HSCT and Engraftment | ↑ GvHD A significant decrease in acetate levels was detected in patients who developed GvHD (log2FC median = −2.36; p = 0.049). | |
Infections [29] | Haak 2018 [29] 360 At engraftment | ↓ LRTI The incidence of viral LRTI at 180 days was 17.3% and 16.1% for groups in which butyrate-producing bacteria were absent or low, respectively, and 3.2% for the high butyrate-producing group (p = 0.005). Patients with the highest abundance of butyrate-producing bacteria were independently associated with a fivefold decrease in risk of viral LRTI (HR 0.22; 95% CI 0.04–0.69; p = 0.06). |
Outcomes | Autor, Year N Sample Timing | Implication |
---|---|---|
Overall Survival [22,32] | Messina 2024 [22] 98 Stools were collected once prior to HSCT, weekly until D + 30 and then at days D + 45, D + 90 and D + 180 | ↓ Overall survival Patients with Enterococcus domination had decreased overall survival (p = 0.01). Overall survival Bacteroides domination at any time point was not significantly associated with overall survival (p = 0.08). Akkermansia domination at any time point was not significantly associated with overall survival (p = 0.14). Blautia domination at any time point was not significantly associated with overall survival (p value NR). Lactobacillus domination was not significantly associated with overall survival (p = 0.52). Streptococcus domination was not significantly associated with overall survival (p = 0.70). |
Stein-Thoeringer 2019 [32] 1325 Samples were collected in the early post-transplant period (D0 to D + 21) | ↓ Overall survival Patients with Enterococcus domination in the early-post transplant period had significantly reduced overall survival in univariate analysis (HR 1.97; 95% CI 1.45–2.66; p < 0.001). This finding remained significant in a multivariate analysis adjusted for graft source, age, conditioning intensity, gender and underlying disease (HR 2.06; 95% CI 1.50–2.82; p < 0.0001). | |
Transplantation-related Mortality [22] | Messina 2024 [22] 98 Stools were collected once prior to HSCT, weekly until D + 30 and then at days D + 45, D + 90 and D + 180 | ↑ Treatment-related mortality Patients with Enterococcus domination had increased treatment-related mortality (p = 0.02). |
aGvHD [32] | Stein-Thoeringer 2019 [32] 1325 Samples were collected in the early post-transplant period (D0 to D + 21) | ↑ GvHD-related mortality Patients with Enterococcus domination in the early-post transplant period had significantly increased GvHD-related mortality in univariate analysis (HR 2.04; 95% CI 1.18–3.52; p = 0.05). This finding remaining significant in a multivariate analysis adjusted for graft source, age, conditioning intensity, gender and underlying disease (HR 2.60; 95% CI 1.46–4.62; p < 0.01). ↑ GvHD severity (grade 2–4) Patients with Enterococcus domination in the early-post transplant period had significantly increased GvHD severity (grade 2–4) in univariate analysis (HR 1.44; 95% CI 1.10–1.88; p < 0.01). This finding remained significant in a multivariate analysis adjusted for graft source, age, conditioning intensity, gender and underlying disease (HR 1.32; 95% CI 1.00–1.75; p < 0.05). |
Infections [22,34] | Messina 2024 [22] 98 Stools were collected once prior to HSCT, weekly until D + 30 and then at days D + 45, D + 90 and D + 180 | ↑ BSI Patients with Enterococcus domination at any time point had increased risk for BSI (63% vs. 35%; p = 0.01). |
Taur 2012 [34] 94 Prior to allo-HSCT After allo-HSCT (until D + 35) | ↑ BSI Patients with Enterococcus domination had a 9-fold increased risk of VRE bacteremia (HR 9.35; 95% CI 2.43–45.44; p = 0.001). | |
Taur 2012 [34] 94 Prior to allo-HSCT After allo-HSCT (until D + 35) | ↑ BSI Patients with Proteobacteria domination had a 5-fold increased risk of Gram-negative bacteremia (HR 5.46; 95% CI 1.03–19.91; p = 0.047). | |
Clostridioides difficile colitis [22] | Messina 2024 [22] 98 Stools were collected once prior to HSCT, weekly until D + 30 and then at days D + 45, D + 90 and D + 180 | ↑ Clostridioides difficile colitis Patients with Enterococcus domination at any time point had increased risk for BSI (34% vs. 16%; p = 0.04). |
Other [22] | Messina 2024 [22] 98 Stools were collected once prior to HSCT, weekly until D + 30 and then at days D + 45, D + 90 and D + 180 | ↑ Relapse-related mortality Patients with Enterococcus domination had increased relapse-related mortality (p = 0.08). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soares Ferreira Júnior, A.; Rodrigues da Silva, B.F.; Luiz da Silva, J.; Trovão da Silva, M.; Feliciano, J.V.P.; Colturato, I.; Barros, G.M.N.; Scheinberg, P.; Chao, N.J.A.; de Oliveira, G.L.V. Unraveling the Intestinal Microbiota Conundrum in Allogeneic Hematopoietic Stem Cell Transplantation: Fingerprints, Clinical Implications and Future Directions. J. Clin. Med. 2025, 14, 6874. https://doi.org/10.3390/jcm14196874
Soares Ferreira Júnior A, Rodrigues da Silva BF, Luiz da Silva J, Trovão da Silva M, Feliciano JVP, Colturato I, Barros GMN, Scheinberg P, Chao NJA, de Oliveira GLV. Unraveling the Intestinal Microbiota Conundrum in Allogeneic Hematopoietic Stem Cell Transplantation: Fingerprints, Clinical Implications and Future Directions. Journal of Clinical Medicine. 2025; 14(19):6874. https://doi.org/10.3390/jcm14196874
Chicago/Turabian StyleSoares Ferreira Júnior, Alexandre, Bianca Fernanda Rodrigues da Silva, Jefferson Luiz da Silva, Mariana Trovão da Silva, João Victor Piccolo Feliciano, Iago Colturato, George Maurício Navarro Barros, Phillip Scheinberg, Nelson Jen An Chao, and Gislane Lelis Vilela de Oliveira. 2025. "Unraveling the Intestinal Microbiota Conundrum in Allogeneic Hematopoietic Stem Cell Transplantation: Fingerprints, Clinical Implications and Future Directions" Journal of Clinical Medicine 14, no. 19: 6874. https://doi.org/10.3390/jcm14196874
APA StyleSoares Ferreira Júnior, A., Rodrigues da Silva, B. F., Luiz da Silva, J., Trovão da Silva, M., Feliciano, J. V. P., Colturato, I., Barros, G. M. N., Scheinberg, P., Chao, N. J. A., & de Oliveira, G. L. V. (2025). Unraveling the Intestinal Microbiota Conundrum in Allogeneic Hematopoietic Stem Cell Transplantation: Fingerprints, Clinical Implications and Future Directions. Journal of Clinical Medicine, 14(19), 6874. https://doi.org/10.3390/jcm14196874