Fetuin-A Concentration in the Perinatal Period and Maternal BMI Dynamics During Pregnancy, Labor, and Early Postpartum: Is ΔBMI a Parameter Worth Considering?
Abstract
1. Introduction
2. Materials and Methods
- -
- ΔBMI_gestational (ΔBMI_g)—gestational BMI change defined as the difference between BMI on the day of delivery and pre-pregnancy BMI;
- -
- ΔBMI_puerperal (ΔBMI_p)—puerperal BMI change defined as the difference between BMI on the day of delivery and BMI 48 h postpartum;
- -
- ΔBMI—total BMI change defined as the difference between BMI on the second postpartum day and pre-pregnancy BMI.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pedersen, K.O. Fetuin, a New Globulin Isolated from Serum. Nature 1944, 154, 575. [Google Scholar] [CrossRef]
- Chekol Abebe, E.; Tilahun Muche, Z.; Behaile T/Mariam, A.; Mengie Ayele, T.; Mekonnen Agidew, M.; Teshome Azezew, M.; Abebe Zewde, E.; Asmamaw Dejenie, T.; Asmamaw Mengstie, M. The Structure, Biosynthesis, and Biological Roles of Fetuin-A: A Review. Front. Cell Dev. Biol. 2022, 10, 945287. [Google Scholar] [CrossRef]
- Chen, J.; Fei, S.; Chan, L.W.C.; Gan, X.; Shao, B.; Jiang, H.; Li, S.; Kuang, P.; Liu, X.; Yang, S. Inflammatory Signaling Pathways in Pancreatic β-Cell: New Insights into Type 2 Diabetes Pathogenesis. Pharmacol. Res. 2025, 216, 107776. [Google Scholar] [CrossRef]
- Mukhuty, A.; Fouzder, C.; Kundu, R. Fetuin-A Secretion from β-Cells Leads to Accumulation of Macrophages in Islets, Aggravates Inflammation and Impairs Insulin Secretion. J. Cell Sci. 2021, 134, 258507. [Google Scholar] [CrossRef]
- Gerst, F.; Kemter, E.; Lorza-Gil, E.; Kaiser, G.; Fritz, A.-K.; Nano, R.; Piemonti, L.; Gauder, M.; Dahl, A.; Nadalin, S. The Hepatokine Fetuin-A Disrupts Functional Maturation of Pancreatic Beta Cells. Diabetologia 2021, 64, 1358–1374. [Google Scholar] [CrossRef]
- Chatterjee, P.; Seal, S.; Mukherjee, S.; Kundu, R.; Mukherjee, S.; Ray, S.; Mukhopadhyay, S.; Majumdar, S.S.; Bhattacharya, S. Adipocyte Fetuin-A Contributes to Macrophage Migration into Adipose Tissue and Polarization of Macrophages. J. Biol. Chem. 2013, 288, 28324–28330. [Google Scholar] [CrossRef]
- Pan, X.; Wen, S.W.; Bestman, P.L.; Kaminga, A.C.; Acheampong, K.; Liu, A. Fetuin-A in Metabolic Syndrome: A Systematic Review and Meta-Analysis. PLoS ONE 2020, 15, e0229776. [Google Scholar] [CrossRef]
- Bourebaba, L.; Marycz, K. Pathophysiological Implication of Fetuin-A Glycoprotein in the Development of Metabolic Disorders: A Concise Review. J. Clin. Med. 2019, 8, 2033. [Google Scholar] [CrossRef] [PubMed]
- Di Lorenzo, B.; Zoroddu, S.; Mangoni, A.A.; Paliogiannis, P.; Erre, G.L.; Carru, C.; Zinellu, A. Circulating Fetuin-A Concentrations in Rheumatic Diseases: A Systematic Review and Meta-Analysis. Eur. J. Clin. Investig. 2025, 55, e14365. [Google Scholar] [CrossRef] [PubMed]
- Elhoseeny, M.M.; Abdulaziz, B.A.; Mohamed, M.A.; Elsharaby, R.M.; Rashad, G.M.; Othman, A.A.A. Fetuin-A: A Relevant Novel Serum Biomarker for Non-Invasive Diagnosis of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): A Retrospective Case-Control Study. BMC Gastroenterol. 2024, 24, 226. [Google Scholar] [CrossRef] [PubMed]
- Brylka, L.; Jahnen-Dechent, W. The Role of Fetuin-A in Physiological and Pathological Mineralization. Calcif. Tissue Int. 2012, 93, 4. [Google Scholar] [CrossRef] [PubMed]
- Westenfeld, R.; Schafer, C.; Kruger, T.; Haarmann, C.; Schurgers, L.J.; Reutelingsperger, C.; Ivanovski, O.; Drueke, T.; Massy, Z.A.; Ketteler, M.; et al. Fetuin-A Protects against Atherosclerotic Calcification in CKD. J. Am. Soc. Nephrol. 2009, 20, 1264. [Google Scholar] [CrossRef]
- Al Ali, L.; van de Vegte, Y.J.; Said, M.A.; Groot, H.E.; Hendriks, T.; Yeung, M.W.; Lipsic, E.; van der Harst, P. Fetuin-A and Its Genetic Association with Cardiometabolic Disease. Sci. Rep. 2023, 13, 21469. [Google Scholar] [CrossRef] [PubMed]
- Bansal, A.; Pragaspathy, V. Serum Fetuin-A as a Biomarker for Gestational Diabetes Mellitus: A Meta-Analysis. Int. J. Diabetes Dev. Ctries. 2025. [Google Scholar] [CrossRef]
- Mustafa, A.I.; Kadah, A.S.; Fawzy, E.M.; Mahmoud, G.M. Serum Fetuin-A: A Novel Potential Link Between Post-Adolescent Acne and Insulin Resistance. J. Clin. Aesthet. Dermatol. 2022, 15, 33–37. [Google Scholar]
- Stefan, N.; Schick, F.; Birkenfeld, A.L.; Häring, H.-U.; White, M.F. The Role of Hepatokines in NAFLD. Cell Metab. 2023, 35, 236–252. [Google Scholar] [CrossRef]
- Odiase, P.; Ma, J.; Ranganathan, S.; Ogunkua, O.; Turner, W.B.; Marshall, D.; Ochieng, J. The Role of Fetuin-A in Tumor Cell Growth, Prognosis, and Dissemination. Int. J. Mol. Sci. 2024, 25, 12918. [Google Scholar] [CrossRef]
- Nangami, G.N.; Sakwe, A.M.; Izban, M.G.; Rana, T.; Lammers, P.E.; Thomas, P.; Chen, Z.; Ochieng, J. Fetuin-A (Alpha 2HS Glycoprotein) Modulates Growth, Motility, Invasion, and Senescence in High-Grade Astrocytomas. Cancer Med. 2016, 5, 3532–3543. [Google Scholar] [CrossRef]
- Reinehr, T.; Roth, C.L. Fetuin-A and Its Relation to Metabolic Syndrome and Fatty Liver Disease in Obese Children Before and After Weight Loss. J. Clin. Endocrinol. Metab. 2008, 93, 4479–4485. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, J.L.; Skepper, J.N.; McNair, R.; Kasama, T.; Gupta, K.; Weissberg, P.L.; Jahnen-Dechent, W.; Shanahan, C.M. Multifunctional Roles for Serum Protein Fetuin-a in Inhibition of Human Vascular Smooth Muscle Cell Calcification. J. Am. Soc. Nephrol. 2005, 16, 2920–2930. [Google Scholar] [CrossRef]
- Wang, H.; Li, W.; Zhu, S.; Wang, P.; Sama, A.E.; Wang, H.; Li, W.; Zhu, S.; Wang, P.; Sama, A.E. Role of Fetuin-A in Injury and Infection. Acute Phase Proteins-Regul. Funct. Acute Phase Proteins 2011, 15, 625–633. [Google Scholar]
- Liu, S.; Hu, W.; He, Y.; Li, L.; Liu, H.; Gao, L.; Yang, G.; Liao, X. Serum Fetuin-A Levels Are Increased and Associated with Insulin Resistance in Women with Polycystic Ovary Syndrome. BMC Endocr. Disord. 2020, 20, 67. [Google Scholar] [CrossRef]
- Häusler, M.; Schäfer, C.; Osterwinter, C.; Jahnen-Dechent, W. The Physiologic Development of Fetuin-a Serum Concentrations in Children. Pediatr. Res. 2009, 66, 660–664. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, M.; Bianchi, M.; Sherry, B.; Sama, A.; Tracey, K.J. Fetuin (Alpha2-HS-Glycoprotein) Opsonizes Cationic Macrophagedeactivating Molecules. Proc. Natl. Acad. Sci. USA 1998, 95, 14429–14434. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, M.; Soda, K.; Sama, A.; Tracey, K.J. Fetuin Protects the Fetus from TNF. Lancet 1997, 350, 861–862. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Caragine, T.; Wang, H.; Cohen, P.S.; Botchkina, G.; Soda, K.; Bianchi, M.; Ulrich, P.; Cerami, A.; Sherry, B.; et al. Spermine Inhibits Proinflammatory Cytokine Synthesis in Human Mononuclear Cells: A Counterregulatory Mechanism That Restrains the Immune Response. J. Exp. Med. 1997, 185, 1759–1768. [Google Scholar] [CrossRef] [PubMed]
- Šimják, P.; Cinkajzlová, A.; Anderlová, K.; Kloučková, J.; Kratochvílová, H.; Lacinová, Z.; Kaválková, P.; Krejčí, H.; Mráz, M.; Pařízek, A.; et al. Changes in Plasma Concentrations and mRNA Expression of Hepatokines Fetuin A, Fetuin B and FGF21 in Physiological Pregnancy and Gestational Diabetes Mellitus. Physiol. Res. 2018, 67, S531–S542. [Google Scholar] [CrossRef]
- Iyidir, O.T.; Degertekin, C.K.; Yilmaz, B.A.; Altinova, A.E.; Toruner, F.B.; Bozkurt, N.; Ayvaz, G.; Akturk, M. Serum Levels of Fetuin A Are Increased in Women with Gestational Diabetes Mellitus. Arch. Gynecol. Obstet. 2015, 291, 933–937. [Google Scholar] [CrossRef]
- Rogozińska, E.; Zamora, J.; Marlin, N.; Betrán, A.P.; Astrup, A.; Bogaerts, A.; Cecatti, J.G.; Dodd, J.M.; Facchinetti, F.; Geiker, N.R.W.; et al. Gestational Weight Gain Outside the Institute of Medicine Recommendations and Adverse Pregnancy Outcomes: Analysis Using Individual Participant Data from Randomised Trials. BMC Pregnancy Childbirth 2019, 19, 322. [Google Scholar] [CrossRef]
- Niebrzydowska-Tatus, M.; Pełech, A.; Bień, K.; Mekler, J.; Santiago, M.; Kimber-Trojnar, Ż.; Trojnar, M. Association of DPP-4 Concentrations with the Occurrence of Gestational Diabetes Mellitus and Excessive Gestational Weight Gain. Int. J. Mol. Sci. 2024, 25, 1829. [Google Scholar] [CrossRef]
- Siega-Riz, A.M.; Gray, G.L. Gestational Weight Gain Recommendations in the Context of the Obesity Epidemic. Nutr. Rev. 2013, 71, S26–S30. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Su, M.-T.; Cheng, H.; Kuo, P.-L.; Tsai, P.-Y. Fetuin-A Inhibits Placental Cell Growth and Ciliogenesis in Gestational Diabetes Mellitus. Int. J. Mol. Sci. 2019, 20, 5207. [Google Scholar] [CrossRef]
- Albuquerque, M.; Luton, D.; Le Faouder, J.; Bedossa, P.; Guibourdenche, J.; Ceccaldi, P.F. Variation of fetuin-A in maternal and fetal serum during human parturition. J. Gynecol. Obstet. Hum. Reprod. 2019, 7, 515–519. [Google Scholar] [CrossRef]
- Yakout, S.M.; Hussein, S.; Al-Attas, O.S.; Hussain, S.D.; Saadawy, G.M.; Al-Daghri, N.M. Hepatokines Fetuin A and Fetuin B Status in Women with/without Gestational Diabetes Mellitus. Am. J. Transl. Res. 2023, 15, 1291–1299. [Google Scholar] [PubMed]
- Farhan, S.; Handisurya, A.; Todoric, J.; Tura, A.; Pacini, G.; Wagner, O.; Klein, K.; Jarai, R.; Huber, K.; Kautzky-Willer, A. Fetuin-A Characteristics during and after Pregnancy: Result from a Case Control Pilot Study. Int. J. Endocrinol. 2012, 2012, 896736. [Google Scholar] [CrossRef] [PubMed]
- Kulik-Kupka, K.; Jabczyk, M.; Nowak, J.; Jagielski, P.; Hudzik, B.; Zubelewicz-Szkodzińska, B. Fetuin-A and Its Association with Anthropometric, Atherogenic, and Biochemical Parameters and Indices among Women with Polycystic Ovary Syndrome. Nutrients 2022, 14, 4034. [Google Scholar] [CrossRef]
- Bassey, P.E.; Numthavaj, P.; Rattanasiri, S.; Sritara, P.; McEvoy, M.; Ongphiphadhanakul, B.; Thakkinstian, A. Causal Association Pathways between Fetuin-A and Kidney Function: A Mediation Analysis. J. Int. Med. Res. 2022, 50, 03000605221082874. [Google Scholar] [CrossRef]
- Filardi, T.; Panimolle, F.; Tiberti, C.; Crescioli, C.; Lenzi, A.; Pallotta, N.; Morano, S. Circulating Levels of Fetuin-A Are Associated with Moderate-Severe Hepatic Steatosis in Young Adults. J. Endocrinol. Investig. 2021, 44, 105–110. [Google Scholar] [CrossRef]
- Guo, V.Y.; Cao, B.; Cai, C.; Cheng, K.K.-Y.; Cheung, B.M.Y. Fetuin-A Levels and Risk of Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Acta Diabetol. 2018, 55, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Ouchi, N.; Parker, J.L.; Lugus, J.J.; Walsh, K. Adipokines in Inflammation and Metabolic Disease. Nat. Rev. Immunol. 2011, 11, 85–97. [Google Scholar] [CrossRef]
- Després, J.-P.; Lemieux, I. Abdominal Obesity and Metabolic Syndrome. Nature 2006, 444, 881–887. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Sotelo, D.; Roca-Rivada, A.; Larrosa-García, M.; Castelao, C.; Baamonde, I.; Baltar, J.; Crujeiras, A.B.; Seoane, L.M.; Casanueva, F.F.; Pardo, M. Visceral and Subcutaneous Adipose Tissue Express and Secrete Functional Alpha2hsglycoprotein (Fetuin a) Especially in Obesity. Endocrine 2017, 55, 435–446. [Google Scholar] [CrossRef]
- Pal, D.; Dasgupta, S.; Kundu, R.; Maitra, S.; Das, G.; Mukhopadhyay, S.; Ray, S.; Majumdar, S.S.; Bhattacharya, S. Fetuin-A Acts as an Endogenous Ligand of TLR4 to Promote Lipid-Induced Insulin Resistance. Nat. Med. 2012, 18, 1279–1285. [Google Scholar] [CrossRef] [PubMed]
- Stefan, N.; Häring, H.-U. Circulating Fetuin-A and Free Fatty Acids Interact to Predict Insulin Resistance in Humans. Nat. Med. 2013, 19, 394–395. [Google Scholar] [CrossRef]
- Dasgupta, S.; Bhattacharya, S.; Biswas, A.; Majumdar, S.S.; Mukhopadhyay, S.; Ray, S.; Bhattacharya, S. NF-kappaB Mediates Lipid-Induced Fetuin-A Expression in Hepatocytes That Impairs Adipocyte Function Effecting Insulin Resistance. Biochem. J. 2010, 429, 451–462. [Google Scholar] [CrossRef]
- Nejatinamini, S.; Ataie-Jafari, A.; Qorbani, M.; Nikoohemat, S.; Kelishadi, R.; Asayesh, H.; Hosseini, S. Association between Serum Uric Acid Level and Metabolic Syndrome Components. J. Diabetes Metab. Disord. 2015, 14, 70. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, C.; Song, X.; Lin, H.; Zhang, D.; Meng, W.; Zhang, Y.; Zhu, Z.; Tang, F.; Liu, L.; et al. A Longitudinal Cohort Based Association Study between Uric Acid Level and Metabolic Syndrome in Chinese Han Urban Male Population. BMC Public Health 2012, 12, 419. [Google Scholar] [CrossRef]
- Heinig, M.; Johnson, R.J. Role of Uric Acid in Hypertension, Renal Disease, and Metabolic Syndrome. Cleve Clin. J. Med. 2006, 73, 1059–1064. [Google Scholar] [CrossRef] [PubMed]
- Fisher, E.; Stefan, N.; Saar, K.; Drogan, D.; Schulze, M.B.; Fritsche, A.; Joost, H.-G.; Häring, H.-U.; Hubner, N.; Boeing, H.; et al. Association of AHSG Gene Polymorphisms with Fetuin-A Plasma Levels and Cardiovascular Diseases in the EPIC-Potsdam Study. Circ. Cardiovasc. Genet. 2009, 2, 607–613. [Google Scholar] [CrossRef]
- Nakagawa, T.; Hu, H.; Zharikov, S.; Tuttle, K.R.; Short, R.A.; Glushakova, O.; Ouyang, X.; Feig, D.I.; Block, E.R.; Herrera-Acosta, J.; et al. A Causal Role for Uric Acid in Fructose-Induced Metabolic Syndrome. Am. J. Physiol. Renal Physiol. 2006, 290, F625–F631. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y.; Chen, Q.; Li, Q.; Li, Y.; Ling, W. Lower Plasma Fetuin-A Levels Are Associated With a Higher Mortality Risk in Patients With Coronary Artery Disease. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 2213–2219. [Google Scholar] [CrossRef]
- Chaemsaithong, P.; Romero, R.; Tarca, A.L.; Korzeniewski, S.J.; Schwartz, A.G.; Miranda, J.; Ahmed, A.I.; Dong, Z.; Hassan, S.S.; Yeo, L.; et al. Maternal Plasma Fetuin-A Concentration Is Lower in Patients Who Subsequently Developed Preterm Preeclampsia than in Uncomplicated Pregnancy: A Longitudinal Study. J. Matern.-Fetal Neonatal Med. 2015, 28, 1260–1269. [Google Scholar] [CrossRef]
- Molvarec, A.; Kalabay, L.; Derzsy, Z.; Szarka, A.; Halmos, A.; Stenczer, B.; Arnaud, P.; Karádi, I.; Prohászka, Z.; Rigó, J. Preeclampsia Is Associated with Decreased Serum Alpha(2)-HS Glycoprotein (Fetuin-A) Concentration. Hypertens. Res. 2009, 32, 665–669. [Google Scholar] [CrossRef]
- Bellos, I.; Pergialiotis, V.; Loutradis, D.; Daskalakis, G. The Prognostic Role of Serum Uric Acid Levels in Preeclampsia: A Meta-Analysis. J. Clin. Hypertens. 2020, 22, 826–834. [Google Scholar] [CrossRef]
- Colmenares-Mejia, C.C.; Quintero-Lesmes, D.C.; Bautista-Niño, P.K.; Guío, E.; Paez, M.C.; Beltrán, M.; Williams, D.; Gray, K.J.; Casas, J.P.; Serrano, N.C. Uric Acid and Risk of Pre-Eclampsia: Results from a Large Case–Control Study and Meta-Analysis of Prospective Studies. Sci. Rep. 2023, 13, 3018. [Google Scholar] [CrossRef]
- Sanhal, C.Y.; Can Kavcar, M.; Yucel, A.; Erkeneklı, K.; Erkaya, S.; Uygur, D. Comparison of plasma fetuin A levels in patients with early-onset pre-eclampsia vs late-onset pre-eclampsia. Eur. J. Obstet. Gynecol. Reprod. Biol. 2016, 200, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Ruszala, M.; Patro-Malysza, J.; Kimber-Trojnar, Z.; Leszczynska-Gorzelak, B. Leptin/SFRP5 ratio as a potential predictor of post partum weight retention. A prospective pilot study. Ginekol. Pol. 2023, 94, 654–662. [Google Scholar] [PubMed]
- Pełech, A.; Ruszała, M.; Niebrzydowska-Tatus, M.; Bień, K.; Kimber-Trojnar, Ż.; Czuba, M.; Świstowska, M.; Leszczyńska-Gorzelak, B. Do Serum Galectin-9 Levels in Women with Gestational Diabetes and Healthy Ones Differ before or after Delivery? A Pilot Study. Biomolecules 2023, 13, 697. [Google Scholar] [CrossRef]
- Kimber-Trojnar, Ż.; Patro-Małysza, J.; Trojnar, M.; Darmochwał-Kolarz, D.; Oleszczuk, J.; Leszczyńska-Gorzelak, B. Umbilical Cord SFRP5 Levels of Term Newborns in Relation to Normal and Excessive Gestational Weight Gain. Int. J. Mol. Sci. 2019, 20, 595. [Google Scholar] [CrossRef] [PubMed]
- Kimber-Trojnar, Ż.; Patro-Małysza, J.; Leszczyńska-Gorzelak, B. SFRP5-leptin ratio as a promising index in post-partum women with gestational diabetes mellitus. J. Educ. Health Sport 2019, 9, 40–47. [Google Scholar]
- Trojnar, M.; Patro-Małysza, J.; Kimber-Trojnar, Ż.; Czuba, M.; Mosiewicz, J.; Leszczyńska-Gorzelak, B. Vaspin in Serum and Urine of Post-Partum Women with Excessive Gestational Weight Gain. Medicina 2019, 55, 76. [Google Scholar] [CrossRef]
- Trojnar, M.; Kimber-Trojnar, Ż.; Leszczyńska-Gorzelak, B. Secreted Frizzled-Related Protein 5 in Serum and Urine of Post-Partum Women with Gestational Diabetes Mellitus. J. Educ. Health Sport 2019, 9, 140–152. [Google Scholar]
- Kimber-Trojnar, Ż.; Patro-Małysza, J.; Skórzyńska-Dziduszko, K.E.; Oleszczuk, J.; Trojnar, M.; Mierzyński, R.; Leszczyńska-Gorzelak, B. Ghrelin in Serum and Urine of Post-Partum Women with Gestational Diabetes Mellitus. Int. J. Mol. Sci. 2018, 19, 3001. [Google Scholar] [CrossRef] [PubMed]
- Kimber-Trojnar, Ż.; Patro-Małysza, J.; Trojnar, M.; Skórzyńska-Dziduszko, K.E.; Bartosiewicz, J.; Oleszczuk, J.; Leszczyńska-Gorzelak, B. Fatty Acid-Binding Protein 4—An “Inauspicious” Adipokine—In Serum and Urine of Post-Partum Women with Excessive Gestational Weight Gain and Gestational Diabetes Mellitus. J. Clin. Med. 2018, 7, 505. [Google Scholar] [CrossRef] [PubMed]
Variables | Group ΔBMI ≤ 1 kg/m2 n = 32 | Group ΔBMI > 1 kg/m2 n = 23 | p | |
---|---|---|---|---|
Age (years) | Mean (SD) | 32.9 (4.2) | 32.0 (5.7) | 0.49 # |
Gestational age at delivery (weeks) | Mean (SD) | 38.7 (1.2) | 38.4 (1.2) | 0.38 ^ |
Pre-pregnancy BMI (kg/m2) | Mean (SD) | 28.9 (7.2) | 27.1 (7.2) | 0.18 ^ |
BMI on the day of delivery (kg/m2) | Mean (SD) | 31.9 (6.6) | 32.0 (7.7) | 0.78 ^ |
BMI on the second day of postpartum period (kg/m2) | Mean (SD) | 27.9 (7.1) | 29.9 (7.7) | 0.32 ^ |
Neonatal birth weight (g) | Mean (SD) | 3402 (415) | 3429 (495) | 0.83 # |
High-density lipoprotein (mg/dL) | Mean (SD) | 73.1 (16.1) | 72.3 (15.7) | 0.86 # |
Low-density lipoprotein (mg/dL) | Mean (SD) | 140.5 (28.7) | 129.3 (26.8) | 0.15 # |
Triglycerides (mg/dL) | Mean (SD) | 174.3 (26.7) | 167.1 (28.7) | 0.34 # |
Uric acid (mg/dL) | Mean (SD) | 5.1 (1.1) | 5.2 (1.0) | 0.85 ^ |
Ferritin (µg/L) | Mean (SD) | 18.1 (14.4) | 16.6 (11.5) | 0.56 ^ |
Homocysteine (µmol/L) | Mean (SD) | 10.8 (3.3) | 10.3 (2.8) | 0.53 ^ |
Total body water (%) | Mean (SD) | 35.9 (5.8) | 37.3 (6.3) | 0.39 # |
Extracellular water to intracellular water index (E/I) | Mean (SD) | 0.9 (0.2) | 0.9 (0.1) | 0.37 ^ |
Lean tissue index (kg/m2) | Mean (SD) | 13.5 (3.1) | 13.0 (1.7) | 0.61 ^ |
Fat tissue index (kg/m2) | Mean (SD) | 14.3 (7.7) | 16.8 (7.9) | 0.24 ^ |
Body cell mass (kg) | Mean (SD) | 20.1 (6.3) | 19.7 (4.4) | 0.93 ^ |
Group ΔBMI ≤ 1 kg/m2 n = 32 | Group ΔBMI > 1 kg/m2 n = 23 | p | ||
---|---|---|---|---|
ΔBMI_g (kg/m2) | Mean (SD) | 2.9 (1.2) | 4.9 (1.7) | <0.001 |
ΔBMI_p (kg/m2) | Mean (SD) | 3.9 (1.5) | 2.2 (0.9) | <0.001 |
ΔBMI (kg/m2) | Mean (SD) | −0.9 (1.3) | 2.7 (1.7) | <0.001 |
Group ΔBMI ≤ 1 kg/m2 n = 32 | Group ΔBMI > 1 kg/m2 n = 23 | p | ||
---|---|---|---|---|
Fetuin-A in serum before delivery (ng/mL) | Mean (SD) | 266.4 (102.2) | 318.3 (199.4) | 0.61 |
Fetuin-A in serum after delivery (ng/mL) | Mean (SD) | 172.2 (63.7) | 240.8 (191.4) | 0.25 |
Δ fetuin-A (ng/mL) | Mean (SD) | −94.2 (76.5) | −77.5 (62.2) | 0.58 |
Parameter | Group ΔBMI ≤ 1 kg/m2 n = 32 | Group ΔBMI > 1 kg/m2 n = 23 |
---|---|---|
Insulin resistance index (HOMA-IR) | r = 0.09, p = 0.64 | r = 0.12, p = 0.58 |
Homocysteine (µmol/L) | r = 0.04, p = 0.84 | r = 0.13, p = 0.55 |
High-density lipoprotein (mg/dL) | r = 0.19, p = 0.3 | r = 0.22, p = 0.33 |
Low-density lipoprotein (mg/dL) | r = 0.22, p = 0.22 | r = −0.09, p = 0.66 |
Triglycerides (mg/dL) | r = −0.01, p = 0.96 | r = −0.00, p = 0.99 |
Uric acid (mg/dL) | r = 0.17, p = 0.34 | r = 0.5, p = 0.02 |
Ferritin (µg/L) | r = 0.20, p = 0.26 | r = 0.18, p = 0.41 |
Total body water (%) | r = 0.11, p = 0.55 | r = 0.16, p = 0.47 |
Extracellular water to intracellular water index (E/I) | r = 0.28, p = 0.13 | r = −0.17, p = 0.44 |
Lean tissue index (kg/m2) | r = −0.12, p = 0.53 | r = 0.27, p = 0.21 |
Fat tissue index (kg/m2) | r = −0.03, p = 0.89 | r = 0.04, p = 0.88 |
Body cell mass (kg) | r = −0.09, p = 0.63 | r = 0.1, p = 0.65 |
Parameter | Group ΔBMI ≤ 1 kg/m2 n = 32 | Group ΔBMI > 1 kg/m2 n = 23 |
---|---|---|
Insulin resistance index (HOMA-IR) | r = 0.19, p = 0.29 | r = 0.14, p = 0.54 |
Homocysteine (µmol/L) | r = −0.00, p = 1.0 | r = 0.03, p = 0.88 |
High-density lipoprotein (mg/dL) | r = 0.27, p = 0.14 | r = −0.05, p = 0.82 |
Low-density lipoprotein (mg/dL) | r = 0.06, p = 0.74 | r = −0.17, p = 0.44 |
Triglycerides (mg/dL) | r = −0.16, p = 0.37 | r = −0.09, p = 0.68 |
Uric acid (mg/dL) | r = −0.06, p = 0.74 | r = 0.18, p = 0.42 |
Ferritin (µg/L) | r = 0.1, p = 0.57 | r = 0.29, p = 0.19 |
Total body water (%) | r = −0.04, p = 0.84 | r = −0.02, p = 0.93 |
Extracellular water to intracellular water index (E/I) | r = 0.2, p = 0.28 | r = 0.04, p = 0.85 |
Lean tissue index (kg/m2) | r = −0.16, p = 0.37 | r = 0.1, p = 0.66 |
Fat tissue index (kg/m2) | r = 0.07, p = 0.69 | r = 0.04, p = 0.85 |
Body cell mass (kg) | r = −0.05, p = 0.77 | r = −0.19, p = 0.39 |
ΔBMI | Group ΔBMI ≤ 1 kg/m2 n = 32 | Group ΔBMI > 1 kg/m2 n = 23 |
---|---|---|
ΔBMI_g (kg/m2) | r = −0.19, p = 0.3 | r = 0.01, p = 0.95 |
ΔBMI_p (kg/m2) | r = 0.07, p = 0.71 | r = 0.24, p = 0.27 |
ΔBMI (kg/m2) | r = −0.24, p = 0.19 | r = −0.05, p = 0.84 |
ΔBMI | Group ΔBMI ≤ 1 kg/m2 n = 32 | Group ΔBMI > 1 kg/m2 n = 23 |
---|---|---|
ΔBMI_g (kg/m2) | r = −0.02, p = 0.93 | r = 0.01, p = 0.95 |
ΔBMI_p (kg/m2) | r = −0.00, p = 1.0 | r = 0.12, p = 0.58 |
ΔBMI (kg/m2) | r = 0.07, p = 0.69 | r = −0.02, p = 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obuchowska-Standyło, A.; Kimber-Trojnar, Ż.; Czuba, M.; Trojnar, K.; Leszczyńska-Gorzelak, B. Fetuin-A Concentration in the Perinatal Period and Maternal BMI Dynamics During Pregnancy, Labor, and Early Postpartum: Is ΔBMI a Parameter Worth Considering? J. Clin. Med. 2025, 14, 6782. https://doi.org/10.3390/jcm14196782
Obuchowska-Standyło A, Kimber-Trojnar Ż, Czuba M, Trojnar K, Leszczyńska-Gorzelak B. Fetuin-A Concentration in the Perinatal Period and Maternal BMI Dynamics During Pregnancy, Labor, and Early Postpartum: Is ΔBMI a Parameter Worth Considering? Journal of Clinical Medicine. 2025; 14(19):6782. https://doi.org/10.3390/jcm14196782
Chicago/Turabian StyleObuchowska-Standyło, Aleksandra, Żaneta Kimber-Trojnar, Monika Czuba, Katarzyna Trojnar, and Bożena Leszczyńska-Gorzelak. 2025. "Fetuin-A Concentration in the Perinatal Period and Maternal BMI Dynamics During Pregnancy, Labor, and Early Postpartum: Is ΔBMI a Parameter Worth Considering?" Journal of Clinical Medicine 14, no. 19: 6782. https://doi.org/10.3390/jcm14196782
APA StyleObuchowska-Standyło, A., Kimber-Trojnar, Ż., Czuba, M., Trojnar, K., & Leszczyńska-Gorzelak, B. (2025). Fetuin-A Concentration in the Perinatal Period and Maternal BMI Dynamics During Pregnancy, Labor, and Early Postpartum: Is ΔBMI a Parameter Worth Considering? Journal of Clinical Medicine, 14(19), 6782. https://doi.org/10.3390/jcm14196782