Hypoxia and Cognitive Functions in Patients Suffering from Cardiac Diseases: A Narrative Review
Abstract
1. Introduction
2. Cognitive Impairment Following Myocardial Infarction
3. Cardiogenic vs. Vascular Dementia
- Similarities.
- 2.
- Differences.
4. Comparison: Cardiogenic Dementia vs. Vascular Dementia
- in cardiogenic dementia, the heart plays the central role (heart failure, arrhythmias, reduced cardiac output),
- in vascular dementia, the direct cause lies in cerebrovascular diseases and strokes.
5. Pathophysiology of Hypoxia and Cognitive Dysfunction
6. Blood–Brain Barrier (BBB) Disruption
7. White Matter Degeneration
8. Oxidative Stress and Mitochondrial Dysfunction
9. Neuroinflammation, a Double-Edged Sword
10. Collateral Circulation and Angiogenesis
11. Coronary Artery Bypass Grafting (CABG) and Cognitive Functions
12. Types of Cognitive Complications
- Postoperative Cognitive Dysfunction (POCD).
- 2.
- Delirium.
13. Mechanisms of Neurocognitive Decline After CABG
- Hypoxia and hypoperfusion. Pre-existing cerebral hypoxia from chronic cardiac disease increases neuronal vulnerability to intraoperative ischemia.
- Microembolic events. Aortic manipulation during cardiopulmonary bypass releases microemboli, often causing silent cerebral infarcts detectable on MRI.
- Systemic inflammation. Extracorporeal circulation induces a systemic inflammatory response that may cross the BBB, promoting neuroinflammation.
- Anesthetic neurotoxicity. Certain anesthetic agents may exacerbate neuronal apoptosis or interfere with synaptic plasticity, though evidence remains mixed.
14. Role of the APOE4 Genotype
15. Surgical Techniques and Strategies to Reduce Risk
- Off-pump CABG (OPCAB). Avoids cardiopulmonary bypass, reducing embolic and inflammatory exposure.
- Minimal aortic manipulation techniques. Limit the risk of embolism and microinfarctions.
- Advanced cerebral perfusion monitoring (e.g., near-infrared spectroscopy). Enables real-time detection of hypoperfusion, allowing prompt corrective interventions.
- Neuroprotective protocols. Including optimized temperature control, anesthesia management, and perioperative pharmacological strategies (e.g., statins, antioxidants).
15.1. Cognitive Assessment Tools
15.2. The Stroop Test
- Sensitivity to frontal lobe dysfunction
- 2.
- Detection of subclinical cognitive impairment
- 3.
- Prediction of cognitive decline
15.3. Trail Making Test (TMT)
15.4. Montreal Cognitive Assessment (MoCA)
15.5. Integrating Cognitive Assessment
16. Treatment and Rehabilitation
17. Pharmacological Interventions
- ACE Inhibitors and ARBs
- Observational studies reported lower incidence of cognitive decline in hypertensive and heart failure patients treated with ACE inhibitors [52].
- The PROGRESS trial demonstrated that perindopril combined with indapamide reduced the risk of cognitive decline and dementia in patients with cerebrovascular disease [53].
- 2.
- Other Cardiovascular Agents
- Beta-blockers show mixed effects: some studies suggest reduced cerebral perfusion and potential cognitive impairment, while others report protective effects against stress-related neurotoxicity.
18. Non-Pharmacological Interventions
- Cardiac Rehabilitation (CR)
- Components include supervised physical exercise, education, risk factor management, nutrition counseling, pharmacotherapy, and psychological support.
- Benefits include improved cardiovascular performance, lower blood pressure, reduced systemic inflammation, enhanced left ventricular ejection fraction, and better endothelial function.
- Emerging evidence indicates that CR also stabilizes or improves cognitive performance [57].
- 2.
- Normobaric Hypoxic Training (NHT)
- Mechanisms. Stimulates angiogenesis, improves mitochondrial efficiency, and upregulates neurotrophic factors such as BDNF.
- Preliminary data suggest improved exercise tolerance and cognitive performance in ischemic heart disease.
- However, large randomized controlled trials are needed to confirm efficacy and ensure safety.
- 3.
- Cognitive training and psychosocial support
- 4.
- Optimization of risk factor management
19. Integrative Approach
- Cardiovascular risk factor control.
- Evidence-based pharmacotherapy (e.g., ACEIs, ARBs, statins).
- Comprehensive CR (with potential integration of innovative strategies like NHT).
- Cognitive training and psychosocial interventions.
20. Conclusions and Future Directions
21. Practical Clinical Implications
- Routine cognitive screening
- 2.
- Interdisciplinary care
- 3.
- Tailored interventions
- 4.
- Surgical considerations
22. Directions for Future Research
- High-quality randomized controlled trials specifically designed with cognitive endpoints, testing both pharmacological and rehabilitation strategies.
- Longitudinal cohort studies to characterize the trajectory of cognitive decline after MI and CABG, distinguishing transient from persistent impairments.
- Biomarker-driven approaches (e.g., tau, β-amyloid, neurofilament light chain, APOE genotype) combined with advanced imaging modalities (functional MRI, PET) to identify patients at highest risk.
- Development of precision medicine frameworks that integrate cardiovascular, neurological, genetic, and sociodemographic data to design individualized interventions.
- Rigorous evaluation of innovative strategies such as normobaric hypoxic training, balancing its adaptive neuroprotective effects with the potential risks of exacerbating cerebral hypoxia.
- Translational studies using animal and cellular models of chronic hypoperfusion to inform mechanistic insights applicable to clinical practice.
23. General Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gladman, J.T.; Corriveau, R.A.; Debette, S.; Dichgans, M.; Greenberg, S.M.; Sachdev, P.S.; Wardlaw, J.M.; Biessels, G.J. Vascular contributions to cognitive impairment and dementia: Research consortia that focus on etiology and treatable targets to lessen the burden of dementia worldwide. Alzheimer’s Dement. (N. Y.) 2019, 5, 789–796. [Google Scholar] [CrossRef] [PubMed]
- Ruthirakuhan, M.; Cogo-Moreira, H.; Swardfager, W.; Herrmann, N.; Lanctot, K.L.; Black, S.E. Cardiovascular Risk Factors and Risk of Alzheimer Disease and Mortality: A Latent Class Approach. J. Am. Heart Assoc. 2023, 12, e025724. [Google Scholar] [CrossRef]
- AlRawili, N.; Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Abdel-Fattah, M.M.; Al-Harchan, N.A.; Alruwaili, M.; Papadakis, M.; Alexiou, A.; Batiha, G.E. Trajectory of Cardiogenic Dementia: A New Perspective. J. Cell Mol. Med. 2025, 29, e70345. [Google Scholar] [CrossRef]
- Salari, N.; Morddarvanjoghi, F.; Abdolmaleki, A.; Shabnam, R.; Asghar -Khaleghi, A.; Afshar-Hezarkhani, L. The global prevalence of myocardial infarction: A systematic review and meta-analysis. BMC Cardiovasc. Disord. 2023, 23, 206. [Google Scholar] [CrossRef]
- Sanchez-Nadales, A.; Igbinomwanhia, E.; Grimm, R.A.; Griffin, B.P.; Kapadia, S.R.; Xu, B. Contemporary Trends in Clinical Characteristics, Therapeutic Strategies and Outcomes in Patients Aged 80 Years and Older Presenting with non-ST Elevation Myocardial Infarctions in the United States. Curr. Probl. Cardiol. 2023, 48, 101993. [Google Scholar] [CrossRef]
- Ferrari, R. Writing narrative style literature reviews. Med. Writ. 2015, 24, 230–235. [Google Scholar] [CrossRef]
- Sterling, M.R.; Jannat-Khah, D.; Bryan, J.; Banerjee, S.; McClure, L.A.; Wadley, V.G.; Unverzagt, F.W.; Levitan, E.B.; Goyal, P.; Peterson, J.C.; et al. The Prevalence of Cognitive Impairment Among Adults With Incident Heart Failure: The Reasons for Geographic and Racial Differences in Stroke (REGARDS) Study. J. Card. Fail. 2019, 25, 130–136. [Google Scholar] [CrossRef]
- Editorial. Cardiogenic Dementia. Lancet 1977, 1, 27–28. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.F.; Zheng, L.Y.; Zhong, B. Cognitive Decline Before and After Incident Coronary Events. J. Am. Coll. Cardiol. 2019, 73, 3041–3050. [Google Scholar] [CrossRef]
- Anazodo, U.C.; Shoemaker, J.K.; Suskin, N.; Ssali, T.; Wang, D.J.; St Lawrence, K.S. Impaired Cerebrovascular Function in Coronary Artery Disease Patients and Recovery Following Cardiac Rehabilitation. Front. Aging Neurosci. 2016, 7, 224. [Google Scholar] [CrossRef]
- Gharacholou, S.M.; Reid, K.J.; Arnold, S.V.; Spertus, J.; Rich, M.W.; Pellikka, P.A.; Singh, M.; Holsinger, T.; Krumholz, H.M.; Peterson, E.D.; et al. Cognitive Impairment and Outcomes in Older Adult Survivors of Acute Myocardial Infarction: Findings From the Translational Research Investigating Underlying Disparities in Acute Myocardial Infarction Patients’ Health Status Registry. Am. Heart J. 2011, 162, 860–869.e1. [Google Scholar] [CrossRef]
- Burkauskas, J.; Lang, P.; Bunevičius, A.; Neverauskas, J.; Bučiūtė-Jankauskienė, M.; Mickuvienė, N. Cognitive function in patients with coronary artery disease: A literature review. J. Int. Med. Res. 2018, 46, 4019–4031. [Google Scholar] [CrossRef]
- Kasprzak, D.; Kaczmarek-Majer, K.; Rzeźniczak, J.; Klamecka-Pohl, K.; Ganowicz-Kaatz, T.; Słomczyński, M.; Budzianowski, J.; Pieszko, K.; Hiczkiewicz, J.; Tykarski, A.; et al. Cognitive Impairment in Cardiovascular Patients after Myocardial Infarction: Prospective Clinical Study. J. Clin. Med. 2012, 12, 4954. [Google Scholar] [CrossRef] [PubMed]
- Cannon, J.A.; Moffitt, P.; Perez-Moreno, A.C.; Walters, M.R.; Broomfield, N.M.; McMurray, J.J.V.; Quinn, T.J. Cognitive Impairment and Heart Failure: Systematic Review and Meta-Analysis. J. Card. Fail. 2017, 23, 464–475. [Google Scholar] [CrossRef] [PubMed]
- Dikić, A.; Radmilo, L.; Živanović, Ž.; Keković, G.; Sekulić, S.; Kovačić, Z.; Radmilo, R. Cognitive impairment and depression after acute myocardial infarction: Associations with ejection fraction and demographic characteristics. Acta Neurol. Belg. 2021, 121, 1615–1622. [Google Scholar] [CrossRef] [PubMed]
- Sundbøll, J.; Horváth-Puhó, E.; Adelborg, K.; Schmidt, M.; Pedersen, L.; Bøtker, H.E.; Henderson, V.W.; Sørensen, H.T. Higher Risk of Vascular Dementia in Myocardial Infarction Survivors. Circulation 2018, 137, 567–577. [Google Scholar] [CrossRef]
- Tirziu, D.; Kołodziejczak, M.; Grubman, D.; Carrión, C.I.; Driskell, L.D.; Ahmad, Y.; Petrie, M.C.; Omerovic, E.; Redfors, B.; Fremes, S.; et al. Impact and Implications of Neurocognitive Dysfunction in the Management of Ischemic Heart Failure. J. Soc. Cardiovasc. Angiogr. Interv. 2023, 2, 101198–101207. [Google Scholar] [CrossRef]
- Almeida, O.P.; Garrido, G.J.; Beer, C.; Lautenschlager, N.T.; Arnolda, L.; Flicker, L. Cognitive and brain changes associated with ischaemic heart disease and heart failure. Eur. Heart J. 2012, 33, 1769–1776. [Google Scholar] [CrossRef]
- O’Brien, J.T.; Thomas, A. Vascular dementia. Lancet 2015, 386, 1698–1706. [Google Scholar] [CrossRef]
- Kalaria, R.N.; Akinyemi, R.; Ihara, M. Does vascular pathology contribute to Alzheimer’s changes? J. Neurol. Sci. 2012, 322, 141–147. [Google Scholar] [CrossRef]
- Dichgans, M.; Leys, D. Vascular cognitive impairment. Circ. Res. 2017, 120, 573–591. [Google Scholar] [CrossRef] [PubMed]
- Werring, D.J.; Gregoire, S.M.; Cipolotti, L. Cerebral microbleeds and vascular cognitive impairment. J. Neurol. Sc. 2010, 299, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Iadecola, C. The Neurovascular Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease. Neuron 2017, 96, 17–42. [Google Scholar] [CrossRef] [PubMed]
- Ovsenik, A.; Podbregar, M.; Fabjan, A. Cerebral blood flow impairment and cognitive decline in heart failure. Brain Behawior 2021, 11, e02176. [Google Scholar] [CrossRef]
- Debette, S.; Markus, H.S. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: Systematic review and meta-analysis. BMJ 2010, 341, c3666. [Google Scholar] [CrossRef]
- Van Nieuwkerk, A.C.; Delewi, R.; Wolters, F.J.; Muller, M.; Daemen, M.; Biessels, G.J.; Heart-Brain Connection Consortium. Cognitive Impairment in Patients With Cardiac Disease: Implications for Clinical Practice. Stroke 2023, 54, 2181–2191. [Google Scholar] [CrossRef]
- Quaegebeur, A.; Lange, C.; Carmeliet, P. The neurovascular link in health and disease: Molecular mechanisms and therapeutic implications. Neuron 2011, 71, 406–424. [Google Scholar] [CrossRef]
- Ransohoff, R.M. How neuroinflammation contributes to neurodegeneration. Science 2016, 353, 777–783. [Google Scholar] [CrossRef]
- Nowak-Lis, A.; Gabry’s, T.; Nowak, Z.; Jastrzębski, P.; Szmatlan-Gabry’s, U.; Konarska, A.; Grzybowska-Ganszczyk, D.; Pilis, A. The Use of Artificial Hypoxia in Endurance Training in Patients after Myocardial Infarction. Int. J. Environ. Res. Public Health 2021, 18, 1633. [Google Scholar] [CrossRef]
- Newman, M.F.; Kirchner, J.L.; Phillips-Bute, B.; Gaver, V.; Grocott, H.; Jones, R.H.; Mark, D.B.; Reves, J.G.; Blumenthal, J.A. Neurological Outcome Research Group and the Cardiothoracic Anesthesiology Research Endeavors Investigators. Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery. N. Engl. J. Med. 2001, 344, 395–402. [Google Scholar] [CrossRef]
- Inouye, S.K.; Westendorp, R.G.; Saczynski, J.S. Delirium in elderly people. Lancet 2014, 383, 911–922. [Google Scholar] [CrossRef]
- Johansen, M.C.; Ye, W.; Gross, A.; Gottesman, R.F.; Han, D.; Whitney, R.; Briceño, E.M.; Giordani, B.J.; Shore, S.; Elkind, M.S.V.; et al. Association Between Acute Myocardial Infarction and Cognition. JAMA Neurol. 2023, 80, 723–731. [Google Scholar] [CrossRef]
- Evered, L.; Silbert, B.; Knopman, D.S.; Scott, D.A.; DeKosky, S.T.; Rasmussen, L.S.; Oh, E.S.; Crosby, G.; Berger, M.; Eckenhoff, R.G.; et al. Recommendations for the nomenclature of cognitive change associated with anaesthesia and surgery—2018. Br. J. Anaesth. 2018, 121, 1005–1012. [Google Scholar] [CrossRef]
- Tardiff, B.E.; Newman, M.F.; Saunders, A.M.; Strittmatter, W.J.; Blumenthal, J.A.; White, W.D.; Croughwell, N.D.; Davis, R.D., Jr.; Roses, A.D.; Reves, J.G.; et al. Preliminary report of a genetic basis for cognitive decline after cardiac operations. Ann. Thorac. Surg. 1997, 64, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Heyer, E.J.; Wilson, D.A.; Sahlein, D.H.; Mocco, J.; Williams, S.C.; Sciacca, R.; Rampersad, A.; Komotar, R.J.; Zurica, J.; Benvenisty, A.; et al. APOE-epsilon4 predisposes to cognitive dysfunction following uncomplicated carotid endarterectomy. Neurology 2005, 65, 1759–1763. [Google Scholar] [CrossRef] [PubMed]
- Bryson, G.L.; Wyand, A.; Wozny, D.; Rees, L.; Taljaard, M.; Nathan, H. A prospective cohort study evaluating associations among delirium, postoperative cognitive dysfunction, and apolipoprotein E genotype following open aortic repair. Can. J. Anaesth. 2011, 58, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Butterfield, D.A.; Mattson, M.P. Apolipoprotein E and oxidative stress in brain with relevance to Alzheimer’s disease. Neurobiol. Dis. 2020, 138, 104795. [Google Scholar] [CrossRef]
- Wang, C.; Jiang, Y.; Wang, Q.; Wang, D.; Jiang, X.; Dong, N.; Chen, S.; Chen, X. Off-pump versus on-pump coronary artery bypass grafting in elderly patients at 30 days: A propensity score matching study. Postgrad. Med. J. 2024, 100, 414–420. [Google Scholar] [CrossRef]
- Folstein, M.F.; Robins, L.N.; Helzer, J.E. The Mini-Mental State Examination. Arch. Gen. Psychiatry 1983, 40, 812. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Brodaty, H.; Moore, C.M. The Clock Drawing Test for dementia of the Alzheimer’s type: A comparison of three scoring methods in a memory disorders clinic. Int. J. Geriatr. Psychiatry 1997, 12, 619–627. [Google Scholar]
- Benton, A.L. Revised Visual Retention Test: Clinical and Experimental Applications; The Psychological Corporation: New York, NY, USA, 1974. [Google Scholar]
- Valentine, T.; Block, C.; Eversole, K.; Boxley, L.; Dawson, E. Wechsler adult intelligence scale-IV (WAIS-IV). In The Wiley Encyclopedia of Personality and Individual Differences: Measurement and Assessment; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2020; pp. 457–463. [Google Scholar] [CrossRef]
- Stroop, J.R. Studies of interference in serial verbal reaction. J. Exp. Psychol. 1935, 18, 643–662. [Google Scholar] [CrossRef]
- Stroop, J.R. Studies of interference in serial verbal reactions. J. Exp. Psychol. Gen. 1992, 121, 15–23. [Google Scholar] [CrossRef]
- Park, D.C.; Reuter-Lorenz, P. The adaptive brain: Aging and neurocognitive scaffolding. Annu. Rev. Psychol. 2009, 60, 173–196. [Google Scholar] [CrossRef]
- Albert, M.S.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C.; Gamst, A.; Holtzman, D.M.; Jagust, W.J.; Petersen, R.C.; et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & dementia Alzheimers Dement. 2011, 7, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Van Leijsen, E.M.; Bergkamp, M.I.; van Uden, I.W.; Cooijmans, S.; Ghafoorian, M.; van der Holst, H.M.; Norris, D.G.; Kessels, R.P.; Platel, B.; Tuladhar, A.M.; et al. Cognitive consequences of regression of cerebral small vessel disease. Eu. Stroke J. 2019, 4, 85–89. [Google Scholar] [CrossRef]
- Smith, C.D.; Chebrolu, H.; Wekstein, D.R.; Schmitt, F.A.; Jicha, G.A.; Cooper, G.; Markesbery, W.R. Brain structural alterations before mild cognitive impairment. Neurology 2007, 68, 1268–1273. [Google Scholar] [CrossRef] [PubMed]
- Jefferson, A.L.; Poppas, A.; Paul, R.H.; Cohen, R.A. Systemic hypoperfusion is associated with executive dysfunction in geriatric cardiac patients. Neurobiol. Aging 2007, 28, 477–483. [Google Scholar] [CrossRef]
- Skoog, I.; Gustafson, D. Hypertension, hypertension-clustering factors and Alzheimer’s disease. Neurol Res. 2003, 25, 675–680. [Google Scholar] [CrossRef]
- Yang, W.; Luo, H.; Ma, Y.; Si, S.; Zhao, H. Effects of Antihypertensive Drugs on Cognitive Function in Elderly Patients with Hypertension: A Review. Aging Dis. 2021, 12, 841–851. [Google Scholar] [CrossRef]
- PROGRESS Collaborative Group. Randomised trial of a perindopril-based blood-pressure-lowering regimen among 6105 individuals with previous stroke or transient ischaemic attack. Lancet 2001, 358, 1033–1041. [Google Scholar] [CrossRef]
- Jick, H.; Zornberg, G.L.; Jick, S.S.; Seshadri, S.; Drachman, D.A. Statins and the risk of dementia. Lancet 2000, 356, 1627–1631. [Google Scholar] [CrossRef]
- Aleksova, A.; Fluca, A.L.; Beltrami, A.P.; Dozio, E.; Sinagra, G.; Marketou, M.; Janjusevic, M. Part 1-Cardiac Rehabilitation After an Acute Myocardial Infarction: Four Phases of the Programme—Where Do We Stand? J. Clin. Med. 2025, 14, 1117. [Google Scholar] [CrossRef]
- Ishihara, K.; Izawa, K.P.; Kitamura, M.; Kanejima, Y.; Ogawa, M.; Yoshihara, R.; Morisawa, T.; Shimizu, I. Effects of cardiac rehabilitation on cognitive function in patients with acute coronary syndrome: A systematic review. Heliyon 2024, 10, e32890. [Google Scholar] [CrossRef]
- Zelazo, P.D.; Craik, F.I.; Booth, L. Executive function across the life span. Acta Psychol. 2004, 115, 167–183. [Google Scholar] [CrossRef]
- Gauthier, S.; Rosa-Neto, P.; Morais, J.A.; Webster, C. World Alzheimer Report 2021: Journey Through the Diagnosis of Dementia. Alzheimers Res. Ther. 2021, 13, 171. [Google Scholar]
Feature | Cardiogenic Dementia | Vascular Dementia |
---|---|---|
Pathomechanism | Chronic hypoperfusion and cardioembolic events (atrial fibrillation, heart failure) | Stroke, small vessel disease, cerebral atherosclerosis |
Onset | Slow, progressive | Often sudden (after stroke) or stepwise |
Dominant symptoms | Memory and concentration impairment, general slowing | Executive dysfunction, impaired planning, spatial disorientation |
Risk factors | Coronary artery disease, heart failure, arrhythmias | Hypertension, strokes, cerebral and carotid atherosclerosis |
Neuroimaging | Nonspecific atrophy on MRI, hypoperfusion | Infarcts, vascular changes, leukoaraiosis |
Course | Gradual, dependent on progression of heart disease | Stepwise, related to vascular events |
Type of Complication | Time of Onset | Main Symptoms | Clinical Significance |
---|---|---|---|
Postoperative delirium | 1–7 days after surgery | Disorientation, disturbances of consciousness and attention, agitation or apathy | Prolonged hospitalization, higher risk of complications, increased perioperative mortality |
Early postoperative cognitive dysfunction (POCD) | Weeks after surgery | Impaired short-term memory, attention, concentration, slowed thinking, executive deficits | Hinders cardiac rehabilitation, affects return to work |
Long-term cognitive impairment | Months–years after CABG | Persistent memory and attention deficits, reduced learning ability, cognitive slowing | Reduced quality of life, risk of loss of independence |
Dementia (accelerated or revealed by surgery) | Years after surgery (more common in elderly patients) | Progressive decline in memory, attention, executive functions; clinical picture of vascular or mixed dementia | Significant deterioration of social functioning and patient independence |
Neuropsychiatric disorders (associated) | Early and late | Depression, sleep disturbances, reduced adaptability and information processing | Worsens prognosis, hinders participation in rehabilitation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grzybowska-Ganszczyk, D.; Nowak, Z.; Opara, J.A.; Nowak-Lis, A. Hypoxia and Cognitive Functions in Patients Suffering from Cardiac Diseases: A Narrative Review. J. Clin. Med. 2025, 14, 6750. https://doi.org/10.3390/jcm14196750
Grzybowska-Ganszczyk D, Nowak Z, Opara JA, Nowak-Lis A. Hypoxia and Cognitive Functions in Patients Suffering from Cardiac Diseases: A Narrative Review. Journal of Clinical Medicine. 2025; 14(19):6750. https://doi.org/10.3390/jcm14196750
Chicago/Turabian StyleGrzybowska-Ganszczyk, Dominika, Zbigniew Nowak, Józef Alfons Opara, and Agata Nowak-Lis. 2025. "Hypoxia and Cognitive Functions in Patients Suffering from Cardiac Diseases: A Narrative Review" Journal of Clinical Medicine 14, no. 19: 6750. https://doi.org/10.3390/jcm14196750
APA StyleGrzybowska-Ganszczyk, D., Nowak, Z., Opara, J. A., & Nowak-Lis, A. (2025). Hypoxia and Cognitive Functions in Patients Suffering from Cardiac Diseases: A Narrative Review. Journal of Clinical Medicine, 14(19), 6750. https://doi.org/10.3390/jcm14196750