Sleep-Disordered Breathing and Clinical Presentation in Infants with Congenital Laryngomalacia: A Polysomnographic Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Clinical Assessment
2.3. Polysomnography (PSG)
- Apnea–Hypopnea Index (AHI): the number of apneas and hypopneas per hour of sleep, used as the primary marker of sleep-disordered breathing severity;
- Oxygen Desaturation Index (ODI): the number of desaturation episodes (≥3% drop in SpO2) per hour;
- Minimum and mean SpO2;
- during total sleep time, reflecting nocturnal hypoxemia;
- Mean heart rate, as an indirect measure of sleep-related autonomic disturbance.
2.4. Surgical Intervention
2.5. Statistical Analysis
3. Results
Clinical Characteristics and Apnea Classification
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AHI | Apnea–Hypopnea Index |
RDI | Respiratory Disturbance Index |
ODI | Oxygen Desaturation Index |
SpO2 | Peripheral capillary oxygen saturation |
HR | Heart Rate |
LM | Laryngomalacia |
OSA | Obstructive Sleep Apnea |
PSG | Polysomnography |
SD | Standard Deviation |
CI | Confidence Interval |
BMI | Body Mass Index |
SDB | Sleep-Disordered Breathing |
CPAP | Continuous Positive Airway Pressure |
REM | Rapid Eye Movement |
NREM | Non-Rapid Eye Movement |
IQR | Interquartile Range |
Appendix A
Parameter | LM1 | LM2 | LM3 | Significant Differences | ||
---|---|---|---|---|---|---|
AHI | before | Mean ± st. dev | 2.84 ± 1.96 | 12.50 ± 5.05 | 25.41 ± 6.95 | 1 vs. 2; 1 vs. 3; 2 vs. 3 |
95%Cl | 1.71–3.97 | 9.99–15.10 | 20.44–30.78 | |||
after | Mean ± st. dev | 0.54 ± 0.18 | 0.97 ± 0.70 | 1.76 ± 1.56 | 1 vs. 2; 1 vs. 3; 2 vs. 3 | |
95%Cl | 0.10–0.90 | 0.31–1.62 | 0–3.79 | |||
RDI | before | Mean ± st. dev | 2.84 ± 1.96 | 12.50 ± 5.05 | 25.41 ± 6.95 | 1 vs. 2; 1 vs. 3; 2 vs. 3 |
95%Cl | 1.71–3.97 | 9.99–15.10 | 20.44–30.78 | |||
after | Mean ± st. dev | 0.54 ± 0.18 | 0.97 ± 0.70 | 1.76 ± 1.56 | 1 vs. 2; 1 vs. 3; 2 vs. 3 | |
95%Cl | 0.10–0.90 | 0.31–1.62 | 0–3.79 | |||
ODI | before | Mean ± st. dev | 3.46 ± 3.93 | 6.90 ± 5.49 | 9.87 ± 5.99 | 1 vs. 3 |
95%Cl | 1.20–5.74 | 4.17–9.63 | 5.58–14.16 | |||
after | Mean ± st. dev | 0.34 ± 0.17 | 0.60 ± 0.41 | 0.78 ± 0.69 | 1 vs. 3 | |
95%Cl | 0–0.75 | 0.22–0.98 | 0–1.62 | |||
SpO2 min (%) | before | Mean ± st. dev | 85.79 ± 7.44 | 79.72 ± 9.82 | 69.50 ± 7.76 | 1 vs. 3; 2 vs. 3 |
95%Cl | 81.49–90.08 | 74.83–84.61 | 63.94–75.06 | |||
after | Mean ± st. dev | 94.12 ± 1.09 | 93.29 ± 1.61 | 93.60 ± 1.82 | - | |
95%Cl | 92.04–95.96 | 91.80–94.77 | 91.34–98.86 | |||
Sp02 average | Before | Mean ± st. dev | 96.29 ± 1.44 | 92.61 ± 3.03 | 88.20 ± 2.57 | 1 vs. 2; 1 vs. 3; 2 vs. 3 |
95%Cl | 95.46–97.12 | 91.11–94.12 | 86.36–9004 | |||
after | Mean ± st. dev | 97.19 ± 0.81 | 97.00 ± 1.16 | 96.80 ± 0.84 | - | |
95%Cl | 95.44–98.56 | 95.93–98.07 | 95.77–97.84 | |||
Mean heart rate | before | Mean ± st. dev | 117.35 ± 7.91 | 135.44 ± 6.22 | 139.10 ± 15.51 | 1 vs. 2; 1 vs. 3 |
95%Cl | 112.79–121.92 | 132.35–138.53 | 128.00–150.19 | |||
after | Mean ± st. dev | 110.50 ± 5.60 | 118.57 ± 4.12 | 122.80 ± 7.82 | 1 vs. 2; 1 vs. 3 | |
95%Cl | 100.20–119.80 | 114.77–122.38 | 113.09–132.51 |
Appendix B
Parameter | LM | Comparison | t-Student p-Value |
---|---|---|---|
AHI | 1 | After vs. before | <0.001 |
2 | After vs. before | 0.001 | |
3 | After vs. before | 0.001 | |
RDI | 1 | After vs. before | 0.001 |
2 | After vs. before | 0.001 | |
3 | After vs. before | 0.001 | |
ODI | 1 | After vs. before | <0.05 |
2 | After vs. before | <0.01 | |
3 | After vs. before | <0.001 | |
SpO2 min (%) | 1 | After vs. before | <0.001 |
2 | After vs. before | <0.001 | |
3 | After vs. before | <0.001 | |
SpO2 average | 1 | After vs. before | <0.05 |
2 | After vs. before | <0.001 | |
3 | After vs. before | <0.001 | |
Heart Rate (bpm) | 1 | After vs. before | <0.001 |
2 | After vs. before | <0.001 | |
3 | After vs. before | <0.01 |
References
- Hysinger, E.B. Laryngomalacia, Tracheomalacia and Bronchomalacia. Curr. Probl. Pediatr. Adolesc. Health Care 2018, 48, 113–118. [Google Scholar] [CrossRef]
- Bredun, S.; Adamczyk, P.; Żychowski, P.; Nowak, N.; Szydłowski, J. Stridor in Pediatrics Is Not Only Laryngomalacia. J. Med. Sci. 2024, 93, e1169. [Google Scholar] [CrossRef]
- Bredun, S.; Kotowski, M.; Mezydlo, J.; Szydlowski, J. Characteristics of Patients with Laryngomalacia: A Tertiary Referral Center Experience of 106 Cases. Diagnostics 2023, 13, 3180. [Google Scholar] [CrossRef] [PubMed]
- Scott, B.L.; Lam, D.; MacArthur, C. Laryngomalacia and Swallow Dysfunction. Ear Nose Throat J. 2019, 98, 613–616. [Google Scholar] [CrossRef]
- Simons, J.P.; Greenberg, L.L.; Mehta, D.K.; Fabio, A.; Maguire, R.C.; Mandell, D.L. Laryngomalacia and Swallowing Function in Children. Laryngoscope 2016, 126, 478–484. [Google Scholar] [CrossRef]
- Masters, I.B.; Chang, A.B.; Patterson, L.; Wainwright, C.; Buntain, H.; Dean, B.W.; Francis, P.W. Series of Laryngomalacia, Tracheomalacia, and Bronchomalacia Disorders and Their Associations with Other Conditions in Children. Pediatr. Pulmonol. 2002, 34, 189–195. [Google Scholar] [CrossRef]
- Jain, D.; Jain, S. Management of Stridor in Severe Laryngomalacia: A Review Article. Cureus 2022, 14, e29585. [Google Scholar] [CrossRef]
- Eckel, H.E.; Simo, R.; Quer, M.; Odell, E.; Paleri, V.; Klussmann, J.P.; Remacle, M.; Sjögren, E.; Piazza, C. European Laryngological Society Position Paper on Laryngeal Dysplasia Part II: Diagnosis, Treatment, and Follow-Up. Eur. Arch. Otorhinolaryngol. 2021, 278, 1723–1732. [Google Scholar] [CrossRef]
- Friedman, S.; Sadot, E.; Gut, G.; Armoni Domany, K.; Sivan, Y. Laryngeal Ultrasound for the Diagnosis of Laryngomalacia in Infants. Pediatr. Pulmonol. 2018, 53, 772–777. [Google Scholar] [CrossRef]
- Ye, L.; Wei, J.; Liang, Z.; Li, Y.; Wu, M.; Zhao, C.; Weng, J.; Liu, X.; Su, J.; Qu, S. Fluid Dynamics of the Upper Airway in Pediatric Patients with Severe Laryngomalacia. Phys. Eng. Sci. Med. 2022, 45, 1083–1091. [Google Scholar] [CrossRef]
- Ferri, G.M.; Prakash, Y.; Levi, J.R.; Tracy, L.F. Differential Diagnosis and Management of Adult-Onset Laryngomalacia. Am. J. Otolaryngol. 2020, 41, 102469. [Google Scholar] [CrossRef]
- Cerritelli, L.; Migliorelli, A.; Larini, A.; Catalano, A.; Caranti, A.; Bianchini, C.; Ciorba, A.; Stomeo, F.; Vicini, C.; Pelucchi, S. Laryngomalacia and Obstructive Sleep Apnea in Children: From Diagnosis to Treatment. Children 2024, 11, 284. [Google Scholar] [CrossRef]
- Mehta, B.; Waters, K.; Fitzgerald, D.; Badawi, N. Sleep Disordered Breathing (SDB) in Neonates and Implications for Its Long-Term Impact. Paediatr. Respir. Rev. 2020, 34, 3–8. [Google Scholar] [CrossRef]
- Walter, L.M.; Shepherd, K.L.; Yee, A.; Horne, R.S.C. Insights into the Effects of Sleep Disordered Breathing on the Brain in Infants and Children: Imaging and Cerebral Oxygenation Measurements. Sleep Med. Rev. 2020, 50, 101251. [Google Scholar] [CrossRef] [PubMed]
- Chiang, J.; Xiao, L.; Nigro, E.; St-Laurent, A.; Weinstock, L.; Law, E.; Janevski, J.; Kuyntjes, S.; Cithiravel, N.; Tran, T.; et al. Sleep Disordered Breathing in Infants Identified through Newborn Screening with Spinal Muscular Atrophy. Sleep Med. 2023, 111, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Faverio, P.; Zanini, U.; Monzani, A.; Parati, G.; Luppi, F.; Lombardi, C.; Perger, E. Sleep-Disordered Breathing and Chronic Respiratory Infections: A Narrative Review in Adult and Pediatric Population. Int. J. Mol. Sci. 2023, 24, 5504. [Google Scholar] [CrossRef]
- Cortes, M.C.; Villamor, P.; de la Torre González, C.; Álvarez-Neri, H. Complete Polysomnographic Parameters in Infants with Severe Laryngomalacia Prior to and after Supraglottoplasty. Int. J. Pediatr. Otorhinolaryngol. 2019, 119, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Markun, L.C.; Sampat, A. Clinician-Focused Overview and Developments in Polysomnography. Curr. Sleep Med. Rep. 2020, 6, 309–321. [Google Scholar] [CrossRef]
- Memtsoudis, S.G.; Cozowicz, C.; Nagappa, M.; Wong, J.; Joshi, G.P.; Wong, D.T.; Doufas, A.G.; Yilmaz, M.; Stein, M.H.; Krajewski, M.L.; et al. Society of Anesthesia and Sleep Medicine Guideline on Intraoperative Management of Adult Patients with Obstructive Sleep Apnea. Anesth. Analg. 2018, 127, 967–987. [Google Scholar] [CrossRef]
- Solelhac, G.; Berger, M.; Strippoli, M.-P.F.; Marchi, N.A.; Stephan, A.; Petit, J.-M.; Bayon, V.; Imler, T.; Haba-Rubio, J.; Raffray, T.; et al. Objective Polysomnography-Based Sleep Features and Major Depressive Disorder Subtypes in the General Population. Psychiatry Res. 2023, 324, 115213. [Google Scholar] [CrossRef]
- Cheng, W.-J.; Finnsson, E.; Arnardóttir, E.; Ágústsson, J.S.; Sands, S.A.; Hang, L.-W. Relationship between Symptom Profiles and Endotypes among Patients with Obstructive Sleep Apnea: A Latent Class Analysis. Ann. Am. Thorac. Soc. 2023, 20, 1337–1344. [Google Scholar] [CrossRef] [PubMed]
- Um, Y.H.; Oh, J.; Kim, S.-M.; Kim, T.-W.; Seo, H.-J.; Jeong, J.-H.; Hong, S.-C. Differential Characteristics of Repeated Polysomnography and Multiple Sleep Latency Test Parameters in Narcolepsy Type 1 and Type 2 Patients: A Longitudinal Retrospective Study. Sleep Breath. 2022, 26, 1939–1946. [Google Scholar] [CrossRef]
- Rachmawati, E.Z.K.; Tamin, S.; Fardizza, F.; Yunizaf, R.; Putranto, F.M.; Rizki, N.A.; Wardani, R.S. Types of Epiglottic Collapse in Breathing Sleep Disorder and Their Impact in Clinical Practice. Int. Arch. Otorhinolaryngol. 2024, 28, e255–e262. [Google Scholar] [CrossRef]
- Molnár, V.; Molnár, A.; Lakner, Z.; Tárnoki, D.L.; Tárnoki, Á.D.; Jokkel, Z.; Kunos, L.; Tamás, L. The Prognostic Role of Ultrasound and Magnetic Resonance Imaging in Obstructive Sleep Apnoea Based on Lateral Oropharyngeal Wall Obstruction. Sleep Breath. 2023, 27, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M. Obstructive Sleep Apnea-Consideration of Its Pathogenesis. Auris Nasus Larynx 2022, 49, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Blekic, N.; Bold, I.; Mettay, T.; Bruyneel, M. Impact of Desaturation Patterns versus Apnea-Hypopnea Index in the Development of Cardiovascular Comorbidities in Obstructive Sleep Apnea Patients. Nat. Sci. Sleep 2022, 14, 1457–1468. [Google Scholar] [CrossRef]
- Thevasagayam, M.; Rodger, K.; Cave, D.; Witmans, M.; El-Hakim, H. Prevalence of Laryngomalacia in Children Presenting with Sleep-Disordered Breathing. Laryngoscope 2010, 120, 1662–1666. [Google Scholar] [CrossRef]
- Verkest, V.; Verhulst, S.; Van Hoorenbeeck, K.; Vanderveken, O.; Saldien, V.; Boudewyns, A. Prevalence of Obstructive Sleep Apnea in Children with Laryngomalacia and Value of Polysomnography in Treatment Decisions. Int. J. Pediatr. Otorhinolaryngol. 2020, 137, 110255. [Google Scholar] [CrossRef]
- Hazkani, I.; Stein, E.; Ghadersohi, S.; Ida, J.; Thompson, D.M.; Valika, T. Epiglottopexy in Infants Younger Than 6 Months Old: A Case Series. Ann. Otol. Rhinol. Laryngol. 2023, 132, 1393–1399. [Google Scholar] [CrossRef]
- Kanotra, S.P.; Rand, D.; Mulanax, C. Transcervical Epiglottopexy: A Versatile Technique for Managing Epiglottic Prolapse. Otolaryngol. Head. Neck Surg. 2024, 170, 380–390. [Google Scholar] [CrossRef]
- De Vito, A.; Woodson, B.T.; Koka, V.; Cammaroto, G.; Iannella, G.; Bosi, M.; Pelucchi, S.; Filograna-Pignatelli, G.R.; El Chater, P.; Vicini, C. OSA Upper Airways Surgery: A Targeted Approach. Medicina 2021, 57, 690. [Google Scholar] [CrossRef]
- Viana, A.; Estevão, D.; Zhao, C. The Clinical Application Progress and Potential of Drug-Induced Sleep Endoscopy in Obstructive Sleep Apnea. Ann. Med. 2022, 54, 2909–2920. [Google Scholar] [CrossRef]
- Gregory, A.J.; Arora, R.C.; Chatterjee, S.; Crisafi, C.; Morton-Bailey, V.; Rea, A.; Salenger, R.; Engelman, D.T.; Grant, M.C.; ERAS Cardiac Working Group Enhanced Recovery After Surgery (ERAS). Cardiac Turnkey Order Set for Perioperative Pain Management in Cardiac Surgery: Proceedings from the American Association for Thoracic Surgery (AATS) ERAS Conclave 2023. JTCVS Open 2024, 22, 14–24. [Google Scholar] [CrossRef]
- Liu, J.; Ji, X.; Pitt, S.; Wang, G.; Rovit, E.; Lipman, T.; Jiang, F. Childhood Sleep: Physical, Cognitive, and Behavioral Consequences and Implications. World J. Pediatr. 2024, 20, 122–132. [Google Scholar] [CrossRef]
- Deng, Y.; Zhang, Z.; Gui, Y.; Li, W.; Rong, T.; Jiang, Y.; Zhu, Q.; Zhao, J.; Zhang, Y.; Wang, G.; et al. Sleep Disturbances and Emotional and Behavioral Difficulties Among Preschool-Aged Children. JAMA Netw. Open 2023, 6, e2347623. [Google Scholar] [CrossRef]
- Zaffanello, M.; Antoniazzi, F.; Tenero, L.; Nosetti, L.; Piazza, M.; Piacentini, G. Sleep-Disordered Breathing in Paediatric Setting: Existing and Upcoming of the Genetic Disorders. Ann. Transl. Med. 2018, 6, 343. [Google Scholar] [CrossRef] [PubMed]
- Esposito, S.; Ricci, G.; Gobbi, R.; Vicini, C.; Caramelli, F.; Pizzi, S.; Fadda, A.; Ferro, S.; Plazzi, G. Diagnostic and Therapeutic Approach to Children and Adolescents with Obstructive Sleep Apnea Syndrome (OSA): Recommendations in Emilia-Romagna Region, Italy. Life 2022, 12, 739. [Google Scholar] [CrossRef] [PubMed]
- Erickson, B.; Cooper, T.; El-Hakim, H. Factors Associated with the Morphological Type of Laryngomalacia and Prognostic Value for Surgical Outcomes. JAMA Otolaryngol. Head. Neck Surg. 2014, 140, 927–933. [Google Scholar] [CrossRef]
- Panetti, B.; Federico, C.; Sferrazza Papa, G.F.; Di Filippo, P.; Di Ludovico, A.; Di Pillo, S.; Chiarelli, F.; Scaparrotta, A.; Attanasi, M. Three Decades of Managing Pediatric Obstructive Sleep Apnea Syndrome: What’s Old, What’s New. Children 2025, 12, 919. [Google Scholar] [CrossRef] [PubMed]
- Zaballa, K.; Singh, J.; Waters, K. The Management of Upper Airway Obstruction in Pierre Robin Sequence. Paediatr. Respir. Rev. 2023, 45, 11–15. [Google Scholar] [CrossRef]
- Bauer, S.E.; Vanderpool, C.P.B.; Ren, C.; Cristea, A.I. Nutrition and Growth in Infants with Established Bronchopulmonary Dysplasia. Pediatr. Pulmonol. 2021, 56, 3557–3562. [Google Scholar] [CrossRef] [PubMed]
- De Sanctis, V.; Soliman, A.; Alaaraj, N.; Ahmed, S.; Alyafei, F.; Hamed, N. Early and Long-Term Consequences of Nutritional Stunting: From Childhood to Adulthood. Acta Biomed. 2021, 92, e2021168. [Google Scholar] [CrossRef]
- Taslim, N.A.; Farradisya, S.; Gunawan, W.B.; Alfatihah, A.; Barus, R.I.B.; Ratri, L.K.; Arnamalia, A.; Barazani, H.; Samtiya, M.; Mayulu, N.; et al. The Interlink between Chrono-Nutrition and Stunting: Current Insights and Future Perspectives. Front. Nutr. 2023, 10, 1303969. [Google Scholar] [CrossRef] [PubMed]
- Pal, A.; Martinez, F.; Akey, M.A.; Aysola, R.S.; Henderson, L.A.; Malhotra, A.; Macey, P.M. Breathing Rate Variability in Obstructive Sleep Apnea during Wakefulness. J. Clin. Sleep Med. 2022, 18, 825–833. [Google Scholar] [CrossRef]
- Antonaglia, C.; Citton, G.M.; Soave, S.; Salton, F.; Ruaro, B.; Confalonieri, P.; Confalonieri, M. Deciphering Loop Gain Complexity: A Primer for Understanding a Pathophysiological Trait of Obstructive Sleep Apnea Patients. Respir. Med. 2024, 234, 107820. [Google Scholar] [CrossRef]
- McNicholas, W.T.; Pevernagie, D. Obstructive Sleep Apnea: Transition from Pathophysiology to an Integrative Disease Model. J. Sleep Res. 2022, 31, e13616. [Google Scholar] [CrossRef]
- Kaminsky, D.A.; Cockcroft, D.W.; Davis, B.E. Respiratory System Dynamics. Semin. Respir. Crit. Care Med. 2023, 44, 526–537. [Google Scholar] [CrossRef]
- Ayari, S.; Aubertin, G.; Girschig, H.; Van Den Abbeele, T.; Mondain, M. Pathophysiology and Diagnostic Approach to Laryngomalacia in Infants. Eur. Ann. Otorhinolaryngol. Head. Neck Dis. 2012, 129, 257–263. [Google Scholar] [CrossRef]
- Thompson, D.M. Abnormal Sensorimotor Integrative Function of the Larynx in Congenital Laryngomalacia: A New Theory of Etiology. Laryngoscope 2007, 117, 1–33. [Google Scholar] [CrossRef] [PubMed]
- Dewi, D.J.; Rachmawati, E.Z.K.; Wahyuni, L.K.; Hsu, W.-C.; Tamin, S.; Yunizaf, R.; Prihartono, J.; Iskandar, R.A.T.P. Risk of Dysphagia in a Population of Infants Born Pre-Term: Characteristic Risk Factors in a Tertiary NICU. J. Pediatr. 2024, 100, 169–176. [Google Scholar] [CrossRef]
- González-García, M.; Carrillo-Franco, L.; Morales-Luque, C.; Dawid-Milner, M.S.; López-González, M.V. Central Autonomic Mechanisms Involved in the Control of Laryngeal Activity and Vocalization. Biology 2024, 13, 118. [Google Scholar] [CrossRef] [PubMed]
- Luebke, K.; Samuels, T.L.; Chelius, T.H.; Sulman, C.G.; McCormick, M.E.; Kerschner, J.E.; Johnston, N.; Chun, R.H. Pepsin as a Biomarker for Laryngopharyngeal Reflux in Children with Laryngomalacia. Laryngoscope 2017, 127, 2413–2417. [Google Scholar] [CrossRef] [PubMed]
LM 1 (n =14) | LM 2 (n =18) | LM 3 (n =10) | p-Value | ||
---|---|---|---|---|---|
Type of Apnea | Central | 3 (21.4%) | 0 (0%) | 1 (10%) | <0.001 |
Obstructive | 1 (7.10%) | 9 (50%) | 3 (30%) | ||
Obstructive and Central | 1 (7.10%) | 8 (44.40%) | 6 (60%) | ||
No Significant Apnea | 9 (64.30%) | 1 (5.60%) | 0 (0%) | ||
Stridor | Present | 14 (100%) | 18 (100%) | 10 (100%) | - |
Not present | 0 (0%) | 0 (0%) | 0 (0%) | ||
Respiratory effort | Present | 11 (78.60%) | 1 (5.60%) | 0 (0%) | <0.001 |
Not present | 3 (21.40%) | 17 (94.40%) | 10 (100%) | ||
Feeding difficulties | Present | 6 (42.90%) | 15 (83.30%) | 10 (100%) | <0.01 |
Not present | 8 (57.10%) | 3 (16.70%) | 0 (100%) | ||
OSA suspicion | Present | 8 (57.10%) | 14 (77.80%) | 10 (100%) | <0.05 |
Not present | 6 (42.905) | 4 (22.20%) | 0 (0%) | ||
Type of Surgery | Standard Surgery/Supraglottoplasty | 14 (100%) | 17 (94.40%) | 1 (10%) | <0.001 |
Surgery + Epiglottopexy | 0 (0%) | 1 (5.60%) | 9 (90%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bredun, S.; Kosakovsyi, A.L.; Trzpis, K.; Szydłowski, J.; Wiśniewska, A.; Grabarek, B.O.; Żychowski, P.; Szydlowski, J. Sleep-Disordered Breathing and Clinical Presentation in Infants with Congenital Laryngomalacia: A Polysomnographic Study. J. Clin. Med. 2025, 14, 6844. https://doi.org/10.3390/jcm14196844
Bredun S, Kosakovsyi AL, Trzpis K, Szydłowski J, Wiśniewska A, Grabarek BO, Żychowski P, Szydlowski J. Sleep-Disordered Breathing and Clinical Presentation in Infants with Congenital Laryngomalacia: A Polysomnographic Study. Journal of Clinical Medicine. 2025; 14(19):6844. https://doi.org/10.3390/jcm14196844
Chicago/Turabian StyleBredun, Sergii, Anatolii L. Kosakovsyi, Krzysztof Trzpis, Jarosław Szydłowski, Anna Wiśniewska, Beniamin Oskar Grabarek, Piotr Żychowski, and Jaroslaw Szydlowski. 2025. "Sleep-Disordered Breathing and Clinical Presentation in Infants with Congenital Laryngomalacia: A Polysomnographic Study" Journal of Clinical Medicine 14, no. 19: 6844. https://doi.org/10.3390/jcm14196844
APA StyleBredun, S., Kosakovsyi, A. L., Trzpis, K., Szydłowski, J., Wiśniewska, A., Grabarek, B. O., Żychowski, P., & Szydlowski, J. (2025). Sleep-Disordered Breathing and Clinical Presentation in Infants with Congenital Laryngomalacia: A Polysomnographic Study. Journal of Clinical Medicine, 14(19), 6844. https://doi.org/10.3390/jcm14196844