Neurokinin Antagonists to Treat Vasomotor Symptoms—Possible Implications for Long-Term Health and Disease
Abstract
1. Introduction
2. The Burden of Menopausal Symptoms
3. Associations Between Menopause Symptoms and Long-Term Health Consequences
3.1. Cardiovascular Disease
3.2. Osteoporosis
4. The Hypothetical Link Between Symptoms and Long-Term Health Consequences
4.1. Vascular Modifications
4.2. Cortisol Modifications
4.3. Oxidative Stress
5. Evidence from the Treatment of Menopause Symptoms
5.1. Menopause Hormone Therapy
5.2. Non-Hormonal Remedies
6. Effect of Neurokinin Antagonists
7. Future Prospective
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACTH | Adrenocorticotropic Hormone |
BMI | Body Mass Index |
BP | Blood Pressure |
GABA | Gamma-Aminobutyric Acid |
KNDy | Kisspeptin-Neurokinin-Dynorphin |
LH | Luteinizing Hormone |
SSRI | Selective Serotonin Reuptake Inhibitors |
WHI | Women’s Health Initiative |
References
- Gast, G.C.M.; Grobbee, D.E.; Pop, V.J.M.; Keyzer, J.J.; Wijnands-van Gent, C.J.M.; Samsioe, G.N.; Nilsson, P.M.; van der Schouw, Y.T. Menopausal Complaints Are Associated with Cardiovascular Risk Factors. Hypertension 2008, 51, 1492–1498. [Google Scholar] [CrossRef]
- Thurston, R.C.; Sutton-Tyrrell, K.; Everson-Rose, S.A.; Hess, R.; Matthews, K.A. Hot Flashes and Subclinical Cardiovascular Disease: Findings from the Study of Women’s Health Across the Nation Heart Study. Circulation 2008, 118, 1234–1240. [Google Scholar] [CrossRef]
- Gallicchio, L.; Miller, S.R.; Zacur, H.; Flaws, J.A. Hot Flashes and Blood Pressure in Midlife Women. Maturitas 2010, 65, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Dam, V.; Dobson, A.J.; Onland-Moret, N.C.; van der Schouw, Y.T.; Mishra, G.D. Vasomotor Menopausal Symptoms and Cardiovascular Disease Risk in Midlife: A Longitudinal Study. Maturitas 2020, 133, 32–41. [Google Scholar] [CrossRef]
- Hyvärinen, M.; Karvanen, J.; Juppi, H.K.; Karppinen, J.E.; Tammelin, T.H.; Kovanen, V.; Aukee, P.; Sipilä, S.; Rantalainen, T.; Laakkonen, E.K. Menopausal Symptoms and Cardiometabolic Risk Factors in Middle-Aged Women: A Cross-Sectional and Longitudinal Study with 4-Year Follow-Up. Maturitas 2023, 174, 39–47. [Google Scholar] [CrossRef]
- Gast, G.C.M.; Samsioe, G.N.; Grobbee, D.E.; Nilsson, P.M.; van der Schouw, Y.T. Vasomotor Symptoms, Estradiol Levels and Cardiovascular Risk Profile in Women. Maturitas 2010, 66, 285–290. [Google Scholar] [CrossRef]
- Sassarini, J.; Fox, H.; Ferrell, W.; Sattar, N.; Lumsden, M.A. Vascular Function and Cardiovascular Risk Factors in Women with Severe Flushing. Clin. Endocrinol. 2011, 74, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Franco, O.H.; Muka, T.; Colpani, V.; Kunutsor, S.; Chowdhury, S.; Chowdhury, R.; Kavousi, M. Vasomotor Symptoms in Women and Cardiovascular Risk Markers: Systematic Review and Meta-Analysis. Maturitas 2015, 81, 353–361. [Google Scholar] [CrossRef]
- Biglia, N.; Cagnacci, A.; Gambacciani, M.; Lello, S.; Maffei, S.; Nappi, R.E. Vasomotor Symptoms in Menopause: A Biomarker of Cardiovascular Disease Risk and Other Chronic Diseases? Climacteric 2017, 20, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Svartberg, J.; von Mühlen, D.; Kritz-Silverstein, D.; Barrett-Connor, E. Vasomotor Symptoms and Mortality: The Rancho Bernardo Study. Menopause 2009, 16, 888–891. [Google Scholar] [CrossRef]
- Szmuilowicz, E.D.; Manson, J.E.; Rossouw, J.E.; Howard, B.V.; Margolis, K.L.; Greep, N.C.; Brzyski, R.G.; Stefanick, M.L.; O’Sullivan, M.J.; Wu, C.; et al. Vasomotor Symptoms and Cardiovascular Events in Postmenopausal Women. Menopause 2011, 18, 603–610. [Google Scholar] [CrossRef]
- Muka, T.; Oliver-Williams, C.; Colpani, V.; Kunutsor, S.; Chowdhury, S.; Chowdhury, R.; Kavousi, M.; Franco, O.H. Association of Vasomotor and Other Menopausal Symptoms with Risk of Cardiovascular Disease: A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0157417. [Google Scholar] [CrossRef]
- Ferri, L.A.; Morici, N.; Bassanelli, G.; Franco, N.; Misuraca, L.; Lenatti, L.; Jacono, E.L.; Leuzzi, C.; Corrada, E.; Aranzulla, T.C.; et al. History of Vasomotor Symptoms, Extent of Coronary Artery Disease, and Clinical Outcomes after Acute Coronary Syndrome in Postmenopausal Women. Menopause 2018, 25, 635–640. [Google Scholar] [CrossRef]
- Zhu, D.; Chung, H.F.; Dobson, A.J.; Pandeya, N.; Anderson, D.J.; Kuh, D.; Hardy, R.; Brunner, E.J.; Avis, N.E.; Gold, E.B.; et al. Vasomotor Menopausal Symptoms and Risk of Cardiovascular Disease: A Pooled Analysis of Six Prospective Studies. Am. J. Obstet. Gynecol. 2020, 223, 898.e1–898.e16. [Google Scholar] [CrossRef] [PubMed]
- Nudy, M.; Jiang, X.; Aragaki, A.K.; Manson, J.E.; Shadyab, A.H.; Foy, A.J.; Buerger, J.; Kelsey, A.M.; LeBlanc, E.S.; Wild, R.A.; et al. The Severity of Vasomotor Symptoms and Number of Menopausal Symptoms in Postmenopausal Women and Select Clinical Health Outcomes in the Women’s Health Initiative Calcium and Vitamin D Randomized Clinical Trial. Menopause 2020, 27, 1265–1273. [Google Scholar] [CrossRef] [PubMed]
- Thurston, R.C.; Johnson, B.D.; Shufelt, C.L.; Braunstein, G.D.; Berga, S.L.; Stanczyk, F.Z.; Pepine, C.J.; Bittner, V.; Reis, S.E.; Thompson, D.V.; et al. Menopausal Symptoms and Cardiovascular Disease Mortality in the Women’s Ischemia Syndrome Evaluation (WISE). Menopause 2017, 24, 126–132. [Google Scholar] [CrossRef]
- Thurston, R.C.; El Khoudary, S.R.; Sutton-Tyrrell, K.; Crandall, C.J.; Gold, E.; Sternfeld, B.; Selzer, F.; Matthews, K.A. Are Vasomotor Symptoms Associated with Alterations in Hemostatic and Inflammatory Markers? Findings from the Study of Women’s Health Across the Nation. Menopause 2011, 18, 1044–1051. [Google Scholar] [CrossRef]
- Crandall, C.J.; Tseng, C.H.; Crawford, S.L.; Thurston, R.C.; Gold, E.B.; Johnston, J.M.; Greendale, G.A. Association of Menopausal Vasomotor Symptoms with Increased Bone Turnover during the Menopausal Transition. J. Bone Miner. Res. 2011, 26, 840–849. [Google Scholar] [CrossRef] [PubMed]
- Gast, G.C.M.; Grobbee, D.E.; Pop, V.J.M.; Keyzer, J.J.; Wijnands-van Gent, C.J.M.; Samsioe, G.N.; Nilsson, P.M.; van der Schouw, Y.T. Vasomotor Symptoms Are Associated with a Lower Bone Mineral Density. Menopause 2009, 16, 231–238. [Google Scholar] [CrossRef]
- Crandall, C.J.; Zheng, Y.; Crawford, S.L.; Thurston, R.C.; Gold, E.B.; Johnston, J.M.; Greendale, G.A. Presence of Vasomotor Symptoms Is Associated with Lower Bone Mineral Density: A Longitudinal Analysis. Menopause 2009, 16, 239–246. [Google Scholar] [CrossRef]
- Crandall, C.J.; Aragaki, A.; Cauley, J.A.; Manson, J.E.; LeBlanc, E.; Wallace, R.; Wactawski-Wende, J.; LaCroix, A.; O’Sullivan, M.J.; Vitolins, M.; et al. Associations of Menopausal Vasomotor Symptoms with Fracture Incidence. J. Clin. Endocrinol. Metab. 2015, 100, 524–534. [Google Scholar] [CrossRef]
- Maki, P.M.; Drogos, L.L.; Rubin, L.H.; Banuvar, S.; Shulman, L.P.; Geller, S.E. Objective Hot Flashes Are Negatively Related to Verbal Memory Performance in Midlife Women. Menopause 2008, 15, 848–856. [Google Scholar] [CrossRef]
- Drogos, L.L.; Rubin, L.H.; Geller, S.E.; Banuvar, S.; Shulman, L.P.; Maki, P.M. Objective Cognitive Performance Is Related to Subjective Memory Complaints in Midlife Women with Moderate to Severe Vasomotor Symptoms. Menopause 2013, 20, 1236–1242. [Google Scholar] [CrossRef] [PubMed]
- Thurston, R.C.; Aizenstein, H.J.; Derby, C.A.; Sejdić, E.; Maki, P.M. Menopausal Hot Flashes and White Matter Hyperintensities. Menopause 2016, 23, 27–32. [Google Scholar] [CrossRef]
- Thurston, R.C.; Wu, M.; Aizenstein, H.J.; Chang, Y.; Barinas Mitchell, E.; Derby, C.A.; Maki, P.M. Sleep Characteristics and White Matter Hyperintensities among Midlife Women. Sleep 2020, 43, zsz298. [Google Scholar] [CrossRef]
- Cagnacci, A.; Palma, F.; Napolitano, A.; Xholli, A. Association between Pelvic Organ Prolapse and Climacteric Symptoms in Postmenopausal Women. Maturitas 2017, 99, 73–78. [Google Scholar] [CrossRef]
- Cagnacci, A.; Palma, F.; Carbone, M.M.; Grandi, G.; Xholli, A. Association between Urinary Incontinence and Climacteric Symptoms in Postmenopausal Women. Menopause 2017, 24, 77–84. [Google Scholar] [CrossRef]
- van der Schouw, Y.T.; Grobbee, D.E. Menopausal Complaints, Oestrogens, and Heart Disease Risk: An Explanation for Discrepant Findings on the Benefits of Post-Menopausal Hormone Therapy. Eur. Heart J. 2005, 26, 1358–1361. [Google Scholar] [CrossRef]
- Sturdee, D.W.; Wilson, K.A.; Pipili, E.; Crocker, A.D. Physiological Aspects of Menopausal Hot Flush. Br. Med. J. 1978, 2, 79–80. [Google Scholar] [CrossRef] [PubMed]
- Tataryn, I.V.; Lomax, P.; Bajorek, J.G.; Chesarek, W.; Meldrum, D.R.; Judd, H.L. Postmenopausal Hot Flushes: A Disorder of Thermoregulation. Maturitas 1980, 2, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Freedman, R.R. Physiology of Hot Flashes. Am. J. Human Biol. 2001, 13, 453–464. [Google Scholar] [CrossRef]
- Gombert-Labedens, M.; Vesterdorf, K.; Fuller, A.; Maloney, S.K.; Baker, F.C. Effects of Menopause on Temperature Regulation. Temperature 2025, 12, 92–132. [Google Scholar] [CrossRef]
- Gold, E.B.; Colvin, A.; Avis, N.; Bromberger, J.; Greendale, G.A.; Powell, L.; Sternfeld, B.; Matthews, K. Longitudinal Analysis of the Association between Vasomotor Symptoms and Race/Ethnicity across the Menopausal Transition: Study of Women’s Health across the Nation. Am. J. Public Health 2006, 96, 1226–1235. [Google Scholar] [CrossRef]
- Mishra, G.D.; Kuh, D. Health Symptoms during Midlife in Relation to Menopausal Transition: British Prospective Cohort Study. BMJ 2012, 344, e402. [Google Scholar] [CrossRef]
- Avis, N.E.; Crawford, S.L.; Greendale, G.; Bromberger, J.T.; Everson-Rose, S.A.; Gold, E.B.; Hess, R.; Joffe, H.; Kravitz, H.M.; Tepper, P.G.; et al. Duration of Menopausal Vasomotor Symptoms over the Menopause Transition. JAMA Intern. Med. 2015, 175, 531–539. [Google Scholar] [CrossRef]
- Thurston, R.C.; El Khoudary, S.R.; Tepper, P.G.; Jackson, E.A.; Joffe, H.; Chen, H.Y.; Matthews, K.A. Trajectories of Vasomotor Symptoms and Carotid Intima Media Thickness in the Study of Women’s Health Across the Nation. Stroke 2016, 47, 12–17. [Google Scholar] [CrossRef]
- Kravitz, H.M.; Ganz, P.A.; Bromberger, J.; Powell, L.H.; Sutton-Tyrrell, K.; Meyer, P.M. Sleep Difficulty in Women at Midlife: A Community Survey of Sleep and the Menopausal Transition. Menopause 2003, 10, 19–28. [Google Scholar] [PubMed]
- Kravitz, H.M.; Joffe, H. Sleep during the Perimenopause: A SWAN Story. Obstet. Gynecol. Clin. N. Am. 2011, 38, 567–586. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Thurston, R.C.; Matthews, K.A.; Bryce, C.L.; Hays, R.D.; Kapoor, W.N.; Ness, R.B.; Hess, R. Are Hot Flashes Associated with Sleep Disturbance during Midlife? Results from the STRIDE Cohort Study. Maturitas 2012, 71, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Beverly Hery, C.M.; Hale, L.; Naughton, M.J. Contributions of the Women’s Health Initiative to Understanding Associations between Sleep Duration, Insomnia Symptoms, and Sleep-Disordered Breathing across a Range of Health Outcomes in Postmenopausal Women. Sleep Health 2020, 6, 48–59. [Google Scholar] [CrossRef]
- Erlik, Y.; Tataryn, I.V.; Meldrum, D.R.; Lomax, P.; Bajorek, J.G.; Judd, H.L. Association of Waking Episodes with Menopausal Hot Flushes. JAMA 1981, 245, 1741–1744. [Google Scholar] [CrossRef]
- Szymusiak, R.; Gvilia, I.; McGinty, D. Hypothalamic Control of Sleep. Sleep Med. 2007, 8, 291–301. [Google Scholar] [CrossRef]
- Rance, N.E.; Dacks, P.A.; Mittelman-Smith, M.A.; Romanovsky, A.A.; Krajewski-Hall, S.J. Modulation of Body Temperature and LH Secretion by Hypothalamic KNDy (Kisspeptin, Neurokinin B and Dynorphin) Neurons: A Novel Hypothesis on the Mechanism of Hot Flushes. Front. Neuroendocr. 2013, 34, 211–227. [Google Scholar] [CrossRef]
- Cagnacci, A.; Soldani, R.; Yen, S.S. Melatonin Enhances Cortisol Levels in Aged Women: Reversible by Estrogens. J. Pineal Res. 1997, 22, 81–85. [Google Scholar] [CrossRef]
- Bromberger, J.T.; Matthews, K.A.; Schott, L.L.; Brockwell, S.; Avis, N.E.; Kravitz, H.M.; Everson-Rose, S.A.; Gold, E.B.; Sowers, M.; Randolph, J.F. Depressive Symptoms during the Menopausal Transition: The Study of Women’s Health Across the Nation (SWAN). J. Affect. Disord. 2007, 103, 267–272. [Google Scholar] [CrossRef]
- Worsley, R.; Bell, R.J.; Gartoulla, P.; Robinson, P.J.; Davis, S.R. Moderate-Severe Vasomotor Symptoms Are Associated with Moderate-Severe Depressive Symptoms. J. Womens Health 2017, 26, 712–718. [Google Scholar] [CrossRef]
- Vaccaro, C.M.; Capozzi, A.; Ettore, G.; Bernorio, R.; Cagnacci, A.; Gambacciani, M.; Coletta, V.; Maffei, S.; Nappi, R.E.; Scambia, G.; et al. What Women Think about Menopause: An Italian Survey. Maturitas 2021, 147, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Fidecicchi, T.; Giannini, A.; Chedraui, P.; Luisi, S.; Battipaglia, C.; Genazzani, A.R.; Genazzani, A.D.; Simoncini, T. Neuroendocrine Mechanisms of Mood Disorders during Menopause Transition: A Narrative Review and Future Perspectives. Maturitas 2024, 188, 108087. [Google Scholar] [CrossRef]
- Natari, R.B.; Clavarino, A.M.; McGuire, T.M.; Dingle, K.D.; Hollingworth, S.A. The Bidirectional Relationship between Vasomotor Symptoms and Depression across the Menopausal Transition: A Systematic Review of Longitudinal Studies. Menopause 2018, 25, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Gibson, C.J.; Ajmera, M.; O’Sullivan, F.; Shiozawa, A.; Lozano-Ortega, G.; Badillo, E.C.; Venkataraman, M.; Mancuso, S. A Systematic Review of Anxiety and Depressive Symptoms Among Women Experiencing Vasomotor Symptoms Across Reproductive Stages in the US. Int. J. Womens Health 2025, 17, 537–552. [Google Scholar] [CrossRef] [PubMed]
- Riemann, D.; Workshop Participants. Does Effective Management of Sleep Disorders Reduce Depressive Symptoms and the Risk of Depression? Drugs 2009, 69 (Suppl. S2), 43–64. [Google Scholar] [CrossRef]
- Baglioni, C.; Battagliese, G.; Feige, B.; Spiegelhalder, K.; Nissen, C.; Voderholzer, U.; Lombardo, C.; Riemann, D. Insomnia as a Predictor of Depression: A Meta-Analytic Evaluation of Longitudinal Epidemiological Studies. J. Affect. Disord. 2011, 135, 10–19. [Google Scholar] [CrossRef]
- Zeng, Y.; Liu, T.; Qiu, R.; Lian, Q. Association among Objective and Subjective Sleep Duration, Depressive Symptoms and All-Cause Mortality: The Pathways Study. BMC Psychiatry 2025, 25, 735. [Google Scholar] [CrossRef]
- Cagnacci, A.; Xholli, A.; Sclauzero, M.; Venier, M.; Palma, F.; Gambacciani, M.; Writing Group of the ANGEL Study. Vaginal Atrophy across the Menopausal Age: Results from the ANGEL Study. Climacteric 2019, 22, 85–89. [Google Scholar] [CrossRef]
- Cagnacci, A.; Venier, M.; Xholli, A.; Paglietti, C.; Caruso, S.; Angel Study. Female Sexuality and Vaginal Health across the Menopausal Age. Menopause 2020, 27, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Cagnacci, A.; Sclauzero, M.; Meriggiola, C.; Xholli, A.; ANGEL Study. Lower Urinary Tract Symptoms and Their Relation to Vaginal Atrophy in Women across the Menopausal Age Span. Results from the ANGEL Multicentre Observational Study. Maturitas 2020, 140, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Løkkegaard, E.; Jovanovic, Z.; Heitmann, B.L.; Keiding, N.; Ottesen, B.; Pedersen, A.T. The Association between Early Menopause and Risk of Ischaemic Heart Disease: Influence of Hormone Therapy. Maturitas 2006, 53, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Rivera, C.M.; Grossardt, B.R.; Rhodes, D.J.; Brown, R.D.; Roger, V.L.; Melton, L.J.; Rocca, W.A. Increased Cardiovascular Mortality after Early Bilateral Oophorectomy. Menopause 2009, 16, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Parker, W.H.; Broder, M.S.; Chang, E.; Feskanich, D.; Farquhar, C.; Liu, Z.; Shoupe, D.; Berek, J.S.; Hankinson, S.; Manson, J.E. Ovarian Conservation at the Time of Hysterectomy and Long-Term Health Outcomes in the Nurses’ Health Study. Obstet. Gynecol. 2009, 113, 1027–1037. [Google Scholar] [CrossRef] [PubMed]
- Maclaran, K.; Horner, E.; Panay, N. Premature Ovarian Failure: Long-Term Sequelae. Menopause Int. 2010, 16, 38–41. [Google Scholar] [CrossRef] [PubMed]
- Panay, N.; Anderson, R.A.; Nappi, R.E.; Vincent, A.J.; Vujovic, S.; Webber, L.; Wolfman, W. Premature Ovarian Insufficiency: An International Menopause Society White Paper. Climacteric 2020, 23, 426–446. [Google Scholar] [CrossRef]
- Liu, J.; Jin, X.; Chen, W.; Wang, L.; Feng, Z.; Huang, J. Early Menopause Is Associated with Increased Risk of Heart Failure and Atrial Fibrillation: A Systematic Review and Meta-Analysis. Maturitas 2023, 176, 107784. [Google Scholar] [CrossRef]
- van der Schouw, Y.T.; van der Graaf, Y.; Steyerberg, E.W.; Eijkemans, J.C.; Banga, J.D. Age at Menopause as a Risk Factor for Cardiovascular Mortality. Lancet 1996, 347, 714–718. [Google Scholar] [CrossRef] [PubMed]
- Janssen, I.; Powell, L.H.; Crawford, S.; Lasley, B.; Sutton-Tyrrell, K. Menopause and the Metabolic Syndrome: The Study of Women’s Health Across the Nation. Arch. Intern. Med. 2008, 168, 1568–1575. [Google Scholar] [CrossRef] [PubMed]
- Reeves, A.N.; Elliott, M.R.; Brooks, M.M.; Karvonen-Gutierrez, C.A.; Bondarenko, I.; Hood, M.M.; Harlow, S.D. Symptom Clusters Predict Risk of Metabolic-Syndrome and Diabetes in Midlife: The Study of Women’s Health Across the Nation. Ann. Epidemiol. 2021, 58, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Ou, Y.J.; Lee, J.I.; Huang, S.P.; Chen, S.C.; Geng, J.H.; Su, C.H. Association between Menopause, Postmenopausal Hormone Therapy and Metabolic Syndrome. J. Clin. Med. 2023, 12, 4435. [Google Scholar] [CrossRef]
- Thurston, R.C.; Sowers, M.R.; Sternfeld, B.; Gold, E.B.; Bromberger, J.; Chang, Y.; Joffe, H.; Crandall, C.J.; Waetjen, L.E.; Matthews, K.A. Gains in Body Fat and Vasomotor Symptom Reporting over the Menopausal Transition: The Study of Women’s Health across the Nation. Am. J. Epidemiol. 2009, 170, 766–774. [Google Scholar] [CrossRef]
- Doshi, S.B.; Agarwal, A. The Role of Oxidative Stress in Menopause. J. Midlife Health 2013, 4, 140–146. [Google Scholar] [CrossRef]
- Gordon, J.L.; Rubinow, D.R.; Thurston, R.C.; Paulson, J.; Schmidt, P.J.; Girdler, S.S. Cardiovascular, Hemodynamic, Neuroendocrine, and Inflammatory Markers in Women with and without Vasomotor Symptoms. Menopause 2016, 23, 1189–1198. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, M.A.; Zacarías-Flores, M.; Arronte-Rosales, A.; Mendoza-Núñez, V.M. Association between Hot Flashes Severity and Oxidative Stress among Mexican Postmenopausal Women: A Cross-Sectional Study. PLoS ONE 2019, 14, e0214264. [Google Scholar] [CrossRef]
- Sadeghi, M.; Khalili, M.; Pourmoghaddas, M.; Talaei, M. The Correlation between Blood Pressure and Hot Flashes in Menopausal Women. ARYA Atheroscler. 2012, 8, 32–35. [Google Scholar] [PubMed]
- Jackson, E.A.; El Khoudary, S.R.; Crawford, S.L.; Matthews, K.; Joffe, H.; Chae, C.; Thurston, R.C. Hot Flash Frequency and Blood Pressure: Data from the Study of Women’s Health Across the Nation. J. Womens Health 2016, 25, 1204–1209. [Google Scholar] [CrossRef]
- Thurston, R.C.; El Khoudary, S.R.; Sutton-Tyrrell, K.; Crandall, C.J.; Sternfeld, B.; Joffe, H.; Gold, E.B.; Selzer, F.; Matthews, K.A. Vasomotor Symptoms and Insulin Resistance in the Study of Women’s Health across the Nation. J. Clin. Endocrinol. Metab. 2012, 97, 3487–3494. [Google Scholar] [CrossRef]
- Gray, K.E.; Katon, J.G.; LeBlanc, E.S.; Woods, N.F.; Bastian, L.A.; Reiber, G.E.; Weitlauf, J.C.; Nelson, K.M.; LaCroix, A.Z. Vasomotor Symptom Characteristics: Are They Risk Factors for Incident Diabetes? Menopause 2018, 25, 520–530. [Google Scholar] [CrossRef]
- Bechlioulis, A.; Kalantaridou, S.N.; Naka, K.K.; Chatzikyriakidou, A.; Calis, K.A.; Makrigiannakis, A.; Papanikolaou, O.; Kaponis, A.; Katsouras, C.; Georgiou, I.; et al. Endothelial Function, but Not Carotid Intima-Media Thickness, Is Affected Early in Menopause and Is Associated with Severity of Hot Flushes. J. Clin. Endocrinol. Metab. 2010, 95, 1199–1206. [Google Scholar] [CrossRef]
- Thurston, R.C.; Chang, Y.; Barinas-Mitchell, E.; Jennings, J.R.; Landsittel, D.P.; Santoro, N.; von Känel, R.; Matthews, K.A. Menopausal Hot Flashes and Carotid Intima Media Thickness Among Midlife Women. Stroke 2016, 47, 2910–2915. [Google Scholar] [CrossRef]
- Thurston, R.C.; Kuller, L.H.; Edmundowicz, D.; Matthews, K.A. History of Hot Flashes and Aortic Calcification among Postmenopausal Women. Menopause 2018, 25, 1291–1296. [Google Scholar] [CrossRef]
- Nilsson, S.; Qvick, A.; Henriksson, M.; Lawesson, S.S.; Holm, A.C.S.; Leander, K. Menopausal Vasomotor Symptoms and Subclinical Atherosclerotic Cardiovascular Disease: A Population-Based Study. J. Am. Heart Assoc. 2024, 13, e033648. [Google Scholar] [CrossRef]
- Thurston, R.C.; Aslanidou Vlachos, H.E.; Derby, C.A.; Jackson, E.A.; Brooks, M.M.; Matthews, K.A.; Harlow, S.; Joffe, H.; El Khoudary, S.R. Menopausal Vasomotor Symptoms and Risk of Incident Cardiovascular Disease Events in SWAN. J. Am. Heart Assoc. 2021, 10, e017416. [Google Scholar] [CrossRef] [PubMed]
- Chasens, E.R.; Imes, C.C.; Kariuki, J.K.; Luyster, F.S.; Morris, J.L.; DiNardo, M.M.; Godzik, C.M.; Jeon, B.; Yang, K. Sleep and Metabolic Syndrome. Nurs. Clin. N. Am. 2021, 56, 203–217. [Google Scholar] [CrossRef] [PubMed]
- Haghayegh, S.; Strohmaier, S.; Hamaya, R.; Eliassen, A.H.; Willett, W.C.; Rimm, E.B.; Schernhammer, E.S. Sleeping Difficulties, Sleep Duration, and Risk of Hypertension in Women. Hypertension 2023, 80, 2407–2414. [Google Scholar] [CrossRef]
- Tomitani, N.; Hoshide, S.; Kario, K. Sleep and Hypertension-up to Date 2024. Hypertens. Res. 2024, 47, 3356–3362. [Google Scholar] [CrossRef]
- Thurston, R.C.; Chang, Y.; von Känel, R.; Barinas-Mitchell, E.; Jennings, J.R.; Hall, M.H.; Santoro, N.; Buysse, D.J.; Matthews, K.A. Sleep Characteristics and Carotid Atherosclerosis Among Midlife Women. Sleep 2017, 40, zsw052. [Google Scholar] [CrossRef]
- Medic, G.; Wille, M.; Hemels, M.E. Short- and Long-Term Health Consequences of Sleep Disruption. Nat. Sci. Sleep 2017, 9, 151–161. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, J.; Yin, Z.; Wang, L.; Peng, L. The Association between Depression and Metabolic Syndrome and Its Components: A Bidirectional Two-Sample Mendelian Randomization Study. Transl. Psychiatry 2021, 11, 633. [Google Scholar] [CrossRef] [PubMed]
- Prigge, R.; Wild, S.H.; Jackson, C.A. Depression, Diabetes, Comorbid Depression and Diabetes and Risk of All-Cause and Cause-Specific Mortality: A Prospective Cohort Study. Diabetologia 2022, 65, 1450–1460. [Google Scholar] [CrossRef]
- Cagnacci, A.; Cannoletta, M.; Caretto, S.; Zanin, R.; Xholli, A.; Volpe, A. Increased Cortisol Level: A Possible Link between Climacteric Symptoms and Cardiovascular Risk Factors. Menopause 2011, 18, 273–278. [Google Scholar] [CrossRef]
- Cagnacci, A.; Cannoletta, M.; Palma, F.; Zanin, R.; Xholli, A.; Volpe, A. Menopausal Symptoms and Risk Factors for Cardiovascular Disease in Postmenopause. Climacteric 2012, 15, 157–162. [Google Scholar] [CrossRef]
- Cagnacci, A.; Gambera, A.; Bonaccorsi, G.; Xholli, A.; ANGEL Study. Relation between Blood Pressure and Genito-Urinary Symptoms in the Years across the Menopausal Age. Climacteric 2022, 25, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Cagnacci, A.; Palma, F.; Romani, C.; Xholli, A.; Bellafronte, M.; Di Carlo, C. Are Climacteric Complaints Associated with Risk Factors of Cardiovascular Disease in Peri-Menopausal Women? Gynecol. Endocrinol. 2015, 31, 359–362. [Google Scholar] [CrossRef] [PubMed]
- Cagnacci, A.; Cannoletta, M.; Palma, F.; Bellafronte, M.; Romani, C.; Palmieri, B. Relation between Oxidative Stress and Climacteric Symptoms in Early Postmenopausal Women. Climacteric 2015, 18, 631–636. [Google Scholar] [CrossRef]
- Nudy, M.; Aragaki, A.K.; Jiang, X.; Manson, J.E.; Allison, M.A.; Shadyab, A.H.; Hodis, H.N.; Wild, R.A.; Robbins, J.A.; Liu, S.; et al. The Severity of Individual Menopausal Symptoms, Cardiovascular Disease, and All-Cause Mortality in the Women’s Health Initiative Observational Cohort. Menopause 2022, 29, 1365–1374. [Google Scholar] [CrossRef]
- Pansini, F.; Bagni, B.; Bonaccorsi, G.; Albertazzi, P.; Zanotti, L.; Farina, A.; Campobasso, C.; Orlandi, R.; Mollica, G. Oophorectomy and Spine Bone Density: Evidence of a Higher Rate of Bone Loss in Surgical Compared with Spontaneous Menopause. Menopause 1995, 2, 109–116. [Google Scholar] [CrossRef]
- Pouillès, J.M.; Trémollières, F.; Bonneu, M.; Ribot, C. Influence of Early Age at Menopause on Vertebral Bone Mass. J. Bone Miner. Res. 1994, 9, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Ohta, H.; Sugimoto, I.; Masuda, A.; Komukai, S.; Suda, Y.; Makita, K.; Takamatsu, K.; Horiguchi, F.; Nozawa, S. Decreased Bone Mineral Density Associated with Early Menopause Progresses for at Least Ten Years: Cross-Sectional Comparisons between Early and Normal Menopausal Women. Bone 1996, 18, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Kotsopoulos, J.; Hall, E.; Finch, A.; Hu, H.; Murphy, J.; Rosen, B.; Narod, S.A.; Cheung, A.M. Changes in Bone Mineral Density After Prophylactic Bilateral Salpingo-Oophorectomy in Carriers of a BRCA Mutation. JAMA Netw. Open 2019, 2, e198420. [Google Scholar] [CrossRef]
- van Der Voort, D.J.M.; van Der Weijer, P.H.M.; Barentsen, R. Early Menopause: Increased Fracture Risk at Older Age. Osteoporos. Int. 2003, 14, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Finkelstein, J.S.; Brockwell, S.E.; Mehta, V.; Greendale, G.A.; Sowers, M.R.; Ettinger, B.; Lo, J.C.; Johnston, J.M.; Cauley, J.A.; Danielson, M.E.; et al. Bone Mineral Density Changes during the Menopause Transition in a Multiethnic Cohort of Women. J. Clin. Endocrinol. Metab. 2008, 93, 861–868. [Google Scholar] [CrossRef]
- Swanson, C.M. Sleep Disruptions and Bone Health: What Do We Know so Far? Curr. Opin. Endocrinol. Diabetes Obes. 2021, 28, 348–353. [Google Scholar] [CrossRef]
- Swanson, C.M.; Shea, S.A.; Kohrt, W.M.; Wright, K.P.; Cain, S.W.; Munch, M.; Vujović, N.; Czeisler, C.A.; Orwoll, E.S.; Buxton, O.M. Sleep Restriction with Circadian Disruption Negatively Alter Bone Turnover Markers in Women. J. Clin. Endocrinol. Metab. 2020, 105, 2456–2463. [Google Scholar] [CrossRef]
- Cherian, K.E.; Kapoor, N.; Paul, T.V. Disrupted Sleep Architecture Is Associated with Incident Bone Loss in Indian Postmenopausal Women: A Prospective Study. J. Bone Miner. Res. 2022, 37, 1956–1962. [Google Scholar] [CrossRef]
- Cauley, J.A.; Kravitz, H.M.; Ruppert, K.; Lian, Y.; Hall, M.J.; Harlow, S.D.; Finkelstein, J.S.; Greendale, G. Self-Reported Sleep Disturbances over the Menopausal Transition and Fracture Risk: The Study of Women’s Health Across the Nation. JBMR Plus 2023, 7, e10762. [Google Scholar] [CrossRef]
- Altindag, O.; Altindag, A.; Asoglu, M.; Gunes, M.; Soran, N.; Deveci, Z. Relation of Cortisol Levels and Bone Mineral Density among Premenopausal Women with Major Depression. Int. J. Clin. Pract. 2007, 61, 416–420. [Google Scholar] [CrossRef]
- Eskandari, F.; Martinez, P.E.; Torvik, S.; Phillips, T.M.; Sternberg, E.M.; Mistry, S.; Ronsaville, D.; Wesley, R.; Toomey, C.; Sebring, N.G.; et al. Low Bone Mass in Premenopausal Women with Depression. Arch. Intern. Med. 2007, 167, 2329–2336. [Google Scholar] [CrossRef]
- Petronijević, M.; Petronijević, N.; Ivković, M.; Stefanović, D.; Radonjić, N.; Glisić, B.; Ristić, G.; Damjanović, A.; Paunović, V. Low Bone Mineral Density and High Bone Metabolism Turnover in Premenopausal Women with Unipolar Depression. Bone 2008, 42, 582–590. [Google Scholar] [CrossRef]
- Aydin, H.; Mutlu, N.; Akbas, N.B.G. Treatment of a Major Depression Episode Suppresses Markers of Bone Turnover in Premenopausal Women. J. Psychiatr. Res. 2011, 45, 1316–1320. [Google Scholar] [CrossRef] [PubMed]
- Atteritano, M.; Lasco, A.; Mazzaferro, S.; Macrì, I.; Catalano, A.; Santangelo, A.; Bagnato, G.; Bagnato, G.; Frisina, N. Bone Mineral Density, Quantitative Ultrasound Parameters and Bone Metabolism in Postmenopausal Women with Depression. Intern. Emerg. Med. 2013, 8, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Thurston, R.C.; Christie, I.C.; Matthews, K.A. Hot Flashes and Cardiac Vagal Control: A Link to Cardiovascular Risk? Menopause 2010, 17, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Harte, A.L.; da Silva, N.F.; Khan, H.; Barnett, A.H.; Kumar, S.; Sturdee, D.W.; McTernan, P.G. Expression of Calcitonin Gene-Related Peptide, Adrenomedullin, and Receptor Modifying Proteins in Human Adipose Tissue and Alteration in Their Expression with Menopause Status. Menopause 2007, 14, 1031–1038. [Google Scholar] [CrossRef]
- Custodis, F.; Baumhäkel, M.; Schlimmer, N.; List, F.; Gensch, C.; Böhm, M.; Laufs, U. Heart Rate Reduction by Ivabradine Reduces Oxidative Stress, Improves Endothelial Function, and Prevents Atherosclerosis in Apolipoprotein E-deficient Mice. Circulation 2008, 117, 2377–2387. [Google Scholar] [CrossRef] [PubMed]
- Whelton, S.P.; Blankstein, R.; Al-Mallah, M.H.; Lima, J.A.C.; Bluemke, D.A.; Hundley, W.G.; Polak, J.F.; Blumenthal, R.S.; Nasir, K.; Blaha, M.J. Association of Resting Heart Rate with Carotid and Aortic Arterial Stiffness: Multi-Ethnic Study of Atherosclerosis. Hypertension 2013, 62, 477–484. [Google Scholar] [CrossRef]
- Caetano, J.; Delgado Alves, J. Heart Rate and Cardiovascular Protection. Eur. J. Intern. Med. 2015, 26, 217–222. [Google Scholar] [CrossRef]
- Seviiri, M.; Lynch, B.M.; Hodge, A.M.; Yang, Y.; Liew, D.; English, D.R.; Giles, G.G.; Milne, R.L.; Dugué, P.A. Resting Heart Rate, Temporal Changes in Resting Heart Rate, and Overall and Cause-Specific Mortality. Heart 2018, 104, 1076–1085. [Google Scholar] [CrossRef]
- de la Sierra, A.; Staplin, N.; Ruilope, L.M.; Gorostidi, M.; Vinyoles, E.; Segura, J.; Baigent, C.; Williams, B. A Blunted Nocturnal Blood Pressure Decline Is Associated with All-Cause and Cardiovascular Mortality. J. Hypertens. 2024, 42, 1197–1202. [Google Scholar] [CrossRef]
- Lempiäinen, P.A.; Ylitalo, A.; Huikuri, H.; Kesäniemi, Y.A.; Ukkola, O.H. Non-Dipping Blood Pressure Pattern Is Associated with Cardiovascular Events in a 21-Year Follow-up Study. J. Human Hypertens. 2024, 38, 444–451. [Google Scholar] [CrossRef]
- Parati, G.; Pengo, M.F.; Avolio, A.; Azizi, M.; Bothe, T.L.; Burnier, M.; Cappuccio, F.P.; Sierra, A.D.L.; Fava, C.; Gironacci, M.M.; et al. Nocturnal Blood Pressure: Pathophysiology, Measurement and Clinical Implications. Position Paper of the European Society of Hypertension. J. Hypertens. 2025, 43, 1296–1318. [Google Scholar] [CrossRef]
- Woods, N.F.; Carr, M.C.; Tao, E.Y.; Taylor, H.J.; Mitchell, E.S. Increased Urinary Cortisol Levels during the Menopausal Transition. Menopause 2006, 13, 212–221. [Google Scholar] [CrossRef]
- Cagnacci, A.; Soldani, R.; Yen, S.S. Melatonin Enhances Cortisol Levels in Aged but Not Young Women. Eur. J. Endocrinol. 1995, 133, 691–695. [Google Scholar] [CrossRef]
- Casper, R.F.; Yen, S.S.; Wilkes, M.M. Menopausal Flushes: A Neuroendocrine Link with Pulsatile Luteninizing Hormone Secreation. Science 1979, 205, 823–825. [Google Scholar] [CrossRef]
- Meldrum, D.R.; Tataryn, I.V.; Frumar, A.M.; Erlik, Y.; Lu, K.H.; Judd, H.L. Gonadotropins, Estrogens, and Adrenal Steroids during the Menopausal Hot Flash. J. Clin. Endocrinol. Metab. 1980, 50, 685–689. [Google Scholar] [CrossRef] [PubMed]
- Genazzani, A.R.; Petraglia, F.; Facchinetti, F.; Facchini, V.; Volpe, A.; Alessandrini, G. Increase of Proopiomelanocortin-Related Peptides during Subjective Menopausal Flushes. Am. J. Obstet. Gynecol. 1984, 149, 775–779. [Google Scholar] [CrossRef]
- Gibson, C.J.; Thurston, R.C.; Matthews, K.A. Cortisol Dysregulation Is Associated with Daily Diary-Reported Hot Flashes among Midlife Women. Clin. Endocrinol. 2016, 85, 645–651. [Google Scholar] [CrossRef]
- Reed, S.D.; Newton, K.M.; Larson, J.C.; Booth-LaForce, C.; Woods, N.F.; Landis, C.A.; Tolentino, E.; Carpenter, J.S.; Freeman, E.W.; Joffe, H.; et al. Daily Salivary Cortisol Patterns in Midlife Women with Hot Flashes. Clin. Endocrinol. 2016, 84, 672–679. [Google Scholar] [CrossRef]
- Morgan, E.; Schumm, L.P.; McClintock, M.; Waite, L.; Lauderdale, D.S. Sleep Characteristics and Daytime Cortisol Levels in Older Adults. Sleep 2017, 40, zsx043. [Google Scholar] [CrossRef]
- Pulopulos, M.M.; Hidalgo, V.; Puig-Perez, S.; Montoliu, T.; Salvador, A. Relationship between Cortisol Changes during the Night and Subjective and Objective Sleep Quality in Healthy Older People. Int. J. Environ. Res. Public Health 2020, 17, 1264. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, W.; Chen, Y.; Gong, J.; Wu, Y.; Chen, S.; He, Y.; Yu, H.; Xie, L. The Effect of Acute Sleep Deprivation on Cortisol Level: A Systematic Review and Meta-Analysis. Endocr. J. 2024, 71, 753–765. [Google Scholar] [CrossRef]
- Sahola, N.; Toffol, E.; Kalleinen, N.; Polo-Kantola, P. Worse Sleep Architecture but Not Self-Reported Insomnia and Sleepiness Is Associated with Higher Cortisol Levels in Menopausal Women. Maturitas 2024, 187, 108053. [Google Scholar] [CrossRef] [PubMed]
- Mortola, J.F.; Liu, J.H.; Gillin, J.C.; Rasmussen, D.D.; Yen, S.S. Pulsatile Rhythms of Adrenocorticotropin (ACTH) and Cortisol in Women with Endogenous Depression: Evidence for Increased ACTH Pulse Frequency. J. Clin. Endocrinol. Metab. 1987, 65, 962–968. [Google Scholar] [CrossRef] [PubMed]
- Bertollo, A.G.; Santos, C.F.; Bagatini, M.D.; Ignácio, Z.M. Hypothalamus-Pituitary-Adrenal and Gut-Brain Axes in Biological Interaction Pathway of the Depression. Front. Neurosci. 2025, 19, 1541075. [Google Scholar] [CrossRef] [PubMed]
- Pasquali, R.; Vicennati, V.; Cacciari, M.; Pagotto, U. The Hypothalamic-Pituitary-Adrenal Axis Activity in Obesity and the Metabolic Syndrome. Ann. N. Y. Acad. Sci. 2006, 1083, 111–128. [Google Scholar] [CrossRef]
- Esteghamati, A.; Morteza, A.; Khalilzadeh, O.; Noshad, S.; Novin, L.; Nakhjavani, M. Association of Serum Cortisol Levels with Parameters of Metabolic Syndrome in Men and Women. Clin. Investig. Med. 2011, 34, E131–E137. [Google Scholar] [CrossRef] [PubMed]
- Martocchia, A.; Stefanelli, M.; Falaschi, G.M.; Toussan, L.; Ferri, C.; Falaschi, P. Recent Advances in the Role of Cortisol and Metabolic Syndrome in Age-Related Degenerative Diseases. Aging Clin. Exp. Res. 2016, 28, 17–23. [Google Scholar] [CrossRef]
- Mazgelytė, E.; Karčiauskaitė, D. Cortisol in Metabolic Syndrome. Adv. Clin. Chem. 2024, 123, 129–156. [Google Scholar] [CrossRef] [PubMed]
- Jutla, S.K.; Yuyun, M.F.; Quinn, P.A.; Ng, L.L. Plasma Cortisol and Prognosis of Patients with Acute Myocardial Infarction. J. Cardiovasc. Med. 2014, 15, 33–41. [Google Scholar] [CrossRef]
- Jokinen, J.; Nordström, P. HPA Axis Hyperactivity and Cardiovascular Mortality in Mood Disorder Inpatients. J. Affect. Disord. 2009, 116, 88–92. [Google Scholar] [CrossRef]
- Vogelzangs, N.; Beekman, A.T.F.; Milaneschi, Y.; Bandinelli, S.; Ferrucci, L.; Penninx, B.W.J.H. Urinary Cortisol and Six-Year Risk of All-Cause and Cardiovascular Mortality. J. Clin. Endocrinol. Metab. 2010, 95, 4959–4964. [Google Scholar] [CrossRef]
- Kumari, M.; Shipley, M.; Stafford, M.; Kivimaki, M. Association of Diurnal Patterns in Salivary Cortisol with All-Cause and Cardiovascular Mortality: Findings from the Whitehall II Study. J. Clin. Endocrinol. Metab. 2011, 96, 1478–1485. [Google Scholar] [CrossRef]
- Reynolds, R.M.; Dennison, E.M.; Walker, B.R.; Syddall, H.E.; Wood, P.J.; Andrew, R.; Phillips, D.I.; Cooper, C. Cortisol Secretion and Rate of Bone Loss in a Population-Based Cohort of Elderly Men and Women. Calcif. Tissue Int. 2005, 77, 134–138. [Google Scholar] [CrossRef]
- Tauchmanovà, L.; Pivonello, R.; Di Somma, C.; Rossi, R.; De Martino, M.C.; Camera, L.; Klain, M.; Salvatore, M.; Lombardi, G.; Colao, A. Bone Demineralization and Vertebral Fractures in Endogenous Cortisol Excess: Role of Disease Etiology and Gonadal Status. J. Clin. Endocrinol. Metab. 2006, 91, 1779–1784. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez Rodriguez, E.; Lamy, O.; Stoll, D.; Metzger, M.; Preisig, M.; Kuehner, C.; Vollenweider, P.; Marques-Vidal, P.; Waeber, G.; Aubry-Rozier, B.; et al. High Evening Cortisol Level Is Associated with Low TBS and Increased Prevalent Vertebral Fractures: OsteoLaus Study. J. Clin. Endocrinol. Metab. 2017, 102, 2628–2636. [Google Scholar] [CrossRef]
- Greendale, G.A.; Unger, J.B.; Rowe, J.W.; Seeman, T.E. The Relation between Cortisol Excretion and Fractures in Healthy Older People: Results from the MacArthur Studies-Mac. J. Am. Geriatr. Soc. 1999, 47, 799–803. [Google Scholar] [CrossRef]
- Yap, Y.; Tung, N.Y.C.; Shen, L.; Bei, B.; Phillips, A.; Wiley, J.F. Daily Associations between Salivary Cortisol and Electroencephalographic-Assessed Sleep: A 15-Day Intensive Longitudinal Study. Sleep 2024, 47, zsae087. [Google Scholar] [CrossRef]
- Born, J.; Wagner, U. Memory Consolidation during Sleep: Role of Cortisol Feedback. Ann. N. Y. Acad. Sci. 2004, 1032, 198–201. [Google Scholar] [CrossRef]
- Newcomer, J.W.; Selke, G.; Melson, A.K.; Hershey, T.; Craft, S.; Richards, K.; Alderson, A.L. Decreased Memory Performance in Healthy Humans Induced by Stress-Level Cortisol Treatment. Arch. Gen. Psychiatry 1999, 56, 527–533. [Google Scholar] [CrossRef]
- Basta, M.; Vgontzas, A.N.; Fernandez-Mendoza, J.; Antypa, D.; Li, Y.; Zaganas, I.; Panagiotakis, S.; Karagkouni, E.; Simos, P. Basal Cortisol Levels Are Increased in Patients with Mild Cognitive Impairment: Role of Insomnia and Short Sleep Duration. J. Alzheimers Dis. 2022, 87, 933–944. [Google Scholar] [CrossRef]
- Hachul de Campos, H.; Brandão, L.C.; D’Almeida, V.; Grego, B.H.C.; Bittencourt, L.R.; Tufik, S.; Baracat, E.C. Sleep Disturbances, Oxidative Stress and Cardiovascular Risk Parameters in Postmenopausal Women Complaining of Insomnia. Climacteric 2006, 9, 312–319. [Google Scholar] [CrossRef]
- Kolesnikova, L.I.; Semenova, N.V.; Solodova, E.I.; Madaeva, I.M. Oxidative stress in women with insomnia in different stages of menopause. Ter. Arkhiv 2017, 89, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Black, C.N.; Bot, M.; Scheffer, P.G.; Cuijpers, P.; Penninx, B.W.J.H. Is Depression Associated with Increased Oxidative Stress? A Systematic Review and Meta-Analysis. Psychoneuroendocrinology 2015, 51, 164–175. [Google Scholar] [CrossRef] [PubMed]
- Liang, G.; Kow, A.S.F.; Yusof, R.; Tham, C.L.; Ho, Y.C.; Lee, M.T. Menopause-Associated Depression: Impact of Oxidative Stress and Neuroinflammation on the Central Nervous System-A Review. Biomedicines 2024, 12, 184. [Google Scholar] [CrossRef]
- Yu, Y.; Yu, T.; Liu, K.; Li, Y.; Luan, Y.; Yang, T.; Li, W.; Cong, H.; Wu, X. Perimenopausal Depression: Targeting Inflammation and Oxidative Stress (Review). Mol. Med. Rep. 2025, 31, 161. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, Y.; Katsumata, T.; Otori, T.; Katayama, Y. Carotid Hemodynamic Parameters Are Useful for Discriminating between Atherothrombotic Infarction and Lacunar Infarction. J. Stroke Cerebrovasc. Dis. 2010, 19, 441–449. [Google Scholar] [CrossRef]
- Das, U.N. Folic Acid Says NO to Vascular Diseases. Nutrition 2003, 19, 686–692. [Google Scholar] [CrossRef]
- Vassalle, C.; Petrozzi, L.; Botto, N.; Andreassi, M.G.; Zucchelli, G.C. Oxidative Stress and Its Association with Coronary Artery Disease and Different Atherogenic Risk Factors. J. Intern. Med. 2004, 256, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Xiang, D.; Liu, Y.; Zhou, S.; Zhou, E.; Wang, Y. Protective Effects of Estrogen on Cardiovascular Disease Mediated by Oxidative Stress. Oxid. Med. Cell. Longev. 2021, 2021, 5523516. [Google Scholar] [CrossRef]
- Yan, Q.; Liu, S.; Sun, Y.; Chen, C.; Yang, S.; Lin, M.; Long, J.; Yao, J.; Lin, Y.; Yi, F.; et al. Targeting Oxidative Stress as a Preventive and Therapeutic Approach for Cardiovascular Disease. J. Transl. Med. 2023, 21, 519. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Wang, H.; Zhang, X.; Song, M.; Liu, B.; Sun, W. Emerging Regulatory Mechanisms in Cardiovascular Disease: Ferroptosis. Biomed. Pharmacother. 2024, 174, 116457. [Google Scholar] [CrossRef]
- Cervellati, C.; Bonaccorsi, G.; Cremonini, E.; Romani, A.; Fila, E.; Castaldini, M.C.; Ferrazzini, S.; Giganti, M.; Massari, L. Oxidative Stress and Bone Resorption Interplay as a Possible Trigger for Postmenopausal Osteoporosis. BioMed Res. Int. 2014, 2014, 569563. [Google Scholar] [CrossRef]
- Shahriarpour, Z.; Nasrabadi, B.; Hejri-Zarifi, S.; Shariati-Bafghi, S.E.; Yousefian-Sanny, M.; Karamati, M.; Rashidkhani, B. Oxidative Balance Score and Risk of Osteoporosis among Postmenopausal Iranian Women. Arch. Osteoporos. 2021, 16, 43. [Google Scholar] [CrossRef] [PubMed]
- Malekian, S.; Mirghafourvand, M.; Najafipour, F.; Ostadrahimi, A.; Ghassab-Abdollahi, N.; Farshbaf-Khalili, A. The Associations between Bone Mineral Density and Oxidative Stress Biomarkers in Postmenopausal Women. Korean J. Fam. Med. 2023, 44, 95–101. [Google Scholar] [CrossRef]
- Yang, S.; Feskanich, D.; Willett, W.C.; Eliassen, A.H.; Wu, T. Association between Global Biomarkers of Oxidative Stress and Hip Fracture in Postmenopausal Women: A Prospective Study. J. Bone Miner. Res. 2014, 29, 2577–2583. [Google Scholar] [CrossRef]
- Baber, R.J.; Panay, N.; Fenton, A.; IMS Writing Group. 2016 IMS Recommendations on Women’s Midlife Health and Menopause Hormone Therapy. Climacteric 2016, 19, 109–150. [Google Scholar] [CrossRef]
- Lambrinoudaki, I.; Armeni, E.; Goulis, D.; Bretz, S.; Ceausu, I.; Durmusoglu, F.; Erkkola, R.; Fistonic, I.; Gambacciani, M.; Geukes, M.; et al. Menopause, Wellbeing and Health: A Care Pathway from the European Menopause and Andropause Society. Maturitas 2022, 163, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Faubion, S.S.M.C.; Crandall, C.J.M.; Davis, L.D.; El Khoudary, S.R.P.; Hodis, H.N.; Lobo, R.A.; Maki, P.M.; Manson, J.E.M.; Pinkerton, J.V.M.; Santoro, N.F.; et al. The 2022 Hormone Therapy Position Statement of The North American Menopause Society. Menopause 2022, 29, 767–794. [Google Scholar] [CrossRef]
- Palacios, S.; Rebelo, C.; Casquilho, A.; Costa, A.R.; Cagnacci, A.; Cano, A.; Castelo-Branco, C.; Di Carlo, C.; Romão, F.; Geraldes, F.; et al. POESIT Recommendations on Management of Body-Identical Hormones in Menopausal Symptoms. Climacteric 2024, 27, 340–350. [Google Scholar] [CrossRef]
- Rossouw, J.E.; Prentice, R.L.; Manson, J.E.; Wu, L.; Barad, D.; Barnabei, V.M.; Ko, M.; LaCroix, A.Z.; Margolis, K.L.; Stefanick, M.L. Postmenopausal Hormone Therapy and Risk of Cardiovascular Disease by Age and Years Since Menopause. JAMA 2007, 297, 1465–1477. [Google Scholar] [CrossRef]
- Cagnacci, A.; Venier, M. The Controversial History of Hormone Replacement Therapy. Medicina 2019, 55, 602. [Google Scholar] [CrossRef]
- Rossouw, J.E.; Aragaki, A.K.; Manson, J.E.; Szmuilowicz, E.D.; Harrington, L.B.; Johnson, K.C.; Allison, M.; Haring, B.; Saquib, N.; Shadyab, A.H.; et al. Menopausal Hormone Therapy and Cardiovascular Diseases in Women with Vasomotor Symptoms: A Secondary Analysis of the Women’s Health Initiative Randomized Clinical Trials. JAMA Intern. Med. 2025; online ahead of print version. [Google Scholar] [CrossRef] [PubMed]
- Samsioe, G. Hormone Replacement Therapy and Cardiovascular Disease. Int. J. Fertil. Menopausal Stud. 1993, 38 (Suppl. S1), 23–29. [Google Scholar]
- Schierbeck, L.L.; Rejnmark, L.; Tofteng, C.L.; Stilgren, L.; Eiken, P.; Mosekilde, L.; Køber, L.; Jensen, J.E.B. Effect of Hormon eReplacement Therapy on Cardiovascular Events in Recently Postmenopausal Women: Randomised Trial. BMJ 2012, 345, e6409. [Google Scholar] [CrossRef]
- Gambacciani, M.; Spinetti, A.; Taponeco, F.; Cappagli, B.; Piaggesi, L.; Fioretti, P. Longitudinal Evaluation of Perimenopausal Vertebral Bone Loss: Effects of a Low-Dose Oral Contraceptive Preparation on Bone Mineral Density and Metabolism. Obstet. Gynecol. 1994, 83, 392–396. [Google Scholar] [PubMed]
- Gambacciani, M.; Ciaponi, M.; Cappagli, B.; Benussi, C.; Genazzani, A.R. Longitudinal Evaluation of Perimenopausal Femoral Bone Loss: Effects of a Low-Dose Oral Contraceptive Preparation on Bone Mineral Density and Metabolism. Osteoporos. Int. 2000, 11, 544–548. [Google Scholar] [CrossRef]
- Cagnacci, A.; Melis, G.B.; Soldani, R.; Paoletti, A.M.; Gambacciani, M.; Spinetti, A.; Fioretti, P. Neuroendocrine and Clinical Effects of Transdermal 17 Beta-Estradiol in Postmenopausal Women. Maturitas 1991, 13, 283–296. [Google Scholar] [CrossRef] [PubMed]
- Cauley, J.A.; Robbins, J.; Chen, Z.; Cummings, S.R.; Jackson, R.D.; LaCroix, A.Z.; LeBoff, M.; Lewis, C.E.; McGowan, J.; Neuner, J.; et al. Effects of Estrogen plus Progestin on Risk of Fracture and Bone Mineral Density: The Women’s Health Initiative Randomized Trial. JAMA 2003, 290, 1729–1738. [Google Scholar] [CrossRef]
- Gambacciani, M.; Levancini, M. Hormone Replacement Therapy and the Prevention of Postmenopausal Osteoporosis. Prz. Menopauzalny 2014, 13, 213–220. [Google Scholar] [CrossRef]
- Komesaroff, P.A.; Esler, M.D.; Sudhir, K. Estrogen Supplementation Attenuates Glucocorticoid and Catecholamine Responses to Mental Stress in Perimenopausal Women. J. Clin. Endocrinol. Metab. 1999, 84, 606–610. [Google Scholar] [CrossRef]
- Herrera, A.Y.; Hodis, H.N.; Mack, W.J.; Mather, M. Estradiol Therapy After Menopause Mitigates Effects of Stress on Cortisol and Working Memory. J. Clin. Endocrinol. Metab. 2017, 102, 4457–4466. [Google Scholar] [CrossRef]
- Cagnacci, A.; Rovati, L.; Zanni, A.; Malmusi, S.; Facchinetti, F.; Volpe, A. Physiological Doses of Estradiol Decrease Nocturnal Blood Pressure in Normotensive Postmenopausal Women. Am. J. Physiol. 1999, 276, H1355–H1360. [Google Scholar] [CrossRef]
- Cannoletta, M.; Cagnacci, A. Modification of Blood Pressure in Postmenopausal Women: Role of Hormone Replacement Therapy. Int. J. Womens Health 2014, 6, 745–757. [Google Scholar] [CrossRef]
- Cagnacci, A.; Xholli, A.; Fontanesi, F.; Neri, I.; Facchinetti, F.; Palma, F. Treatment of Menopausal Symptoms: Concomitant Modification of Cortisol. Menopause 2021, 29, 23–27. [Google Scholar] [CrossRef]
- Befus, D.; Coeytaux, R.R.; Goldstein, K.M.; McDuffie, J.R.; Shepherd-Banigan, M.; Goode, A.P.; Kosinski, A.; Van Noord, M.G.; Adam, S.S.; Masilamani, V.; et al. Management of Menopause Symptoms with Acupuncture: An Umbrella Systematic Review and Meta-Analysis. J. Altern. Complement. Med. 2018, 24, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Palma, F.; Fontanesi, F.; Facchinetti, F.; Cagnacci, A. Acupuncture or Phy(F)Itoestrogens vs. (E)Strogen plus Progestin on Menopausal Symptoms. A Randomized Study. Gynecol. Endocrinol. 2019, 35, 995–998. [Google Scholar] [CrossRef]
- Melis, G.B.; Gambacciani, M.; Cagnacci, A.; Paoletti, A.M.; Mais, V.; Fioretti, P. Effects of the Dopamine Antagonist Veralipride on Hot Flushes and Luteinizing Hormone Secretion in Postmenopausal Women. Obstet. Gynecol. 1988, 72, 688–692. [Google Scholar] [CrossRef]
- Cagnacci, A.; Melis, G.B.; Paoletti, A.M.; Soldani, R.; Fioretti, P. Interaction between Veralipride and the Endogenous Opioid System in the Regulation of Body Temperature in Postmenopausal Women. Life Sci. 1988, 42, 547–553. [Google Scholar] [CrossRef]
- Crandall, C.J.; Mehta, J.M.; Manson, J.E. Management of Menopausal Symptoms: A Review. JAMA 2023, 329, 405–420. [Google Scholar] [CrossRef] [PubMed]
- Palma, F.; Fontanesi, F.; Neri, I.; Xholli, A.; Facchinetti, F.; Cagnacci, A. Blood Pressure and Cardiovascular Risk Factors in Women Treated for Climacteric Symptoms with Acupuncture, Phytoestrogens, or Hormones. Menopause 2020, 27, 1060–1065. [Google Scholar] [CrossRef]
- Jayasena, C.N.; Comninos, A.N.; Stefanopoulou, E.; Buckley, A.; Narayanaswamy, S.; Izzi-Engbeaya, C.; Abbara, A.; Ratnasabapathy, R.; Mogford, J.; Ng, N.; et al. Neurokinin B Administration Induces Hot Flushes in Women. Sci. Rep. 2015, 5, 8466. [Google Scholar] [CrossRef]
- Mittelman-Smith, M.A.; Williams, H.; Krajewski-Hall, S.J.; McMullen, N.T.; Rance, N.E. Role for Kisspeptin/Neurokinin B/Dynorphin (KNDy) Neurons in Cutaneous Vasodilatation and the Estrogen Modulation of Body Temperature. Proc. Natl. Acad. Sci. USA 2012, 109, 19846–19851. [Google Scholar] [CrossRef]
- Prague, J.K.; Roberts, R.E.; Comninos, A.N.; Clarke, S.; Jayasena, C.N.; Nash, Z.; Doyle, C.; Papadopoulou, D.A.; Bloom, S.R.; Mohideen, P.; et al. Neurokinin 3 Receptor Antagonism as a Novel Treatment for Menopausal Hot Flushes: A Phase 2, Randomised, Double-Blind, Placebo-Controlled Trial. Lancet 2017, 389, 1809–1820. [Google Scholar] [CrossRef]
- de Oliveira, H.M.; Diaz, C.A.V.; Barbosa, L.M.; Flávio-Reis, V.H.P.; Zamora, F.V.; Gonçalves Barbosa Júnior, O. Efficacy and Safety of Fezolinetant and Elinzanetant for Vasomotor Symptoms in Postmenopausal Women: A Systematic Review and Meta-Analysis. Maturitas 2025, 195, 108220. [Google Scholar] [CrossRef]
- Menegaz de Almeida, A.; Oliveira, P.; Lopes, L.; Leite, M.; Morbach, V.; Alves Kelly, F.; Barros, I.; Aquino de Moraes, F.C.; Prevedello, A. Fezolinetant and Elinzanetant Therapy for Menopausal Women Experiencing Vasomotor Symptoms: A Systematic Review and Meta-analysis. Obstet. Gynecol. 2025, 145, 253–261. [Google Scholar] [CrossRef]
- Doggrell, S.A. Will Elinzanetant, a Neurokinin Receptor Antagonist, Have a Role in the Treatment of Hot Flashes? Expert Opin. Pharmacother. 2025, 26, 349–354. [Google Scholar] [CrossRef]
- Meczekalski, B.; Kostrzak, A.; Unogu, C.; Bochynska, S.; Maciejewska-Jeske, M.; Bala, G.; Szeliga, A. A New Hope for Woman with Vasomotor Symptoms: Neurokinin B Antagonists. J. Clin. Med. 2025, 14, 1438. [Google Scholar] [CrossRef] [PubMed]
- Nappi, R.E.; Cagnacci, A.; Di Carlo, C.; Genazzani, A.D.; Villa, P.; Simoncini, T. Targeting Vasomotor Symptoms with the New Drug Fezolinetant—An Expert Overview. Gynecol. Endocrinol. 2025, 41, 2526560. [Google Scholar] [CrossRef]
- Lederman, S.; Ottery, F.D.; Cano, A.; Santoro, N.; Shapiro, M.; Stute, P.; Thurston, R.C.; English, M.; Franklin, C.; Lee, M.; et al. Fezolinetant for Treatment of Moderate-to-Severe Vasomotor Symptoms Associated with Menopause (SKYLIGHT 1): A Phase 3 Randomised Controlled Study. Lancet 2023, 401, 1091–1102. [Google Scholar] [CrossRef]
- Johnson, K.A.; Martin, N.; Nappi, R.E.; Neal-Perry, G.; Shapiro, M.; Stute, P.; Thurston, R.C.; Wolfman, W.; English, M.; Franklin, C.; et al. Efficacy and Safety of Fezolinetant in Moderate to Severe Vasomotor Symptoms Associated with Menopause: A Phase 3 RCT. J. Clin. Endocrinol. Metab. 2023, 108, 1981–1997. [Google Scholar] [CrossRef]
- Simon, J.A.; Anderson, R.A.; Ballantyne, E.; Bolognese, J.; Caetano, C.; Joffe, H.; Kerr, M.; Panay, N.; Seitz, C.; Seymore, S.; et al. Efficacy and Safety of Elinzanetant, a Selective Neurokinin-1,3 Receptor Antagonist for Vasomotor Symptoms: A Dose-Finding Clinical Trial (SWITCH-1). Menopause 2023, 30, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Pinkerton, J.V.; Simon, J.A.; Joffe, H.; Maki, P.M.; Nappi, R.E.; Panay, N.; Soares, C.N.; Thurston, R.C.; Caetano, C.; Haberland, C.; et al. Elinzanetant for the Treatment of Vasomotor Symptoms Associated with Menopause: OASIS 1 and 2 Randomized Clinical Trials. JAMA 2024, 332, 1343–1354. [Google Scholar] [CrossRef]
- Cardoso, F.; Parke, S.; Brennan, D.J.; Briggs, P.; Donders, G.; Panay, N.; Haseli-Mashhadi, N.; Block, M.; Caetano, C.; Francuski, M.; et al. Elinzanetant for Vasomotor Symptoms from Endocrine Therapy for Breast Cancer. N. Engl. J. Med. 2025, 393, 753–763. [Google Scholar] [CrossRef]
- European Medicines Agency. Veoza Product Information. Revised 21 March 2025. Available online: https://www.ema.europa.eu/en/documents/product-information/veoza-epar-product-information_en.pdf (accessed on 17 September 2025).
- Shapiro, C.M.M.; Cano, A.; Nappi, R.E.; Santoro, N.; English, M.L.; Mancuso, S.; Morga, A.; Siddiqui, E.; Valluri, U.; Ottery, F.D. Effect of Fezolinetant on Sleep Disturbance and Impairment during Treatment of Vasomotor Symptoms Due to Menopause. Maturitas 2024, 186, 107999. [Google Scholar] [CrossRef]
- Lieb, K.; Ahlvers, K.; Dancker, K.; Strohbusch, S.; Reincke, M.; Feige, B.; Berger, M.; Riemann, D.; Voderholzer, U. Effects of the Neuropeptide Substance P on Sleep, Mood, and Neuroendocrine Measures in Healthy Young Men. Neuropsychopharmacology 2002, 27, 1041–1049. [Google Scholar] [CrossRef] [PubMed]
- Ratti, E.; Carpenter, D.J.; Zamuner, S.; Fernandes, S.; Squassante, L.; Danker-Hopfe, H.; Archer, G.; Robertson, J.; Alexander, R.; Trist, D.G.; et al. Efficacy of Vestipitant, a Neurokinin-1 Receptor Antagonist, in Primary Insomnia. Sleep 2013, 36, 1823–1830. [Google Scholar] [CrossRef]
- Cano, A.; Nappi, R.E.; Santoro, N.; Stute, P.; Blogg, M.; English, M.L.; Morga, A.; Scrine, L.; Siddiqui, E.; Ottery, F.D. Fezolinetant Impact on Health-Related Quality of Life for Vasomotor Symptoms Due to the Menopause: Pooled Data from SKYLIGHT 1 and SKYLIGHT 2 Randomised Controlled Trials. BJOG 2024, 131, 1296–1305. [Google Scholar] [CrossRef]
- Haberland, C.; Barclay, M.; Lehane, A.; Whyman, S.; Gater, A.; Wikstrom, H.; Seitz, C.; Schoof, N.; Trigg, A.; Bradley, H. Exit Interviews Examining Changes to Mood and Work/Productivity Impacts Related to Vasomotor Symptoms: Perspectives of Postmenopausal Women Receiving Elinzanetant in Phase III Clinical Trials. Patient, 2025; online ahead of print. [Google Scholar] [CrossRef]
- Panay, N.; Joffe, H.; Maki, P.M.; Nappi, R.E.; Pinkerton, J.V.; Simon, J.A.; Soares, C.N.; Thurston, R.C.; Francuski, M.; Caetano, C.; et al. Elinzanetant for the Treatment of Vasomotor Symptoms Associated with Menopause: A Phase 3 Randomized Clinical Trial. JAMA Intern. Med. 2025, e254421. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Mio, M.; Tasaka, K. Cortisol Secretion Induced by Substance P from Bovine Adrenocortical Cells and Its Inhibition by Calmodulin Inhibitors. Biochem. Pharmacol. 1992, 43, 513–517. [Google Scholar] [CrossRef] [PubMed]
- Dionysakopoulou, C.; Lianou, L.; Boutopoulou, B.; Giannakopoulou, M.; Vlachioti, E.; Koumpagioti, D.; Bozas, E.; Matziou, V. The Role of Substance P, Neurokinin A, Neuropeptide Y, and Cortisol in Assessing Neonatal Pain. Neonatal Netw. 2023, 42, 65–71. [Google Scholar] [CrossRef]
Health Consequence | Associated Menopausal Symptom/Factor | Key Findings |
---|---|---|
Cardiovascular Disease (CVD) | Frequent Vasomotor Symptoms (VMSs) |
|
Sleep Disruption |
| |
Depressive Symptoms |
| |
Osteoporosis | Frequent Vasomotor Symptoms (VMSs) |
|
Sleep Disruption |
| |
Depression |
| |
Cognitive Decline | Vasomotor Symptoms (VMSs) |
|
Sleep Disruption |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cagnacci, A.; Xholli, A.; Fiamberti, M.; Londero, A.P. Neurokinin Antagonists to Treat Vasomotor Symptoms—Possible Implications for Long-Term Health and Disease. J. Clin. Med. 2025, 14, 6852. https://doi.org/10.3390/jcm14196852
Cagnacci A, Xholli A, Fiamberti M, Londero AP. Neurokinin Antagonists to Treat Vasomotor Symptoms—Possible Implications for Long-Term Health and Disease. Journal of Clinical Medicine. 2025; 14(19):6852. https://doi.org/10.3390/jcm14196852
Chicago/Turabian StyleCagnacci, Angelo, Anjeza Xholli, Marta Fiamberti, and Ambrogio Pietro Londero. 2025. "Neurokinin Antagonists to Treat Vasomotor Symptoms—Possible Implications for Long-Term Health and Disease" Journal of Clinical Medicine 14, no. 19: 6852. https://doi.org/10.3390/jcm14196852
APA StyleCagnacci, A., Xholli, A., Fiamberti, M., & Londero, A. P. (2025). Neurokinin Antagonists to Treat Vasomotor Symptoms—Possible Implications for Long-Term Health and Disease. Journal of Clinical Medicine, 14(19), 6852. https://doi.org/10.3390/jcm14196852