Immunosuppressive Therapies in Pulmonary Sarcoidosis: A Practical, Evidence-Based Review
Abstract
1. Introduction
2. First Line Agents
2.1. Glucocorticoids
2.2. Methotrexate
3. Second Line Agents
3.1. Azathioprine
3.2. Leflunomide
3.3. Mycophenolate Mofetil
4. Third Line Agents
4.1. TNF-α Inhibitors
4.2. Repository Corticotropin Injection
4.3. Rituximab
4.4. Janus Kinase Inhibitors
5. Additional Considerations
6. Future Directions
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Belperio, J.A.; Shaikh, F.; Abtin, F.G.; Fishbein, M.C.; Weigt, S.S.; Saggar, R.; Lynch, J.P., 3rd. Diagnosis and Treatment of Pulmonary Sarcoidosis: A Review. JAMA 2022, 327, 856–867. [Google Scholar]
- Mañá, J.; Rubio-Rivas, M.; Villalba, N.; Marcoval, J.; Iriarte, A.; Molina-Molina, M.; Llatjos, R.; García, O.; Martínez-Yélamos, S.; Vicens-Zygmunt, V.; et al. Multidisciplinary approach and long-term follow-up in a series of 640 consecutive patients with sarcoidosis: Cohort study of a 40-year clinical experience at a tertiary referral center in Barcelona, Spain. Medicine 2017, 96, e7595. [Google Scholar] [CrossRef]
- Bonham, C.A.; Strek, M.E.; Patterson, K.C. From granuloma to fibrosis: Sarcoidosis associated pulmonary fibrosis. Curr. Opin. Pulm. Med. 2016, 22, 484–491. [Google Scholar] [CrossRef]
- Patterson, K.C.; Strek, M.E. Pulmonary Fibrosis in Sarcoidosis. Clinical Features and Outcomes. Ann. ATS 2013, 10, 362–370. [Google Scholar] [CrossRef]
- Baughman, R.P.; Valeyre, D.; Korsten, P.; Mathioudakis, A.G.; Wuyts, W.A.; Wells, A.; Rottoli, P.; Nunes, H.; Lower, E.E.; Judson, M.A.; et al. ERS clinical practice guidelines on treatment of sarcoidosis. Eur. Respir. J. 2021, 58, 2004079. [Google Scholar] [CrossRef]
- Rahaghi, F.F.; Baughman, R.P.; Saketkoo, L.A.; Sweiss, N.J.; Barney, J.B.; Birring, S.S.; Costabel, U.; Crouser, E.D.; Drent, M.; Gerke, A.K.; et al. Delphi consensus recommendations for a treatment algorithm in pulmonary sarcoidosis. Eur. Respir. Rev. 2020, 29, 190146. [Google Scholar] [CrossRef]
- Belperio, J.A.; Fishbein, M.C.; Abtin, F.; Channick, J.; Balasubramanian, S.A.; Lynch Iii, J.P. Pulmonary sarcoidosis: A comprehensive review: Past to present. J. Autoimmun. 2024, 149, 103107. [Google Scholar] [CrossRef] [PubMed]
- Drent, M.; Crouser, E.D.; Grunewald, J. Challenges of Sarcoidosis and Its Management. N. Engl. J. Med. 2021, 385, 1018–1032. [Google Scholar] [CrossRef] [PubMed]
- Thillai, M.; Atkins, C.P.; Crawshaw, A.; Hart, S.P.; Ho, L.P.; Kouranos, V.; Patterson, K.C.; Screaton, N.J.; Whight, J.; Wells, A.U. BTS Clinical Statement on pulmonary sarcoidosis. Thorax 2021, 76, 4–20. [Google Scholar] [CrossRef] [PubMed]
- Kahlmann, V.; Janssen Bonás, M.; Moor, C.C.; Grutters, J.C.; Mostard, R.L.; van Rijswijk, H.N.; van der Maten, J.; Marges, E.R.; Moonen, L.A.; Overbeek, M.J.; et al. First-Line Treatment of Pulmonary Sarcoidosis with Prednisone or Methotrexate. N. Engl. J. Med. 2025, 393, NEJMoa2501443. [Google Scholar] [CrossRef]
- Baughman, R.P.; Sweiss, N.; Keijsers, R.; Birring, S.S.; Shipley, R.; Saketkoo, L.A.; Lower, E.E. Repository corticotropin for Chronic Pulmonary Sarcoidosis. Lung 2017, 195, 313–322. [Google Scholar] [CrossRef]
- Ramamoorthy, S.; Cidlowski, J.A. Corticosteroids—Mechanisms of action in health and disease. Rheum. Dis. Clin. N. Am. 2016, 42, 15–31. [Google Scholar] [CrossRef] [PubMed]
- Paramothayan, N.S.; Lasserson, T.J.; Jones, P.W. Corticosteroids for pulmonary sarcoidosis. Cochrane Database Syst. Rev. 2005, 2005, CD001114. [Google Scholar] [CrossRef] [PubMed]
- Paramothayan, S.; Jones, P.W. Corticosteroid Therapy in Pulmonary Sarcoidosis: A Systematic Review. JAMA 2002, 287, 1301–1307. Available online: http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.287.10.1301 (accessed on 23 July 2025). [CrossRef]
- Pietinalho, A.; Tukiainen, P.; Haahtela, T.; Persson, T.; Selroos, O.; Finnish Pulmonary Sarcoidosis Study Group. Early treatment of stage II sarcoidosis improves 5-year pulmonary function. Chest 2002, 121, 24–31. [Google Scholar] [CrossRef]
- Gibson, G.J.; Prescott, R.J.; Muers, M.F.; Middleton, W.G.; Mitchell, D.N.; Connolly, C.K.; Harrison, B. British Thoracic Society Sarcoidosis study: Effects of long term corticosteroid treatment. Thorax 1996, 51, 238–247. [Google Scholar] [CrossRef]
- Selroos, O.; Sellergren, T.L. Corticosteroid therapy of pulmonary sarcoidosis. A prospective evaluation of alternate day and daily dosage in stage II disease. Scand. J. Respir. Dis. 1979, 60, 215–221. [Google Scholar]
- Broos, C.E.; Poell, L.H.; Looman, C.W.; CCM, J.; Grootenboers, M.J.; Heller, R.; van den Toorn, L.M.; Wapenaar, M.; Hoogsteden, H.C.; Kool, M.; et al. No evidence found for an association between prednisone dose and FVC change in newly-treated pulmonary sarcoidosis. Respir. Med. 2018, 138, S31–S37. [Google Scholar] [CrossRef]
- Judson, M.A.; Chaudhry, H.; Louis, A.; Lee, K.; Yucel, R. The effect of corticosteroids on quality of life in a sarcoidosis clinic: The results of a propensity analysis. Respir. Med. 2015, 109, 526–531. [Google Scholar] [CrossRef]
- Khan, N.A.; Donatelli, C.V.; Tonelli, A.R.; Wiesen, J.; Neto, M.L.R.; Sahoo, D.; Culver, D.A. Toxicity risk from glucocorticoids in sarcoidosis patients. Respir. Med. 2017, 132, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Entrop, J.P.; Kullberg, S.; Grunewald, J.; Eklund, A.; Brismar, K.; Arkema, E.V. Type 2 diabetes risk in sarcoidosis patients untreated and treated with corticosteroids. ERJ Open Res. 2021, 7, 00028–02021. [Google Scholar] [CrossRef] [PubMed]
- Alqarni, A.M.; Zeidler, M.P. How does methotrexate work? Biochem. Soc. Trans. 2020, 48, 559–567. [Google Scholar] [CrossRef]
- Baughman, R.P.; Winget, D.B.; Lower, E.E. Methotrexate is steroid sparing in acute sarcoidosis: Results of a double blind, randomized trial. Sarcoidosis Vasc. Diffus. Lung Dis. 2000, 17, 60–66. [Google Scholar]
- Fang, C.; Zhang, Q.; Wang, N.; Jing, X.; Xu, Z. Effectiveness and tolerability of methotrexate in pulmonary sarcoidosis: A single center real-world study. Sarcoidosis Vasc. Diffus. Lung Dis. 2019, 36, 217–227. [Google Scholar]
- Gavrysyuk, V.; Merenkova, I.; Dziublyk, Y.; Morska, N.; Pendalchuk, N.; Bychenko, O.; Vlasova, N. Efficacy and Tolerability of Methotrexate and Methylprednisolone in a Comparative Assessment of the Primary and Long-Term Outcomes in Patients with Pulmonary Sarcoidosis. Diagnostics 2021, 11, 1289. [Google Scholar] [CrossRef]
- Cremers, J.P.; Drent, M.; Bast, A.; Shigemitsu, H.; Baughman, R.P.; Valeyre, D.; Sweiss, N.J.; Jansen, T.L. Multinational evidence-based World Association of Sarcoidosis and Other Granulomatous Disorders recommendations for the use of methotrexate in sarcoidosis: Integrating systematic literature research and expert opinion of sarcoidologists worldwide. Curr. Opin. Pulm. Med. 2013, 19, 545–561. [Google Scholar] [CrossRef]
- Baughman, R.P.; Meyer, K.C.; Nathanson, I.; Angel, L.; Bhorade, S.M.; Chan, K.M.; Culver, D.; Harrod, C.G.; Hayney, M.S.; Highland, K.B.; et al. Monitoring of Nonsteroidal Immunosuppressive Drugs in Patients with Lung Disease and Lung Transplant Recipients. Chest 2012, 142, e1S–e111S. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.R.; Bernstein, E.J.; Bolster, M.B.; Chung, J.H.; Danoff, S.K.; George, M.D.; Khanna, D.; Guyatt, G.; Mirza, R.D.; Aggarwal, R.; et al. 2023 American College of Rheumatology (ACR)/American College of Chest Physicians (CHEST) Guideline for the Treatment of Interstitial Lung Disease in People with Systemic Autoimmune Rheumatic Diseases. Arthritis Rheumatol. 2024, 76, 1182–1200. [Google Scholar] [CrossRef]
- Fraenkel, L.; Bathon, J.M.; England, B.R.; St Clair, E.W.; Arayssi, T.; Carandang, K.; Deane, K.D.; Genovese, M.; Huston, K.K.; Kerr, G.; et al. 2021 American College of Rheumatology Guideline for the Treatment of Rheumatoid Arthritis. Arthritis Care Res. 2021, 73, 924–939. [Google Scholar] [CrossRef] [PubMed]
- Vorselaars, A.D.; Wuyts, W.A.; Vorselaars, V.M.; Zanen, P.; Deneer, V.H.; Veltkamp, M.; Thomeer, M.; van Moorsel, C.H.; Grutters, J.C. Methotrexate vs azathioprine in second-line therapy of sarcoidosis. Chest 2013, 144, 805–812. [Google Scholar] [CrossRef]
- Muller-Quernheim, J.; Kienast, K.; Held, M.; Pfeifer, S.; Costabel, U. Treatment of chronic sarcoidosis with an azathioprine/prednisolone regimen. Eur. Respir. J. 1999, 14, 1117–1122. [Google Scholar] [CrossRef]
- Lewis, S.J.; Ainslie, G.M.; Bateman, E.D. Efficacy of azathioprine as second-line treatment in pulmonary sarcoidosis. Sarcoidosis Vasc. Diffus. Lung Dis. 1999, 16, 87–92. [Google Scholar]
- Fox, R.I.; Herrmann, M.L.; Frangou, C.G.; Wahl, G.M.; Morris, R.E.; Strand, V.; Kirschbaum, B.J. Mechanism of Action for Leflunomide in Rheumatoid Arthritis. Clin. Immunol. 1999, 93, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Baughman, R.P.; Lower, E.E. Leflunomide for chronic sarcoidosis. Sarcoidosis Vasc. Diffus. Lung Dis. 2004, 21, 43–48. [Google Scholar]
- Sahoo, D.H.; Bandyopadhyay, D.; Xu, M.; Pearson, K.; Parambil, J.G.; Lazar, C.A.; Chapman, J.T.; Culver, D.A. Effectiveness and safety of leflunomide for pulmonary and extrapulmonary sarcoidosis. Eur. Respir. J. 2011, 38, 1145–1150. [Google Scholar] [CrossRef] [PubMed]
- Allison, A.C.; Eugui, E.M. Mycophenolate mofetil and its mechanisms of action. Immunopharmacology 2000, 47, 85–118. [Google Scholar] [CrossRef]
- Brill, A.K.; Ott, S.R.; Geiser, T. Effect and Safety of Mycophenolate Mofetil in Chronic Pulmonary Sarcoidosis: A Retrospective Study. Respiration 2013, 86, 376–383. [Google Scholar] [CrossRef]
- Papiris, S.; Stagaki, E.; Papadaki, G.; Kolilekas, L.; Korbila, I.; Apollonatou, V.; Kallieri, M.; Gialafos, H.; Chatziioannou, S.; Papaioannou, A.I.; et al. Mycophenolate mofetil as an alternative treatment in sarcoidosis. Pulm. Pharmacol. Ther. 2019, 58, 101840. [Google Scholar] [CrossRef]
- Hamzeh, N.; Voelker, A.; Forssén, A.; Gottschall, E.B.; Rose, C.; Mroz, P.; Maier, L.A. Efficacy of mycophenolate mofetil in sarcoidosis. Respir. Med. 2014, 108, 1663–1669. [Google Scholar] [CrossRef]
- Callejas-Rubio, J.L.; López-Pérez, L.; Ortego-Centeno, N. Tumor necrosis factor-alpha inhibitor treatment for sarcoidosis. Ther. Clin. Risk Manag. 2008, 4, 1305–1313. [Google Scholar] [CrossRef]
- Baughman, R.P.; Drent, M.; Kavuru, M.; Judson, M.A.; Costabel, U.; du Bois, R.; Albera, C.; Brutsche, M.; Davis, G.; Donohue, J.F.; et al. Infliximab Therapy in Patients with Chronic Sarcoidosis and Pulmonary Involvement. Am. J. Respir. Crit. Care Med. 2006, 174, 795–802. [Google Scholar] [CrossRef]
- Sakkat, A.; Cox, G.; Khalidi, N.; Larche, M.; Beattie, K.; Renzoni, E.A.; Morar, N.; Kouranos, V.; Kolb, M.; Hambly, N. Infliximab therapy in refractory sarcoidosis: A multicenter real-world analysis. Respir. Res. 2022, 23, 54. [Google Scholar] [CrossRef]
- Panselinas, E.; Rodgers, J.K.; Judson, M.A. Clinical outcomes in sarcoidosis after cessation of infliximab treatment. Respirology 2009, 14, 522–528. [Google Scholar] [CrossRef]
- Thomas, S.S.; Borazan, N.; Barroso, N.; Duan, L.; Taroumian, S.; Kretzmann, B.; Bardales, R.; Elashoff, D.; Vangala, S.; Furst, D.E. Comparative Immunogenicity of TNF Inhibitors: Impact on Clinical Efficacy and Tolerability in the Management of Autoimmune Diseases. A Systematic Review and Meta-Analysis. BioDrugs 2015, 29, 241–258. [Google Scholar] [CrossRef] [PubMed]
- Sweiss, N.J.; Noth, I.; Mirsaeidi, M.; Zhang, W.; Naureckas, E.T.; Hogarth, D.K.; Strek, M.; Caligiuri, P.; Machado, R.F.; Niewold, T.B.; et al. Efficacy Results of a 52-week Trial of Adalimumab in the Treatment of Refractory Sarcoidosis. Sarcoidosis Vasc. Diffus. Lung Dis. 2014, 31, 46–54. [Google Scholar]
- Milman, N.; Graudal, N.; Loft, A.; Mortensen, J.; Larsen, J.; Baslund, B. Effect of the TNF-α inhibitor adalimumab in patients with recalcitrant sarcoidosis: A prospective observational study using FDG-PET. Clin. Respir. J. 2012, 6, 238–247. [Google Scholar] [CrossRef]
- Crommelin, H.A.; Van Der Burg, L.M.; Vorselaars, A.D.; Drent, M.; Van Moorsel, C.H.; Rijkers, G.T.; Deneer, V.H.; Grutters, J.C. Efficacy of adalimumab in sarcoidosis patients who developed intolerance to infliximab. Respir. Med. 2016, 115, 72–77. [Google Scholar] [CrossRef]
- Minnis, P.A.; Poland, M.; Keane, M.P.; Donnelly, S.C. Adalimumab for refractory pulmonary sarcoidosis. Ir. J. Med. Sci. 2016, 185, 969–971. [Google Scholar] [CrossRef]
- Utz, J.P.; Limper, A.H.; Kalra, S.; Specks, U.; Scott, J.P.; Vuk-Pavlovic, Z.; Schroeder, D.R. Etanercept for the Treatment of Stage II and III Progressive Pulmonary Sarcoidosis. Chest 2003, 124, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Judson, M.A.; Baughman, R.P.; Costabel, U.; Drent, M.; Gibson, K.F.; Raghu, G.; Shigemitsu, H.; Barney, J.B.; Culver, D.A.; Hamzeh, N.Y.; et al. Safety and efficacy of ustekinumab or golimumab in patients with chronic sarcoidosis. Eur. Respir. J. 2014, 44, 1296–1307. [Google Scholar] [CrossRef]
- Thomas, A.S.; Rosenbaum, J.T. Poor Control of Sarcoidosis-Related Panuveitis with an Antibody to IL-23. Ocul. Immunol. Inflamm. 2020, 28, 491–493. [Google Scholar] [CrossRef]
- Girman, C.; Panaccio, M.P.; Hayes, K.; Niewoehner, J.; Wan, G.J. Pain and Fatigue Improvements in Patients Treated with Repository Corticotropin Injection Across Five Indications: A Narrative Review. Adv. Ther. 2022, 39, 3072–3087. [Google Scholar] [CrossRef] [PubMed]
- Mirsaeidi, M.; Baughman, R.P.; Sahoo, D.; Tarau, E. Results from a Phase 4, Multicenter, Randomized, Double-Blind, Placebo-Controlled Study of Repository Corticotropin Injection for the Treatment of Pulmonary Sarcoidosis. Pulm. Ther. 2023, 9, 237–253. [Google Scholar] [CrossRef]
- Tran, K.A.; Harrod, C.; Bourdette, D.N.; Cohen, D.M.; Deodhar, A.A.; Hartung, D.M. Characterization of the Clinical Evidence Supporting Repository Corticotropin Injection for FDA-Approved Indications: A Scoping Review. JAMA Intern. Med. 2022, 182, 206. [Google Scholar] [CrossRef]
- Philbin, M.; Niewoehner, J.; Wan, G.J. Clinical and Economic Evaluation of Repository Corticotropin Injection: A Narrative Literature Review of Treatment Efficacy and Healthcare Resource Utilization for Seven Key Indications. Adv. Ther. 2017, 34, 1775–1790. [Google Scholar] [CrossRef]
- Kheirallah, S.; Caron, P.; Gross, E.; Quillet-Mary, A.; Bertrand-Michel, J.; Fournié, J.J.; Laurent, G.; Bezombes, C. Rituximab inhibits B-cell receptor signaling. Blood 2010, 115, 985–994. [Google Scholar] [CrossRef]
- Sweiss, N.J.; Lower, E.E.; Mirsaeidi, M.; Dudek, S.; Garcia, J.G.; Perkins, D.; Finn, P.W.; Baughman, R.P. Rituximab in the treatment of refractory pulmonary sarcoidosis. Eur. Respir. J. 2014, 43, 1525–1528. [Google Scholar] [CrossRef]
- Lin, C.M.; Cooles, F.A.; Isaacs, J.D. Basic Mechanisms of JAK Inhibition. MJR 2020, 31 (Suppl. S1), 100. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M.A.; Le, B.; Stevens, J.; Desmarais, J.; Seifer, D.; Ogle, K.; Choi, D.; Harrington, C.A.; Jackson, P.; Rosenbaum, J.T. Tofacitinib as a Steroid-Sparing Therapy in Pulmonary Sarcoidosis, an Open-Label Prospective Proof-of-Concept Study. Lung 2021, 199, 147–153. [Google Scholar]
- Damsky, W.; Wang, A.; Kim, D.J.; Young, B.D.; Singh, K.; Murphy, M.J.; Daccache, J.; Clark, A.; Ayasun, R.; Ryu, C.; et al. Inhibition of type 1 immunity with tofacitinib is associated with marked improvement in longstanding sarcoidosis. Nat. Commun. 2022, 13, 3140. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Yin, H.; Yang, S.; Lu, L. Janus kinase inhibitor treatment improved both subcutaneous and pulmonary sarcoidosis in a patient with glaucoma. Clin. Exp. Dermatol. 2022, 47, 1868–1870. [Google Scholar] [CrossRef]
- Baltzan, M.; Mehta, S.; Kirkham, T.H.; Cosio, M.G. Randomized Trial of Prolonged Chloroquine Therapy in Advanced Pulmonary Sarcoidosis. Am. J. Respir. Crit. Care Med. 1999, 160, 192–197. [Google Scholar] [CrossRef]
- Vermeer, B.; Veltkamp, M.; Raasing, L.R.M.; Wind, A.E.; Vorselaars, A.D.M. Hydroxychloroquine monotherapy in sarcoidosis: Indications, efficacy, and side effects. Sarcoidosis Vasc. Diffus. Lung Dis. 2024, 41, e2024039. [Google Scholar]
- Drake, W.P.; Richmond, B.W.; Oswald-Richter, K.; Yu, C.; Isom, J.M.; Worrell, J.A.; Shipley, R.; Bernard, G.R. Effects of broad-spectrum antimycobacterial therapy on chronic pulmonary sarcoidosis. Sarcoidosis Vasc. Diffus. Lung Dis. 2013, 30, 201–211. [Google Scholar]
- Drake, W.P.; Culver, D.A.; Baughman, R.P.; Judson, M.A.; Crouser, E.D.; James, W.E.; Ayers, G.D.; Ding, T.; Abel, K.; Green, A.; et al. Phase II Investigation of the Efficacy of Antimycobacterial Therapy in Chronic Pulmonary Sarcoidosis. Chest 2021, 159, 1902–1912. [Google Scholar] [CrossRef] [PubMed]
- Offman, E.; Singh, N.; Julian, M.W.; Locke, L.W.; Bicer, S.; Mitchell, J.; Matthews, T.; Anderson, K.; Crouser, E.D. Leveraging in vitro and pharmacokinetic models to support bench to bedside investigation of XTMAB-16 as a novel pulmonary sarcoidosis treatment. Front. Pharmacol. 2023, 20, 1066454. [Google Scholar] [CrossRef]
- Zwicky, P.; Unger, S.; Becher, B. Targeting interleukin-17 in chronic inflammatory disease: A clinical perspective. J. Exp. Med. 2020, 217, e20191123. [Google Scholar] [CrossRef] [PubMed]
- Linke, M.; Pham, H.T.T.; Katholnig, K.; Schnöller, T.; Miller, A.; Demel, F.; Schütz, B.; Rosner, M.; Kovacic, B.; Sukhbaatar, N.; et al. Chronic signaling via the metabolic checkpoint kinase mTORC1 induces macrophage granuloma formation and marks sarcoidosis progression. Nat. Immunol. 2017, 18, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Bueno-Beti, C.; Lim, C.X.; Protonotarios, A.; Szabo, P.L.; Westaby, J.; Mazic, M.; Sheppard, M.N.; Behr, E.; Hamza, O.; Kiss, A.; et al. An mTORC1-Dependent Mouse Model for Cardiac Sarcoidosis. J. Am. Heart Assoc. 2023, 12, e030478. [Google Scholar] [CrossRef]
- Redl, A.; Doberer, K.; Unterluggauer, L.; Kleissl, L.; Krall, C.; Mayerhofer, C.; Reininger, B.; Stary, V.; Zila, N.; Weninger, W.; et al. Efficacy and safety of mTOR inhibition in cutaneous sarcoidosis: A single-centre trial. Lancet Rheumatol. 2024, 6, e81–e91. [Google Scholar] [CrossRef]
Agent | Mechanism of Action | Typical Dose | Toxicities | Guidelines Recommendations ** |
---|---|---|---|---|
First Line | ||||
Glucocorticoids | Broad anti-inflammatory | Prednisone 20–40 mg/day | Short-term: Mood changes, insomnia, appetite increase, fluid retention, hyperglycemia Long-term: Weight gain, HTN, osteoporosis, diabetes, cataracts, infections | First line for symptomatic/progressive disease; avoid in asymptomatic stage I (ERS, BTS) |
Methotrexate * | Anti-metabolite, inhibits folate pathways | 10–25 mg/week + folic acid | Hepatotoxicity, cytopenias, nausea | Preferred second line; alternative first line in selected cases (ERS, Delphi, PREDMETH) |
Second Line | ||||
Azathioprine | Purine synthesis inhibitor | 1.5–2.5 mg/kg/day | Cytopenias, infections, hepatotoxicity | Second line if MTX not tolerated; higher infection risk (ERS, BTS) |
Leflunomide | Pyrimidine synthesis inhibitor | 10–20 mg/day | GI upset, hepatotoxicity, cytopenias | Second line if MTX intolerant; limited evidence (ERS, BTS) |
Mycophenolate mofetil | Purine synthesis inhibitor | 500–1500 mg BID | Infections, cytopenias | Second line, esp. in multi-organ disease (ERS, BTS) |
Third Line | ||||
TNF-α inhibitors: Infliximab, Adalimumab | Inhibition of TNF-α mediated inflammation | Infliximab: 3–5 mg/kg IV q4–8 weeks, Adalimumab: 40 mg SC weekly or q2 weeks | Infections, antibody formation | Third line for refractory/organ-threatening disease (ERS, BTS) |
RCI | Endogenous ACTH analog | 40–80 units SC 2x/week | Edema, hyperglycemia | Use for refractory disease; improves DLCO/PRO but FVC unchanged |
Rituximab | Anti-CD20 monoclonal antibody | 1000 mg IV x 2 (2 weeks apart), retreatment based on relapse or at about 6–12 months in responders. | Infections, hypogammaglobulinemia | Rescue in highly refractory disease; small studies only (ERS) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhanani, Z.; Gupta, R. Immunosuppressive Therapies in Pulmonary Sarcoidosis: A Practical, Evidence-Based Review. J. Clin. Med. 2025, 14, 6828. https://doi.org/10.3390/jcm14196828
Dhanani Z, Gupta R. Immunosuppressive Therapies in Pulmonary Sarcoidosis: A Practical, Evidence-Based Review. Journal of Clinical Medicine. 2025; 14(19):6828. https://doi.org/10.3390/jcm14196828
Chicago/Turabian StyleDhanani, Zehra, and Rohit Gupta. 2025. "Immunosuppressive Therapies in Pulmonary Sarcoidosis: A Practical, Evidence-Based Review" Journal of Clinical Medicine 14, no. 19: 6828. https://doi.org/10.3390/jcm14196828
APA StyleDhanani, Z., & Gupta, R. (2025). Immunosuppressive Therapies in Pulmonary Sarcoidosis: A Practical, Evidence-Based Review. Journal of Clinical Medicine, 14(19), 6828. https://doi.org/10.3390/jcm14196828