Exploring the Effectiveness of Immersive Virtual Reality Rehabilitation for Parkinson’s Disease: A Narrative Review
Abstract
1. Introduction
2. Theoretical Foundations of Immersive Virtual-Reality-Based Rehabilitation in Parkinson’s Disease
2.1. Inducing Neuroplasticity and Motor Recovery
2.2. Sensory–Motor Integration and Balance Control
- Repetitive, task-oriented movements to engage neuroplasticity.
- Sensory challenges or manipulations (visual, proprioceptive, vestibular) to foster sensory–motor integration.
- Feedback (visual, auditory, perhaps haptic) to enable error correction and motor learning.
- Cognitive or dual-task components to promote executive control and attention, especially for real-world tasks.
- Engaging, motivating formats to promote adherence, long duration, and thus durable gains.
3. Evidence Synthesis of Immersive Virtual Reality in Parkinson’s Disease Rehabilitation
3.1. Quantifiable Clinical and Functional Outcomes
3.2. Safety and Adverse Events
3.3. Cost-Effectiveness Considerations
3.4. Implementation Barriers
- Participation may be limited by patient-specific circumstances, such as advanced disease stage, cognitive impairment, or vulnerability to cybersickness.
- Standardization of protocols is further complicated by technological heterogeneity, such as head-mounted displays versus commercial consoles and immersive versus non-immersive systems.
- Because the majority of the experiments were carried out in extremely controlled settings, concerns regarding workflow integration and scalability were raised.
- Clinical training needs and alignment with current rehabilitation procedures are still not well understood.
4. Integration of Objective Assessment Tools in VR Rehabilitation for Parkinson’s Disease
- Assessment embedded in VR tasks: the reaction time wall test is part of the VR environment and is used not only as a measurement but also as a training tool, a concept known as ‘dual use’ [25]. Similarly, finger tapping tasks in immersive VR allow direct measurement of rhythmicity metrics (frequency, variability) that correlate with PD motor impairment [49].
- Comprehensive assessment with multimodal sensing: the integration of VR HMD-based environments with force platforms (for CoP), physiological sensors (heart rate, stress/arousal), and wearable sensors (glove sensors), in addition to clinical scales, ensures a thorough and multi-dimensional measurement of motor, balance, and cognitive function [26,50].
- VR’s role in remote monitoring: wearable sensors embedded in gloves, visualized via VR avatar or visualization dashboards, play a crucial role in remote monitoring [42,50]. They allow clinicians to observe the exact movement trajectories (in space/time), a significant advancement in telemedicine for PD rehabilitation.
- Correlation with gold standard clinical tools: objective metrics obtained via IVR tasks often are compared with established clinical assessments such as the Timed Up and Go (TUG) test, the Mini-Mental State Examination (MMSE), and the Unified Parkinson’s Disease Rating Scale (UPDRS) to establish the validity, sensitivity, and relationship with fall risk or disease severity [28,42,50].
5. Freezing of Gait (FoG) and the Role of Predictive Modeling in Immersive VR Rehabilitation for Parkinson’s Disease
6. Discussion
7. Challenges and Future Directions for IVRBR in PD
8. Conclusions
- Efficacy: IVRBR is effective as an adjunctive therapy for improving motor, cognitive, and dual-task outcomes. Though effect sizes and long-term sustainability require confirmation in larger RTCs.
- Safety: adverse events are generally mild, with falls linked to IVRBR presence being the primary concern. Safety protocols are mandatory.
- Feasibility: high adherence and patient engagement support real-world application, particularly when interventions are tailored to individual functional and cognitive status.
- Implementation: cost, technology variability, and clinician training are key barriers; addressing these is essential for the implementation of IVRBR into routine medical practice.
- Future Directions: larger, standardized RCTs, long-term follow-up, integration of objective assessment tools (e.g., FoG prediction, real-time gait analysis) are needed. Also, consideration of medication timing is needed to optimize personalization and effectiveness.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
6 MWT | 6 Minute Walk Test |
AE | Adverse effects |
BBS | Berg Balance Scale (BBS) |
CET | Concurrent exergaming training |
CoP | Center of pressure |
FoG | Freezing of gait |
HADS | Hospital Anxiety and Depression Scale |
HMDs | Helmet-mounted displays for safety and adverse events |
IVR | Immersive virtual reality |
IVRBR | Immersive virtual reality-based rehabilitation |
MI | Motor Imagery |
MOCA | Montreal Cognitive Assessment |
PD | Parkinson disease |
PDQ-39 | Parkinson’s Disease Questionnaire-39 |
SEQ | Sequential training |
SSQ | Simulator Sickness Questionnaire |
TUG | Timed Up and Go |
UPDRS | Unified Parkinson’s Disease Rating Scale |
VR | Virtual reality |
References
- Zafar, S.; Yaddanapudi, S.S. Parkinson disease. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Alexoudi, A.; Alexoudi, I.; Gatzonis, S. Parkinson’s Disease Pathogenesis, Evolution and Alternative Pathways: A Review. Rev. Neurol. 2018, 174, 699–704. [Google Scholar] [CrossRef] [PubMed]
- Kabra, A.; Sharma, R.; Kabra, R.; Baghel, U.S. Emerging and Alternative Therapies for Parkinson Disease: An Updated Review. Curr. Pharm. Des. 2018, 24, 2573–2582. [Google Scholar] [CrossRef]
- Balestrino, R.; Schapira, A.H. Parkinson Disease. Eur. J. Neurol. 2020, 27, 27–42. [Google Scholar] [CrossRef]
- Aarsland, D.; Batzu, L.; Halliday, G.M.; Geurtsen, G.J.; Ballard, C.; Ray Chaudhuri, K.; Weintraub, D. Parkinson Disease-Associated Cognitive Impairment. Nat. Rev. Dis. Primer 2021, 7, 47. [Google Scholar] [CrossRef]
- Muleiro Alvarez, M.; Cano-Herrera, G.; Osorio Martínez, M.F.; Vega Gonzales-Portillo, J.; Monroy, G.R.; Murguiondo Pérez, R.; Torres-Ríos, J.A.; van Tienhoven, X.A.; Garibaldi Bernot, E.M.; Esparza Salazar, F.; et al. A Comprehensive Approach to Parkinson’s Disease: Addressing Its Molecular, Clinical, and Therapeutic Aspects. Int. J. Mol. Sci. 2024, 25, 7183. [Google Scholar] [CrossRef]
- Vijiaratnam, N.; Simuni, T.; Bandmann, O.; Morris, H.R.; Foltynie, T. Progress towards Therapies for Disease Modification in Parkinson’s Disease. Lancet Neurol. 2021, 20, 559–572. [Google Scholar] [CrossRef]
- Toledo, A.R.L.; Monroy, G.R.; Salazar, F.E.; Lee, J.-Y.; Jain, S.; Yadav, H.; Borlongan, C.V. Gut-Brain Axis as a Pathological and Therapeutic Target for Neurodegenerative Disorders. Int. J. Mol. Sci. 2022, 23, 1184. [Google Scholar] [CrossRef]
- Tao, Y.; Luo, J.; Tian, J.; Peng, S.; Wang, H.; Cao, J.; Wen, Z.; Zhang, X. The Role of Robot-Assisted Training on Rehabilitation Outcomes in Parkinson’s Disease: A Systematic Review and Meta-Analysis. Disabil. Rehabil. 2024, 46, 4049–4067. [Google Scholar] [CrossRef]
- Bloem, B.R.; Okun, M.S.; Klein, C. Parkinson’s Disease. Lancet 2021, 397, 2284–2303. [Google Scholar] [CrossRef] [PubMed]
- Villafaina, S.; Borrega-Mouquinho, Y.; Fuentes-García, J.P.; Collado-Mateo, D.; Gusi, N. Effect of Exergame Training and Detraining on Lower-Body Strength, Agility, and Cardiorespiratory Fitness in Women with Fibromyalgia: Single-Blinded Randomized Controlled Trial. Int. J. Environ. Res. Public. Health 2020, 17, 161. [Google Scholar] [CrossRef] [PubMed]
- Aderinto, N.; Olatunji, G.; Abdulbasit, M.O.; Edun, M.; Aboderin, G.; Egbunu, E. Exploring the Efficacy of Virtual Reality-Based Rehabilitation in Stroke: A Narrative Review of Current Evidence. Ann. Med. 2023, 55, 2285907. [Google Scholar] [CrossRef]
- Lakshminarayanan, K.; Shah, R.; Daulat, S.R.; Moodley, V.; Yao, Y.; Madathil, D. The Effect of Combining Action Observation in Virtual Reality with Kinesthetic Motor Imagery on Cortical Activity. Front. Neurosci. 2023, 17, 1201865. [Google Scholar] [CrossRef] [PubMed]
- Polat, M.; Kahveci, A.; Muci, B.; Günendi, Z.; Kaymak Karataş, G. The Effect of Virtual Reality Exercises on Pain, Functionality, Cardiopulmonary Capacity, and Quality of Life in Fibromyalgia Syndrome: A Randomized Controlled Study. Games Health J. 2021, 10, 165–173. [Google Scholar] [CrossRef]
- Kwon, S.-H.; Park, J.K.; Koh, Y.H. A Systematic Review and Meta-Analysis on the Effect of Virtual Reality-Based Rehabilitation for People with Parkinson’s Disease. J. Neuroeng. Rehabil. 2023, 20, 94. [Google Scholar] [CrossRef]
- Marotta, N.; Calafiore, D.; Curci, C.; Lippi, L.; Ammendolia, V.; Ferraro, F.; Invernizzi, M. Integrating Virtual Reality and Exergaming in Cognitive Rehabilitation of Patients with Parkinson Disease: A Systematic Review of Randomized Controlled Trials. Eur. J. Phys. Rehabil. Med. 2022, 58, 818–826. [Google Scholar] [CrossRef]
- Chuang, C.-S.; Chen, Y.-W.; Zeng, B.-Y.; Hung, C.-M.; Tu, Y.-K.; Tai, Y.-C.; Wu, Y.-C.; Hsu, C.-W.; Lei, W.-T.; Wu, S.-L.; et al. Effects of Modern Technology (Exergame and Virtual Reality) Assisted Rehabilitation vs Conventional Rehabilitation in Patients with Parkinson’s Disease: A Network Meta-Analysis of Randomised Controlled Trials. Physiotherapy 2022, 117, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Kashif, M.; Ahmad, A.; Bandpei, M.A.M.; Syed, H.A.; Raza, A.; Sana, V. A Randomized Controlled Trial of Motor Imagery Combined with Virtual Reality Techniques in Patients with Parkinson’s Disease. J. Pers. Med. 2022, 12, 450. [Google Scholar] [CrossRef]
- Skrzatek, A.; Nuic, D.; Cherif, S.; Beranger, B.; Gallea, C.; Bardinet, E. Brain Modulation after Exergaming Training in Advanced Forms of Parkinson’s Disease: A Randomized Controlled Study. J. Neuroeng. Rehabil. 2024, 21, 133. [Google Scholar] [CrossRef]
- Pelosin, E.; Ponte, C.; Putzolu, M.; Lagravinese, G.; Hausdorff, J.M.; Nieuwboer, A.; Ginis, P.; Rochester, L.; Alcock, L.; Bloem, B.R.; et al. Motor–Cognitive Treadmill Training with Virtual Reality in Parkinson’s Disease: The Effect of Training Duration. Front. Aging Neurosci. 2022, 13, 753381. [Google Scholar] [CrossRef]
- Fiorenzato, E.; Zabberoni, S.; De Simone, M.S.; Costa, A.; Tieri, G.; Taglieri, S.; Peppe, A.; Carlesimo, G.A.; Caltagirone, C.; Antonini, A.; et al. Effects of Virtual Reality Cognitive Training on Executive Function and Prospective Memory in Parkinson’s Disease and Healthy Aging. J. Neurol. Sci. 2025, 473, 123507. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Wu, J.; Lu, J.; Wei, X.; Zheng, K.; Liu, B.; Xiao, W.; Shi, Q.; Xiong, L.; Ren, Z. Efficacy of Virtual Reality Training on Motor Performance, Activity of Daily Living, and Quality of Life in Patients with Parkinson’s Disease: An Umbrella Review Comprising Meta-Analyses of Randomized Controlled Trials. J. Neuroeng. Rehabil. 2023, 20, 133. [Google Scholar] [CrossRef] [PubMed]
- Pimenta Silva, D.; Bouça-Machado, R.; Pona-Ferreira, F.; Lobo, T.; Cacho, R.; Anker, R.; Krakauer, J.W.; Ferreira, J.J. Combining Immersive Exergaming with Physiotherapy in a Specialized Intensive Parkinson’s Disease Rehabilitation Program: A Randomized Controlled Trial. J. Neuroeng. Rehabil. 2025, 22, 131. [Google Scholar] [CrossRef]
- do Carmo, A.A.; da Silva, S.S.; Resende Lara, J.P.; de Assis, G.G.; Garcia, P.A.; Mendes, F.A.D.S. Effects of Immersive and Non- Immersive Virtual Reality on Anxiety and Cognition in Parkinson’s Disease: A Comparative Study. J. Bodyw. Mov. Ther. 2025, 42, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Campo-Prieto, P.; Cancela-Carral, J.M.; Rodríguez-Fuentes, G. Immersive Virtual Reality Reaction Time Test and Relationship with the Risk of Falling in Parkinson’s Disease. Sensors 2023, 23, 4529. [Google Scholar] [CrossRef] [PubMed]
- Campo-Prieto, P.; Santos-García, D.; Cancela-Carral, J.M.; Rodríguez-Fuentes, G. Physical and Functional Effects After an Immersive Virtual Reality Based Exercise Program: Experience in a Spanish Association of Parkinson’s Patients. Retos 2025, 63, 365–376. [Google Scholar] [CrossRef]
- Honzíková, L.; Dąbrowská, M.; Skřinařová, I.; Mullerová, K.; Čecháčková, R.; Augste, E.; Trdá, J.; Baníková, Š.; Filip, M.; Školoudík, D.; et al. Immersive Virtual Reality as Computer-Assisted Cognitive-Motor Dual-Task Training in Patients with Parkinson’s Disease. Medicina 2025, 61, 248. [Google Scholar] [CrossRef]
- Tayyebi, G.; Asadiof, F.; Hashempour, B.; Lotfi, M.; Taheri, M.; Naeim, M. Efficacy of Virtual Reality-Based Cognitive Behavioral Group Therapy in Enhancing Emotional Well-Being and Quality of Life in Parkinson’s Disease: A Randomized Controlled Trial. Clin. Park. Relat. Disord. 2025, 12, 100316. [Google Scholar] [CrossRef]
- Pimenta Silva, D.; Pona-Ferreira, F.; Santos, B.; Campo-Prieto, P.; Bouça-Machado, R.; Ferreira, J.J. Safety of Immersive Virtual Reality for the Management of Parkinson’s Disease. Sensors 2024, 24, 8188. [Google Scholar] [CrossRef]
- Rosenfeldt, A.B.; Waltz, C.; Zimmerman, E.; Davidson, S.; Hastilow, K.; Alberts, J.L. An Immersive Virtual Reality Shopping Task Detects Declines in Instrumental Activities of Daily Living in Individuals with Parkinson’s Disease. Park. Relat. Disord. 2024, 125, 107019. [Google Scholar] [CrossRef]
- Rodríguez-Fuentes, G.; Campo-Prieto, P.; Cancela-Carral, J.M. Immersive Virtual Reality High-Intensity Aerobic Training to Slow Parkinson’s Disease: The ReViPark Program. Appl. Sci. 2024, 14, 4708. [Google Scholar] [CrossRef]
- Impellizzeri, F.; Maggio, M.G.; De Pasquale, P.; Bonanno, M.; Bonanno, L.; De Luca, R.; Paladina, G.; Alibrandi, A.; Milardi, D.; Thaut, M.; et al. Coupling Neurologic Music Therapy with Immersive Virtual Reality to Improve Executive Functions in Individuals with Parkinson’s Disease: A Quasi-Randomized Clinical Trial. Clin. Park. Relat. Disord. 2024, 11, 100277. [Google Scholar] [CrossRef]
- Yun, S.J.; Hyun, S.E.; Oh, B.-M.; Seo, H.G. Fully Immersive Virtual Reality Exergames with Dual-Task Components for Patients with Parkinson’s Disease: A Feasibility Study. J. Neuroeng. Rehabil. 2023, 20, 92. [Google Scholar] [CrossRef]
- Besharat, A.; Imsdahl, S.I.; Yamagami, M.; Nhan, N.; Bellatin, O.; Burden, S.A.; Cummer, K.; Pradhan, S.D.; Kelly, V.E. Virtual Reality Doorway and Hallway Environments Alter Gait Kinematics in People with Parkinson Disease and Freezing. Gait Posture 2022, 92, 442–448. [Google Scholar] [CrossRef]
- Goh, L.; Allen, N.E.; Ahmadpour, N.; Martens, K.A.E.; Song, J.; Clemson, L.; Lewis, S.J.G.; MacDougall, H.G.; Canning, C.G. A Video Self-Modeling Intervention Using Virtual Reality Plus Physical Practice for Freezing of Gait in Parkinson Disease: Feasibility and Acceptability Study. JMIR Form. Res. 2021, 5, e28315. [Google Scholar] [CrossRef]
- Lheureux, A.; Lebleu, J.; Frisque, C.; Sion, C.; Stoquart, G.; Warlop, T.; Detrembleur, C.; Lejeune, T. Immersive Virtual Reality to Restore Natural Long-Range Autocorrelations in Parkinson’s Disease Patients’ Gait During Treadmill Walking. Front. Physiol. 2020, 11, 572063. [Google Scholar] [CrossRef]
- Oña, E.D.; Jardón, A.; Cuesta-Gómez, A.; Sánchez-Herrera-Baeza, P.; Cano-de-la-Cuerda, R.; Balaguer, C. Validity of a Fully-Immersive VR-Based Version of the Box and Blocks Test for Upper Limb Function Assessment in Parkinson’s Disease. Sensors 2020, 20, 2773. [Google Scholar] [CrossRef]
- Sánchez-Herrera-Baeza, P.; Cano-de-la-Cuerda, R.; Oña-Simbaña, E.D.; Palacios-Ceña, D.; Pérez-Corrales, J.; Cuenca-Zaldivar, J.N.; Gueita-Rodriguez, J.; Balaguer-Bernaldo de Quirós, C.; Jardón-Huete, A.; Cuesta-Gomez, A. The Impact of a Novel Immersive Virtual Reality Technology Associated with Serious Games in Parkinson’s Disease Patients on Upper Limb Rehabilitation: A Mixed Methods Intervention Study. Sensors 2020, 20, 2168. [Google Scholar] [CrossRef] [PubMed]
- Cikajlo, I.; Peterlin Potisk, K. Advantages of Using 3D Virtual Reality Based Training in Persons with Parkinson’s Disease: A Parallel Study. J. Neuroeng. Rehabil. 2019, 16, 119. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.; Darakjian, N.; Finley, J.M. Walking in Fully Immersive Virtual Environments: An Evaluation of Potential Adverse Effects in Older Adults and Individuals with Parkinson’s Disease. J. Neuroeng. Rehabil. 2017, 14, 16. [Google Scholar] [CrossRef] [PubMed]
- Arias, P.; Robles-García, V.; Sanmartín, G.; Flores, J.; Cudeiro, J. Virtual Reality as a Tool for Evaluation of Repetitive Rhythmic Movements in the Elderly and Parkinson’s Disease Patients. PLoS ONE 2012, 7, e30021. [Google Scholar] [CrossRef] [PubMed]
- Bank, P.J.M.; Cidota, M.A.; Ouwehand, P.E.W.; Lukosch, S.G. Patient-Tailored Augmented Reality Games for Assessing Upper Extremity Motor Impairments in Parkinson’s Disease and Stroke. J. Med. Syst. 2018, 42, 246. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, C. Precision Intervention of Virtual Reality Training for Balance and Gait in Parkinson’s Disease: A Dose–Response Meta-Analysis. Front. Neurol. 2025, 16, 1616780. [Google Scholar] [CrossRef]
- Cancela-Carral, J.M.; Campo-Prieto, P.; Rodríguez-Fuentes, G. The IntegraPark Study: An Opportunity to Facilitate High-Intensity Exercise with Immersive Virtual Reality in Parkinson’s Disease Patients. J. Funct. Morphol. Kinesiol. 2024, 9, 156. [Google Scholar] [CrossRef]
- De Natale, G.; Qorri, E.; Todri, J.; Lena, O. Impact of Virtual Reality Alone and in Combination with Conventional Therapy on Balance in Parkinson’s Disease: A Systematic Review with a Meta-Analysis of Randomized Controlled Trials. Medicina 2025, 61, 524. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, P. The Role of Virtual Reality on Outcomes in Rehabilitation of Parkinson’s Disease: Meta-Analysis and Systematic Review in 1031 Participants. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2020, 41, 529–536. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, H.; Chen, Z.; Fu, R.; Yang, H.; Zeng, H.; Ren, Z. Benefits of Virtual Reality Balance Training for Patients with Parkinson Disease: Systematic Review, Meta-Analysis, and Meta-Regression of a Randomized Controlled Trial. JMIR Serious Games 2022, 10, e30882. [Google Scholar] [CrossRef]
- Chen, Y.; Guan, L.; Wu, W.; Ye, L.; He, Y.; Zheng, X.; Li, S.; Guan, B.; Ming, W.-K. Factors That Influence Young Adults’ Preferences for Virtual Reality Exergames in a Weight Control Setting: Qualitative Study. J. Med. Internet Res. 2024, 26, e58422. [Google Scholar] [CrossRef]
- Hawkins, K.E.; Paul, S.S.; Chiarovano, E.; Curthoys, I.S. Using Virtual Reality to Assess Vestibulo-Visual Interaction in People with Parkinson’s Disease Compared to Healthy Controls. Exp. Brain Res. 2021, 239, 3553–3564. [Google Scholar] [CrossRef]
- Sakkas, K.; Dimitriou, E.G.; Ntagka, N.E.; Giannakeas, N.; Kalafatakis, K.; Tzallas, A.T.; Glavas, E. Personalized Visualization of the Gestures of Parkinson’s Disease Patients with Virtual Reality. Future Internet 2024, 16, 305. [Google Scholar] [CrossRef]
- Gao, C.; Liu, J.; Tan, Y.; Chen, S. Freezing of Gait in Parkinson’s Disease: Pathophysiology, Risk Factors and Treatments. Transl. Neurodegener. 2020, 9, 12. [Google Scholar] [CrossRef] [PubMed]
- Borzì, L.; Mazzetta, I.; Zampogna, A.; Suppa, A.; Olmo, G.; Irrera, F. Prediction of Freezing of Gait in Parkinson’s Disease Using Wearables and Machine Learning. Sensors 2021, 21, 614. [Google Scholar] [CrossRef] [PubMed]
- Schlachetzki, J.C.M.; Barth, J.; Marxreiter, F.; Gossler, J.; Kohl, Z.; Reinfelder, S.; Gassner, H.; Aminian, K.; Eskofier, B.M.; Winkler, J.; et al. Wearable Sensors Objectively Measure Gait Parameters in Parkinson’s Disease. PLoS ONE 2017, 12, e0183989. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nartea, R.; Poenaru, D.; Constantinovici, M.I.; Potcovaru, C.G.; Cinteza, D. Exploring the Effectiveness of Immersive Virtual Reality Rehabilitation for Parkinson’s Disease: A Narrative Review. J. Clin. Med. 2025, 14, 6858. https://doi.org/10.3390/jcm14196858
Nartea R, Poenaru D, Constantinovici MI, Potcovaru CG, Cinteza D. Exploring the Effectiveness of Immersive Virtual Reality Rehabilitation for Parkinson’s Disease: A Narrative Review. Journal of Clinical Medicine. 2025; 14(19):6858. https://doi.org/10.3390/jcm14196858
Chicago/Turabian StyleNartea, Roxana, Daniela Poenaru, Mariana Isabela Constantinovici, Claudia Gabriela Potcovaru, and Delia Cinteza. 2025. "Exploring the Effectiveness of Immersive Virtual Reality Rehabilitation for Parkinson’s Disease: A Narrative Review" Journal of Clinical Medicine 14, no. 19: 6858. https://doi.org/10.3390/jcm14196858
APA StyleNartea, R., Poenaru, D., Constantinovici, M. I., Potcovaru, C. G., & Cinteza, D. (2025). Exploring the Effectiveness of Immersive Virtual Reality Rehabilitation for Parkinson’s Disease: A Narrative Review. Journal of Clinical Medicine, 14(19), 6858. https://doi.org/10.3390/jcm14196858