KRAS G12C Mutation Predicts Improved Survival in NSCLC Patients Receiving Immunotherapy: Insights from a Real-World Cohort
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population, Data Collection, and Endpoints
2.2. Molecular Profiling Workflow
2.3. Statistical Analysis
3. Results
4. Discussion
4.1. Summary of Main Results
4.2. Results in the Context of Published Literature
4.3. Strengths and Weaknesses
4.4. Clinical Implications and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Judd, J.; Unger, T.J.; Osarogiagbon, R.U.; Thomas, A.; Ferguson, J. Characterization of KRAS Mutation Subtypes in Non-Small Cell Lung Cancer. Mol. Cancer Ther. 2021, 20, 2577–2584. [Google Scholar] [CrossRef] [PubMed]
- Tsiouda, T.; Zarogoulidis, P.; Papakosta, D.; Lazaridis, G.; Mpoukovinas, I.; Machairiotis, N.; Kallianos, A.; Kosmidis, C.; Tsakiridis, K.; Tsavlis, D.; et al. Prognostic Value of KRAS Mutations in Relation to PD-L1 Expression and Immunotherapy Treatment in Adenocarcinoma and Squamous Cell Carcinoma Patients: A Greek Cohort Study. J. Pers. Med. 2024, 14, 457. [Google Scholar] [CrossRef] [PubMed]
- Isla, D.; Garrido, P.; de Castro, J.; Majem, M.; Massuti, B.; Reguart, N.; García-Campelo, R.; Bernabé, R.; Gómez, M.D.; Provencio, M.; et al. New Update to the Guidelines on Testing Predictive Biomarkers in Non-Small-Cell Lung Cancer: A National Consensus of the Spanish Society of Pathology and the Spanish Society of Medical Oncology. Clin. Transl. Oncol. 2023, 25, 1252–1267. [Google Scholar] [CrossRef]
- Hirsch, F.R.; Kim, C. The Importance of Biomarker Testing in the Treatment of Advanced Non-Small Cell Lung Cancer: A Podcast. Oncol. Ther. 2024, 12, 223–231. [Google Scholar] [CrossRef]
- Salem, M.E.; Puccini, A.; Grothey, A.; Xiu, J.; Goldberg, R.M.; Shields, A.F.; VanderWalde, A.; Johnson, M.L.; Fakih, M.; Korn, W.M.; et al. Landscape of KRAS(G12C), Associated Genomic Alterations, and Interrelation with Immuno-Oncology Biomarkers in KRAS-Mutated Cancers. JCO Precis. Oncol. 2022, 6, e2100245. [Google Scholar] [CrossRef]
- Thomas, Q.D.; Girard, N.; Besse, B.; Barlesi, F.; Bérard, H.; Couraud, S.; Dubos-Arvis, C.; Chouaid, C.; Cortot, A.B.; Pérol, M.; et al. Clinical Characteristics and Survival Outcomes of Patients with Advanced NSCLC According to KRAS Mutational Status in the French Real-Life ESME Cohort. ESMO Open 2024, 9, 103473. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, X.; Li, Y.; Zhao, H.; Wang, L.; Wu, F.; Sun, Y.; Liu, Z.; Liu, J.; Chen, H.; et al. Efficacy of Immunotherapy in Patients with Oncogene-Driven Non-Small-Cell Lung Cancer: A Systematic Review and Meta-Analysis. Ther. Adv. Med. Oncol. 2024, 16, 17588359231225036. [Google Scholar] [CrossRef]
- Radeczky, P.; Szilasi, M.; Vass, T.; Gálffy, G.; Dózsa, C.; Ruzsa, Á.; Tóth, J.; Vadász, G.; Kovács, G.; Losonczy, G.; et al. Therapeutic Possibilities in KRAS-Mutant Lung Adenocarcinoma. Magy. Onkol. 2020, 64, 231–244. [Google Scholar]
- Frisch, A.; Brown, N.A.; Addeo, A.; Recondo, G.; Besse, B. KRAS-Mutated NSCLC: Past, Present, and Future Directions in a Rapidly Evolving Landscape. Oncologist 2025, 30, 563–574. [Google Scholar] [CrossRef]
- Budczies, J.; Christopoulos, P.; Kazdal, D.; Endris, V.; Allgäuer, M.; Rempel, E.; Kirchner, M.; Morresi-Hauf, A.; Stenzinger, A.; Wolf, J.; et al. KRAS and TP53 Co-Mutation Predicts Benefit of Immune Checkpoint Blockade in Lung Adenocarcinoma. Br. J. Cancer 2024, 131, 524–533. [Google Scholar] [CrossRef]
- Jeanson, A.; Tomasini, P.; Souquet-Bressand, M.; Brandone, N.; Boucekine, M.; Grangeon, M.; Chaleat, S.; Khobta, N.; Milia, J.; Mhanna, L.; et al. Efficacy of Immune Checkpoint Inhibitors in KRAS-Mutant Non-Small Cell Lung Cancer (NSCLC). J. Thorac. Oncol. 2019, 14, 1095–1101. [Google Scholar] [CrossRef]
- Sun, L.; Liu, Y.; Chen, C.; Zhang, H.; Wang, R.; Yang, Y.; Zhang, Y.; Wang, Z.; Zhou, C.; Yan, X.; et al. Not Created Equal: Survival Differences by KRAS Mutation Subtype in NSCLC Treated with Immunotherapy. JTO Clin. Res. Rep. 2025, 6, 100755. [Google Scholar] [CrossRef]
- Veccia, A.; Cortellini, A.; Tuzi, A.; Cannita, K.; Di Marino, P.; Brocco, D.; Felicetti, F.; Ficorella, C.; D’Orazi, V.; D’Orazi, G.; et al. Impact of KRAS Mutations on Clinical Outcomes of Patients with Advanced Non-Squamous Non-Small Cell Lung Cancer Receiving Anti-PD-1/PD-L1 Therapy. Target. Oncol. 2023, 18, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Arbour, K.C.; Rizvi, H.; Plodkowski, A.J.; Hellmann, M.D.; Knezevic, A.; Heller, G.; Yu, H.A.; Ladanyi, M.; Kris, M.G.; Arcila, M.E.; et al. Treatment Outcomes and Clinical Characteristics of Patients with KRAS-G12C-Mutant Non-Small Cell Lung Cancer. Clin. Cancer Res. 2021, 27, 2209–2215. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, M.; Scheffler, M.; Reck, M.; Waller, C.F.; Thomas, M.; Sebastian, G.; Märten, A.; Schütte, W.; Reinmuth, N.; Tessen, H.W.; et al. KRAS G12C-Mutated Advanced Non-Small Cell Lung Cancer: A Real-World Cohort from the German Prospective, Observational, Nationwide CRISP Registry (AIO-TRK-0315). Lung Cancer 2021, 154, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Aredo, J.V.; Padda, S.K.; Kunder, C.A.; Han, S.S.; Neal, J.W.; Wakelee, H.A.; Das, M.; Riess, J.W. Impact of KRAS Mutation Subtype and Concurrent Pathogenic Mutations on Non-Small Cell Lung Cancer Outcomes. Lung Cancer 2019, 133, 144–150. [Google Scholar] [CrossRef]
- Noordhof, A.L.; Dingemans, A.M.C.; Monkhorst, K.; van der Wekken, A.J.; Miedema, A.G.; van den Heuvel, M.M.; de Langen, A.J.; van Lindert, A.S.R.; Schuuring, E.; Heuvelmans, C.; et al. Prognostic Implication of KRAS G12C Mutation in a Real-World KRAS-Mutated Stage IV NSCLC Cohort Treated with Immunotherapy in The Netherlands. JTO Clin. Res. Rep. 2023, 4, 100543. [Google Scholar]
- Skoulidis, F.; Goldberg, M.E.; Greenawalt, D.M.; Hellmann, M.D.; Awad, M.M.; Gainor, J.F.; Schrock, A.B.; Liu, S.V.; Elvin, J.A.; Sanghvi, M.; et al. CTLA4 Blockade Abrogates KEAP1/STK11-Related Resistance to PD-(L)1 Inhibitors. Nature 2024, 635, 462–471. [Google Scholar] [CrossRef]
- Wang, K.; Li, W.; Zhao, S.; Zhang, X.; Chen, Y.; Liu, H.; Zhou, H.; Sun, Y.; He, J.; Zhao, J.; et al. Exploration of Efficacy of Different Therapy Regimens for Advanced NSCLC Patients with KRAS Mutation in the First-Line Treatment. Clin. Transl. Oncol. 2024, 26, 2479–2487. [Google Scholar] [CrossRef]
- Goulding, R.E.; Chenoweth, M.; Carter, G.C.; Boye, M.E.; Sheffield, K.M.; John, W.J.; Muehlenbein, C.; Cuyun Carter, G.; Liptrap, C.; Leitzel, K.; et al. KRAS Mutation as a Prognostic Factor and Predictive Factor in Advanced/Metastatic Non-Small Cell Lung Cancer: A Systematic Literature Review and Meta-Analysis. Cancer Treat. Res. Commun. 2020, 24, 100200. [Google Scholar] [CrossRef]
- Wankhede, D.; Patel, R.; Singh, A.; Yadav, R.; Sharma, P.; Gupta, S.; Rao, P.; Kumar, V.; Jain, N.; Tiwari, A.; et al. Prognostic Role of KRAS G12C Mutation in Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. Diagnostics 2023, 13, 3043. [Google Scholar] [CrossRef]
- Boeschen, M.; Wessels, H.; Fuchs, S.; Schneider, M.; Ahrens, T.; Hellwig, C.; Schäfer, S.; Rink, J.; O’Sullivan, D.; Rahn, S.; et al. Comparative Bioinformatic Analysis of KRAS, STK11 and KEAP1 (Co-)Mutations in Non-Small Cell Lung Cancer with a Special Focus on KRAS G12C. Lung Cancer 2023, 184, 107361. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Zhang, Y.; Liu, C.; Zhao, H.; Wang, R.; Chen, J.; Fang, W.; Zhou, C. Outcomes in Patients Treated with Frontline Immune Checkpoint Inhibition (ICI) for Advanced NSCLC with KRAS Mutations and STK11/KEAP1 Comutations across PD-L1 Levels. Lung Cancer 2024, 190, 107510. [Google Scholar] [CrossRef] [PubMed]
- Skoulidis, F.; Byers, L.A.; Diao, L.; Papadimitrakopoulou, V.A.; Tong, P.; Izzo, J.; Behrens, C.; Kadara, H.; Parra, E.R.; Canales, J.R.; et al. STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma. Cancer Discov. 2018, 8, 822–835. [Google Scholar] [CrossRef] [PubMed]
- Ricciuti, B.; Garassino, M.C. Precision Immunotherapy for STK11/KEAP1-Mutant NSCLC. J. Thorac. Oncol. 2024, 19, 877–882. [Google Scholar] [CrossRef]
- Frost, M.G.; Hansen, K.H.; Kristensen, T.K.; Sørensen, J.B.; Rasmussen, T.R.; Nielsen, A.W.; Madsen, H.H.T.; Høgh, J.; Kristensen, T.K.; Paulsen, B.S.; et al. KRAS G12C-Mutated Advanced Non-Small Cell Lung Cancer (NSCLC): Characteristics, Treatment Patterns and Overall Survival from a Danish Nationwide Observational Register Study. Lung Cancer 2023, 178, 172–182. [Google Scholar] [CrossRef]
- Zavitsanou, A.M.; Papadaki, C.; Lagopati, N.; Giannakakis, A.; Siozopoulou, V.; Apostolaki, S.; Kalapanida, D.; Moutafi, M.; Lasithiotakis, K.; Giannikaki, E.; et al. KEAP1 Mutation in Lung Adenocarcinoma Promotes Immune Evasion and Immunotherapy Resistance. Cell Rep. 2023, 42, 113295. [Google Scholar] [CrossRef]
- Dogan, S.; Shen, R.; Ang, D.C.; Johnson, M.L.; D’Angelo, S.P.; Paik, P.K.; Brzostowski, E.B.; Riely, G.J.; Kris, M.G.; Zakowski, M.F.; et al. Molecular Epidemiology of EGFR and KRAS Mutations in 3,026 Lung Adenocarcinomas: Higher Susceptibility of Women to Smoking-Related KRAS-Mutant Cancers. Clin. Cancer Res. 2012, 18, 6169–6177. [Google Scholar] [CrossRef]
- Jing, Y.; Li, X.; Zhou, Z.; Zhao, Y.; Wang, L.; Xu, Y.; Zhang, H.; Chen, Y.; Fang, Y.; Liu, J.; et al. Dissecting the Clinical Characteristics and Treatment Outcomes Correlates of KRAS G12C-Mutated Non-Small Cell Lung Cancer. Int. J. Gen. Med. 2024, 17, 4507–4517. [Google Scholar] [CrossRef]
- Burns, T.F.; Borghaei, H.; Ramalingam, S.S.; Mok, T.S.; Peters, S.; Spigel, D.R.; Skoulidis, F.; Greillier, L.; Mazieres, J.; Viteri, S.; et al. Targeting KRAS-Mutant Non-Small-Cell Lung Cancer: One Mutation at a Time, with a Focus on KRAS G12C Mutations. J. Clin. Oncol. 2020, 38, 4208–4218. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Wu, Y.; Pan, J.; Hu, J.; Zhu, Y.; Zhang, C.; Wang, Y.; Chen, L.; Gao, Y.; Huang, J.; et al. Unveiling the Role of KRAS in Tumor Immune Microenvironment. Biomed. Pharmacother. 2024, 171, 116058. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.; Le, H.; Shankaran, V.; Lee, H.Y.; Cress, D.; Zhang, L.; Kroenke, C.; Patel, S. Survival Implications of De Novo versus Recurrent Metastatic Non-Small Cell Lung Cancer. Am. J. Clin. Oncol. 2019, 42, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Su, C.C.; Hsu, F.T.; Chen, H.Y.; Wu, Y.C.; Lee, Y.C.; Tsai, Y.H.; Hsieh, M.S.; Huang, Y.C.; Chang, W.C.; Liu, C.Y.; et al. Overall Survival among Patients with De Novo Stage IV Metastatic and Distant Metastatic Recurrent Non-Small Cell Lung Cancer. JAMA Netw. Open 2023, 6, e2335813. [Google Scholar] [CrossRef]
- Xie, M.; Zhang, X.; Li, Y.; Zhou, Z.; Hu, Y.; Wang, L.; Xu, J.; Sun, Y. The Efficacy of PD-1/PD-L1 Inhibitors in Patients with Liver Metastasis of Non-Small Cell Lung Cancer: A Real-World Study. Cancers 2022, 14, 4333. [Google Scholar] [CrossRef]
- Xia, H.; Li, C.; Zhang, Y.; Chen, Z.; Zhao, Y.; Zhou, W.; Liu, J.; Wang, R.; Fang, W.; Zhou, C. Liver Metastases and the Efficacy of Immune Checkpoint Inhibitors in Advanced Lung Cancer: A Systematic Review and Meta-Analysis. Front. Oncol. 2022, 12, 978069. [Google Scholar] [CrossRef]
- Addeo, A.; Banna, G.L.; Friedlaender, A. KRAS G12C Mutations in NSCLC: From Target to Resistance. Cancers 2021, 13, 2541. [Google Scholar] [CrossRef]
- Garassino, M.C.; Gadgeel, S.; Speranza, G.; Felip, E.; Esteban, E.; Dómine, M.; Hochmair, M.J.; Powell, S.F.; Bischoff, H.G.; Peled, N.; et al. Pembrolizumab Plus Pemetrexed and Platinum in Nonsquamous Non-Small-Cell Lung Cancer: 5-Year Outcomes from the Phase 3 KEYNOTE-189 Study. J. Clin. Oncol. 2023, 41, 1992–1998. [Google Scholar] [CrossRef]
- Paz-Ares, L.; Vicente, D.; Tafreshi, A.; Robinson, A.; Soto Parra, H.; Mazières, J.; Spira, A.; Wadsworth, C.; McCleod, M.; Bischoff, H.G.; et al. A Randomized, Placebo-Controlled Trial of Pembrolizumab Plus Chemotherapy in Patients with Metastatic Squamous NSCLC: Protocol-Specified Final Analysis of KEYNOTE-407. J. Thorac. Oncol. 2020, 15, 1657–1669. [Google Scholar] [CrossRef]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; et al. Five-year outcomes with pembrolizumab versus chemotherapy for metastatic non-small-cell lung cancer with PD-L1 tumor proportion score ≥ 50%. J. Clin. Oncol. 2021, 39, 2339–2349. [Google Scholar] [CrossRef]
- de Castro, G., Jr.; Kudaba, I.; Wu, Y.L.; Lopes, G.; Kowalski, D.M.; Turna, H.Z.; Caglevic, C.; Zhang, L.; Karaszewska, B.; Laktionov, K.K.; et al. Five-year outcomes with pembrolizumab versus chemotherapy as first-line therapy in patients with non-small-cell lung cancer and PD-L1 tumor proportion score ≥ 1% in the KEYNOTE-042 study. J. Clin. Oncol. 2023, 41, 1986–1991. [Google Scholar] [CrossRef]
- Socinski, M.A.; Jotte, R.M.; Cappuzzo, F.; Orlandi, F.; Stroyakovskiy, D.; Nogami, N.; Rodríguez-Abreu, D.; Moro-Sibilot, D.; Thomas, C.A.; Barlesi, F.; et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N. Engl. J. Med. 2018, 378, 2288–2301. [Google Scholar] [CrossRef]
- West, H.; McCleod, M.; Hussein, M.; Morabito, A.; Rittmeyer, A.; Conter, H.J.; Kopp, P.H.-G.; Daniel, D.; McCune, S.; Mekhail, T.; et al. Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer (IMpower130): A multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019, 20, 924–937. [Google Scholar] [CrossRef]
- Guo, C.; Banerji, U. Searching for treatments for non-G12C-KRAS mutant cancers. Br. J. Cancer 2021, 125, 625–626. [Google Scholar] [CrossRef]
Variable | N | % |
---|---|---|
Age | ||
Mean ± SD | 62.48 ± 9.02 | |
Median (min–max) | 63.0 (35–82) | |
≤65 years | 49 | 61.3 |
>65 years | 31 | 38.8 |
Gender | ||
Female | 17 | 21.3 |
Male | 63 | 78.8 |
Number of comorbidities | ||
None | 26 | 32.5 |
1 | 26 | 32.5 |
≥2 | 28 | 35.0 |
Smoking status | ||
No | 18 | 22.5 |
Yes | 62 | 77.5 |
ECOG performance status | ||
0 | 34 | 42.5 |
1 | 33 | 41.3 |
2 | 13 | 16.3 |
Diagnosis status | ||
De novo | 71 | 88.8 |
Recurrent | 9 | 11.3 |
Liver metastasis | ||
No | 66 | 82.5 |
Yes | 14 | 17.5 |
Lung metastasis | ||
No | 25 | 31.3 |
Yes | 55 | 68.8 |
Lymph node metastasis | ||
No | 9 | 11.3 |
Yes | 71 | 88.8 |
Brain metastasis | ||
No | 56 | 70.0 |
Yes | 24 | 30.0 |
Bone metastasis | ||
No | 55 | 68.8 |
Yes | 25 | 31.3 |
Metastatic burden | ||
Other | 37 | 46.3 |
Liver or brain metastasis or ≥3 sites | 43 | 53.8 |
Number of metastases | ||
≤2 | 40 | 50.0 |
≥3 | 40 | 50.0 |
Histology | ||
Adenocarcinoma | 70 | 87.5 |
Squamous cell carcinoma | 10 | 12.5 |
KRAS status | ||
Wild type | 48 | 60.0 |
Mutant | 32 | 40.0 |
KRAS subtype | ||
G12C | 20 | 62.5 |
Non-G12C | 12 | 37.5 |
PD-L1 expression | ||
Negative | 34 | 42.5 |
1–49% | 19 | 23.8 |
≥50% | 27 | 33.8 |
Line of immunotherapy | ||
First-line | 70 | 87.5 |
≥Second line | 10 | 12.5 |
Type of immunotherapy | ||
Pembrolizumab | 18 | 22.5 |
Nivolumab | 59 | 73.8 |
Ipilimumab + nivolumab | 3 | 3.8 |
Immunotherapy regimen | ||
Mono-ICI | 62 | 77.5 |
Chemo-ICI | 18 | 22.5 |
Progression | ||
No | 21 | 26.3 |
Yes | 59 | 73.8 |
Mortality | ||
Alive | 29 | 36.3 |
Deceased | 51 | 63.7 |
Follow-up time (months) | ||
Mean ± SD | 16.06 ± 16.22 | |
Median (min–max) | 11.24 (0.90–110.93) |
Variable | G12C (n = 20) | Non-G12C (n = 12) | p-Value |
---|---|---|---|
Age group (≤65/>65) | 13/7 | 7/5 | 0.724 |
Sex (F/M) | 7/13 | 2/10 | 0.422 |
Comorbidities (0/1/≥2) | 4/5/11 | 2/3/7 | 0.606 |
ECOG (0–1/≥2) | 14/6 | 10/2 | 0.405 |
Diagnosis (de novo/recurrent) | 16/4 | 11/1 | 0.631 |
Metastatic burden (high/other) | 11/9 | 2/10 | 0.062 |
PD-L1 (neg/1–49/≥50) | 9/1/10 | 5/4/3 | 0.081 |
Line of immunotherapy (1st/≥2nd) | 12/8 | 8/4 | 1.000 |
Chemo IO/mono IO | 6/14 | 3/9 | 1.000 |
Smoking status (yes/no) | 14/6 | 9/3 | 1.000 |
Smoking pack-years (none/≤20/>20) | 6/2/12 | 3/2/7 | 0.852 |
Univariate PFS | Univariate OS | Multivariate OS | ||||
---|---|---|---|---|---|---|
Variables | HR (95% CI) | p | HR (95% CI) | p | HR (95% CI) | p |
Age ≤65 (Ref) vs. >65 | 0.87 (0.51–1.49) | 0.626 | 0.88 (0.49–1.56) | 0.666 | ||
Sex Female (Ref) vs. Male | 1.27 (0.64–2.52) | 0.486 | 1.63 (0.76–3.47) | 0.205 | ||
Number of comorbidities | 0.369 | 0.343 | ||||
None (Ref) | ||||||
1 | 1.35 (0.71–2.58) | 0.365 | 1.48 (0.73–2.98) | 0.266 | ||
≥2 | 1.58 (0.83–3.01) | 0.162 | 1.63 (0.82–3.25) | 0.160 | ||
Smoking status No (Ref) vs. Yes | 0.97 (0.52–1.81) | 0.939 | 0.88 (0.46–1.70) | 0.723 | ||
ECOG PS | 0.688 | 0.655 | ||||
0–1 (Ref) | ||||||
1.27 (0.73–2.23) | 0.387 | 1.15 (0.63–2.09) | 0.646 | |||
≥2 | 1.14 (0.51–2.58) | 0.739 | 1.46 (0.64–3.33) | 0.363 | ||
Diagnosis Denovo (Ref) vs. recurrent | 0.29 (0.09–0.94) | 0.040 | 0.22 (0.05–0.91) | 0.037 | 0.14 (0.01–1.11) | 0.063 |
Liver metastasis No (Ref) vs. Yes | 0.87 (0.43–1.79) | 0.719 | 0.86 (0.41–1.84) | 0.707 | ||
Lung metastasis No (Ref) vs. Yes | 0.93 (0.53–1.62) | 0.798 | 0.91 (0.51–1.66) | 0.777 | ||
LN metastasis No (Ref) vs. Yes | 0.61 (0.28–1.27) | 0.186 | 0.64 (0.28–1.43) | 0.282 | ||
Brain metastasis No (Ref) vs. Yes | 1.32 (0.77–2.29) | 0.308 | 1.54 (0.87–2.72) | 0.137 | ||
Bone metastasis No (Ref) vs. Yes | 1.15 (0.66–2.01) | 0.606 | 1.01 (0.55–1.85) | 0.973 | ||
Metastatic burden | 0.731 | 0.428 | ||||
Other (Ref) | ||||||
Liver or Brain or ≥3 sites | 1.09 (0.65–1.84) | 1.25 (0.71–2.19) | ||||
Number of metastatic sites ≤ 2 (Ref) vs. ≥3 | 0.89 (0.53–1.51) | 0.688 | 0.98 (0.56–1.71) | 0.952 | ||
Histology Adeno (Ref) vs. SCC | 1.84 (0.88–3.83) | 0.101 | 1.52 (0.67–3.42) | 0.308 | ||
KRAS status Wild (Ref) vs. Mutant | 1.07 (0.62–1.85) | 0.792 | 1.02 (0.57–1.83) | 0.923 | ||
KRAS subtype G12C (Ref) vs. non-G12C | 1.79 (0.75–4.29) | 0.189 | 2.82 (1.13–7.06) | 0.026 | 3.35 (1.26–8.89) | 0.015 |
PD-L1 level | 0.155 | 0.158 | ||||
Negative (Ref) | ||||||
1–49% | 0.48 (0.23–1.01) | 0.056 | 0.45 (0.21–1.02) | 0.056 | ||
≥50% | 0.76 (0.43–1.36) | 0.371 | 0.77 (0.42–1.42) | 0.413 | ||
Line of ICI 1st (Ref) vs. ≥2nd | 1.15 (0.63–2.07) | 0.642 | 1.31 (0.68–2.51) | 0.415 | ||
Chemo-ICI No (Ref) vs. yes | 1.31 (0.71–2.40) | 0.378 | 1.10 (0.56–2.14) | 0.780 | ||
Immunotherapy regimen | ||||||
Chemo-ICI (Ref) vs. Mono-ICI | 0.76 (0.41–1.39) | 0.378 | 0.90 (0.46–1.77) | 0.780 |
Variables | Median OS (%95 CI) | p | Median PFS (%95 CI) | p |
---|---|---|---|---|
Overall | 14.26 (5.41–23.11) | 8.16 (3.77–12.56) | ||
KRAS | ||||
Wild | 12.86 (0.15–25.57) | 0.923 | 8.30 (0.00–16.89) | 0.792 |
Mutant | 14.26 (6.21–22.32) | 8.16 (1.37–14.96) | ||
Kras subtype | ||||
G12c | 20.70 (10.96–30.43) | 0.021 | 10.20 (3.09–17.30) | 0.181 |
Non G12c | 6.40 (0.12–12.68) | 3.70 (1.77–5.62) | ||
PD-L1 expression | ||||
Negative | 8.83 (0.00–18.99) | 0.147 | 4.93 (1.36–8.51) | 0.146 |
1–49% | NR | 16.20 (0.00–52.33) | ||
>%50 | 16.46 (0.00–33.46) | 9.93 (6.85–13.01) |
Gene/Feature | Total n (%) | KRAS G12C (n = 20) | KRAS non-G12C (n = 12) |
---|---|---|---|
TP53 | 7 (21.9) | 4 | 3 |
EGFR | 3 (9.4) | 1 | 2 |
ALK | 1 (3.1) | 1 | 0 |
STK11 | 0 (0.0) | 0 | 0 |
KEAP1 | – | – | – |
MET | 2 (6.3) | 2 | 0 |
BRCA1 | 1 (3.1) | 0 | 1 |
CTNNB1 | 1 (3.1) | 1 | 0 |
FGFR2 | 1 (3.1) | 1 | 0 |
≥1 co-mutation | 11 (34.4) | 7 | 4 |
≥2 co-mutations | 6 (18.8) | 5 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geçgel, A.; Şahin Çelik, B.; Peker, P.; Gökdere, Z.S.; Koca, D.; Karaca, B.; Nart, D.; Göker, E. KRAS G12C Mutation Predicts Improved Survival in NSCLC Patients Receiving Immunotherapy: Insights from a Real-World Cohort. J. Clin. Med. 2025, 14, 6826. https://doi.org/10.3390/jcm14196826
Geçgel A, Şahin Çelik B, Peker P, Gökdere ZS, Koca D, Karaca B, Nart D, Göker E. KRAS G12C Mutation Predicts Improved Survival in NSCLC Patients Receiving Immunotherapy: Insights from a Real-World Cohort. Journal of Clinical Medicine. 2025; 14(19):6826. https://doi.org/10.3390/jcm14196826
Chicago/Turabian StyleGeçgel, Aslı, Buket Şahin Çelik, Pınar Peker, Zeynep Sıla Gökdere, Didem Koca, Burçak Karaca, Deniz Nart, and Erdem Göker. 2025. "KRAS G12C Mutation Predicts Improved Survival in NSCLC Patients Receiving Immunotherapy: Insights from a Real-World Cohort" Journal of Clinical Medicine 14, no. 19: 6826. https://doi.org/10.3390/jcm14196826
APA StyleGeçgel, A., Şahin Çelik, B., Peker, P., Gökdere, Z. S., Koca, D., Karaca, B., Nart, D., & Göker, E. (2025). KRAS G12C Mutation Predicts Improved Survival in NSCLC Patients Receiving Immunotherapy: Insights from a Real-World Cohort. Journal of Clinical Medicine, 14(19), 6826. https://doi.org/10.3390/jcm14196826