Impact of the COVID-19 Pandemic on Colorectal Cancer Surgery: Surgical Outcomes and Tumor Characteristics in a Multicenter Retrospective Cohort
Abstract
1. Introduction
2. Materials and Methods
2.1. Type, Duration, and Location of the Study
2.2. Determination of the Study Group
2.3. Inclusion and Exclusion Criteria
2.4. Definitions, Parameters, and Variables Used in the Study
2.5. Study Protocol and Ethics Committee Approval
2.6. Statistical Analysis
3. Results
3.1. Overall Characteristics
3.2. Pre-COVID-19 Vs. COVID-19 Era Groups
3.2.1. Demographic and Clinical Characteristics
3.2.2. Tumor Characteristics and Stage
3.2.3. Surgical and Therapeutic Approaches
3.2.4. Postoperative Outcomes
3.2.5. Survival Comparison Between Pre-COVID-19 and COVID-19 Era Groups
3.3. Survivors Vs. Non-Survivors Groups
3.3.1. Demographic and Clinical Differences
3.3.2. Tumor Characteristics and Stage
3.3.3. Surgical and Therapeutic Approaches
3.3.4. Postoperative Outcomes and Complications
3.3.5. Factors Influencing Mortality in Patients with CRC
3.4. Metastatic Vs. Non-Metastatic Groups
3.4.1. Demographic and Clinical Features
3.4.2. Tumor Characteristics and Stage
3.4.3. Surgical and Therapeutic Approaches
3.4.4. Postoperative Outcomes and Complications
3.4.5. Factors Influencing Metastasis in Patients with CRC
4. Discussion
4.1. Limitations
4.2. Lessons Learned from the Pandemic and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akbulut, S.; Tuncer, A.; Ogut, Z.; Sahin, T.T.; Koc, C.; Guldogan, E.; Karabulut, E.; Tanriverdi, E.S.; Ozer, A. Effect of the COVID-19 pandemic on patients with presumed diagnosis of acute appendicitis. World J. Clin. Cases 2022, 10, 10487–10500. [Google Scholar] [CrossRef]
- Dalda, Y.; Akbulut, S.; Kucukakcali, Z.; Ogut, Z.; Dalda, O.; Alan, S.; Isik, B. Effect of the COVID-19 Pandemic on the Management of Breast Cancer Patients. J. Clin. Med. 2024, 13, 7673. [Google Scholar] [CrossRef]
- Akbulut, S.; Yagin, F.H.; Sahin, T.T.; Garzali, I.U.; Tuncer, A.; Akyuz, M.; Bagci, N.; Barut, B.; Unsal, S.; Sarici, K.B.; et al. Effect of COVID-19 Pandemic on Patients Who Have Undergone Liver Transplantation: Retrospective Cohort Study. J. Clin. Med. 2023, 12, 4466. [Google Scholar] [CrossRef]
- Baltali, S.; Baltali, M.; Ercan, A.; Akdağ, U.D.; Toptaş, M. Changes in the choice of anaesthetic techniques for caesarean sections among Turkish citizens and migrants during the COVID-19 pandemic: An interrupted time series analysis. BMC Pregnancy Childbirth 2025, 25, 694. [Google Scholar] [CrossRef]
- Abed Alah, M.; Abdeen, S.; Kehyayan, V. The first few cases and fatalities of Corona Virus Disease 2019 (COVID-19) in the Eastern Mediterranean Region of the World Health Organization: A rapid review. J. Infect. Public Health 2020, 13, 1367–1372. [Google Scholar] [CrossRef]
- Scharf, R.E. Special Issue: “Post-COVID-19 Syndrome”. Viruses 2024, 16, 1901. [Google Scholar] [CrossRef] [PubMed]
- Cao, G.; Liu, J.; Liu, M.; Liang, W. Effects of the COVID-19 pandemic on life expectancy at birth at the global, regional, and national levels: A joinpoint time-series analysis. J. Glob. Health 2023, 13, 06042. [Google Scholar] [CrossRef]
- Chen, S.Y.; Radomski, S.N.; Stem, M.; Papanikolaou, A.; Gabre-Kidan, A.; Atallah, C.; Efron, J.E.; Safar, B. Colorectal Surgery Outcomes in the United States During the COVID-19 Pandemic. J. Surg. Res. 2023, 287, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Feier, C.V.I.; Ratiu, S.; Muntean, C.; Olariu, S. The Consequences of the COVID-19 Pandemic on Emergency Surgery for Colorectal Cancer. Int. J. Environ. Res. Public Health 2023, 20, 2093. [Google Scholar] [CrossRef]
- Feier, C.V.I.; Santoro, R.R.; Faur, A.M.; Muntean, C.; Olariu, S. Assessing Changes in Colon Cancer Care during the COVID-19 Pandemic: A Four-Year Analysis at a Romanian University Hospital. J. Clin. Med. 2023, 12, 6558. [Google Scholar] [CrossRef] [PubMed]
- Mayo, M.; Potugari, B.; Bzeih, R.; Scheidel, C.; Carrera, C.; Shellenberger, R.A. Cancer Screening During the COVID-19 Pandemic: A Systematic Review and Meta-analysis. Mayo Clin. Proc. Innov. Qual. Outcomes 2021, 5, 1109–1117. [Google Scholar] [CrossRef]
- Shen, C.T.; Hsieh, H.M.; Chang, Y.L.; Tsai, H.Y.; Chen, F.M. Different impacts of cancer types on cancer screening during COVID-19 pandemic in Taiwan. J. Formos. Med. Assoc. 2022, 121, 1993–2000. [Google Scholar] [CrossRef]
- Haribhai, S.; Bhatia, K.; Shahmanesh, M. Global elective breast- and colorectal cancer surgery performance backlogs, attributable mortality and implemented health system responses during the COVID-19 pandemic: A scoping review. PLoS Glob. Public Health 2023, 3, e0001413. [Google Scholar] [CrossRef]
- Hasırcı, İ.; Ulutaş, M.E.; Özden, S.; Arslan, K. Effects of the COVID-19 pandemic on colorectal cancer surgery. J. Surg. Med. 2023, 7, 220–224. [Google Scholar] [CrossRef]
- Miyo, M.; Mizushima, T.; Nishimura, J.; Hata, T.; Tei, M.; Miyake, Y.; Kagawa, Y.; Noura, S.; Ikenaga, M.; Danno, K.; et al. Impact of the COVID-19 pandemic on colorectal cancer surgery in Japan: Clinical Study Group of Osaka University-A multicenter retrospective study. Ann. Gastroenterol. Surg. 2022, 7, 121–130. [Google Scholar] [CrossRef]
- Rottoli, M.; Gori, A.; Pellino, G.; Flacco, M.E.; Martellucci, C.; Spinelli, A.; Poggioli, G. Colorectal Cancer Stage at Diagnosis Before vs During the COVID-19 Pandemic in Italy. JAMA Netw. Open 2022, 5, e2243119. [Google Scholar] [CrossRef]
- Violante, T.; Ferrari, D.; Day, C.N.; Mathis, K.L.; Dozois, E.J.; Larson, D.W. The effect of the pandemic on colorectal cancer in the United States: An increased disease burden. Surg. Oncol. Insight 2024, 1, 100014. [Google Scholar] [CrossRef]
- Xi, Y.; Xu, P. Global colorectal cancer burden in 2020 and projections to 2040. Transl. Oncol. 2021, 14, 101174. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Klimeck, L.; Heisser, T.; Hoffmeister, M.; Brenner, H. Colorectal cancer: A health and economic problem. Best. Pract. Res. Clin. Gastroenterol. 2023, 66, 101839. [Google Scholar] [CrossRef]
- Pararas, N.; Pikouli, A.; Papaconstantinou, D.; Bagias, G.; Nastos, C.; Pikoulis, A.; Dellaportas, D.; Lykoudis, P.; Pikoulis, E. Colorectal Surgery in the COVID-19 Era: A Systematic Review and Meta-Analysis. Cancers 2022, 14, 1229. [Google Scholar] [CrossRef] [PubMed]
- Pirozzi, B.M.; Siragusa, L.; Baldini, G.; Pellicciaro, M.; Grande, M.; Efrati, C.; Finizio, R.; Formica, V.; Del Vecchio Blanco, G.; Sica, G.S. Influence of COVID-19 Pandemic on Colorectal Cancer Presentation, Management and Outcome during the COVID-19 Pandemic. J. Clin. Med. 2023, 12, 1425. [Google Scholar] [CrossRef] [PubMed]
- Hijos-Mallada, G.; Alfaro, E.; Navarro, M.; Cañamares, P.; Ariño, I.; Charro, M.; Bruno, C.; Solano, M.; Pardillos, A.; Jimeno, C.; et al. Impact of the COVID-19 pandemic in colorectal cancer diagnosis and presentation. Gastroenterol. Hepatol. 2023, 46, 702–709. [Google Scholar] [CrossRef]
- Bishehsari, F.; Mahdavinia, M.; Vacca, M.; Malekzadeh, R.; Mariani-Costantini, R. Epidemiological transition of colorectal cancer in developing countries: Environmental factors, molecular pathways, and opportunities for prevention. World J. Gastroenterol. 2014, 20, 6055–6072. [Google Scholar] [CrossRef] [PubMed]
- Ungvari, Z.; Fekete, M.; Fekete, J.T.; Lehoczki, A.; Buda, A.; Munkácsy, G.; Varga, P.; Ungvari, A.; Győrffy, B. Treatment delay significantly increases mortality in colorectal cancer: A meta-analysis. Geroscience 2025, 47, 5337–5353. [Google Scholar] [CrossRef]
- Nikolovski, A.; Limani, N.; Lazarova, A.; Tahir, S. Synchronous Onset of Two Complications in Colon Cancer: A Case Report. J. Med. Cases 2021, 12, 248–250. [Google Scholar] [CrossRef]
- Okuyan, G.; Yıldırım, M. The effect of the COVID-19 pandemic on the outcomes of surgically treated colorectal diseases: A retrospective cohort study. Ann. Surg. Treat. Res. 2022, 103, 104–111. [Google Scholar] [CrossRef]
- Mazidimoradi, A.; Hadavandsiri, F.; Momenimovahed, Z.; Salehiniya, H. Impact of the COVID-19 Pandemic on Colorectal Cancer Diagnosis and Treatment: A Systematic Review. J. Gastrointest. Cancer 2023, 54, 171–187. [Google Scholar] [CrossRef]
- London, J.W.; Fazio-Eynullayeva, E.; Palchuk, M.B.; Sankey, P.; McNair, C. Effects of the COVID-19 Pandemic on Cancer-Related Patient Encounters. JCO Clin. Cancer Inform. 2020, 4, 657–665. [Google Scholar] [CrossRef]
- Castonguay, M.; El Sayed, R.; Richard, C.; Vachon, M.F.; Nassabein, R.; Charpentier, D.; Tehfé, M. COVID-19 Impact on Diagnosis and Staging of Colorectal Cancer: A Single Tertiary Canadian Oncology Center Experience. Curr. Oncol. 2022, 29, 3282–3290. [Google Scholar] [CrossRef]
- Cubiella, J.; Calderón-Cruz, B.; Almazán, R.; Gómez-Amorín, Á. Impact of the COVID-19 Pandemic on the Diagnosis of Colorectal Cancer within a Population-Based Organized Screening Program. Cancers 2023, 15, 4853. [Google Scholar] [CrossRef]
- Uyan, M.; Özdemir, A.; Kalcan, S.; Tomas, K.; Demiral, G.; Pergel, A.; Tarım, İ.A. Effects of COVID-19 pandemic on colorectal cancer surgery. Sao Paulo Med. J. 2022, 140, 244–249. [Google Scholar] [CrossRef]
- Choi, J.Y.; Park, I.J.; Lee, H.G.; Cho, E.; Kim, Y.I.; Kim, C.W.; Yoon, Y.S.; Lim, S.B.; Yu, C.S.; Kim, J.C. Impact of the COVID-19 Pandemic on Surgical Treatment Patterns for Colorectal Cancer in a Tertiary Medical Facility in Korea. Cancers 2021, 13, 2221. [Google Scholar] [CrossRef]
- Kanno, D.T.; Mattos, R.L.M.; Siqueira, R.M.; Pereira, J.A.; Campos, F.G.; Martinez, C.A.R. Impact of the Covid-19 Pandemic on The Emergency Surgical Treatment of Colorectal Cancer. Arq. Bras. De Cir. Dig. ABCD = Braz. Arch. Dig. Surg. 2024, 36, e1793. [Google Scholar] [CrossRef] [PubMed]
- Salem, M.E.; Hartley, M.; Unger, K.; Marshall, J.L. Neoadjuvant Combined-Modality Therapy for Locally Advanced Rectal Cancer and Its Future Direction. Oncology 2016, 30, 546–562. [Google Scholar]
- Correia Gomes, L.; Pereira, B.A.; Miguel, I.; Luís, A.; Pina, A.; Pedro, C.; Cavadas, D.; Pereira, D.; Lemos, J.; Maciel, J.; et al. Neoadjuvant therapy in rectal cancer-one year follow-up results of standard versus total neoadjuvant strategies. World J. Surg. Oncol. 2024, 22, 317. [Google Scholar] [CrossRef]
- Kim, J.; Yoo, R.N.; Cho, H.M.; Kye, B.H.; Kim, H.J. Adjuvant chemotherapy for patients with stage II high-risk and III colon cancer: Hindering factors to adherence and impact on long-term survival. Korean J. Clin. Oncol. 2021, 17, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.; Jiang, R.; Philip, P.A.; Diab, M.; Behera, M.; Wu, C.; Alese, O.; Shaib, W.L.; Gaines, T.M.; Balch, G.G.; et al. High-Risk Features Are Prognostic in dMMR/MSI-H Stage II Colon Cancer. Front. Oncol. 2021, 11, 755113. [Google Scholar] [CrossRef]
- Liao, L.; Tang, J.; Hong, Z.; Jiang, W.; Li, Y.; Kong, L.; Han, K.; Hou, Z.; Zhang, C.; Zhou, C.; et al. The effects of oxaliplatin-based adjuvant chemotherapy in high-risk stage II colon cancer with mismatch repair-deficient: A retrospective study. BMC Cancer 2024, 24, 164. [Google Scholar] [CrossRef] [PubMed]
- Shek, D.; Akhuba, L.; Carlino, M.S.; Nagrial, A.; Moujaber, T.; Read, S.A.; Gao, B.; Ahlenstiel, G. Immune-Checkpoint Inhibitors for Metastatic Colorectal Cancer: A Systematic Review of Clinical Outcomes. Cancers 2021, 13, 4345. [Google Scholar] [CrossRef] [PubMed]
- Vandenbroucke, J.P.; von Elm, E.; Altman, D.G.; Gøtzsche, P.C.; Mulrow, C.D.; Pocock, S.J.; Poole, C.; Schlesselman, J.J.; Egger, M. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and elaboration. Int. J. Surg. 2014, 12, 1500–1524. [Google Scholar] [CrossRef]
- Ergün, S.; Tunç, E.; Avcı, T.; Batur, Ş.; Kepil, N.; Uludağ, S.S.; Özçelik, M.F. The Effect of the COVID-19 Pandemic on the Clinical and Pathological Stages of Colorectal Cancer Patients. Turk. J. Color. Dis. 2022, 32, 36–40. [Google Scholar] [CrossRef]
- Ferahman, S.; Dönmez, T.; Sürek, A.; Aydın, H.; Gümüşoğlu, A.Y.; Karabulut, M. Effects of COVID-19 outbreak on emergency surgeries for occlusive colorectal cancers. Turk. J. Color. Dis. 2020, 30, 237–245. [Google Scholar] [CrossRef]
- Suárez, J.; Mata, E.; Guerra, A.; Jiménez, G.; Montes, M.; Arias, F.; Ciga, M.A.; Ursúa, E.; Ederra, M.; Arín, B.; et al. Impact of the COVID-19 pandemic during Spain’s state of emergency on the diagnosis of colorectal cancer. J. Surg. Oncol. 2021, 123, 32–36. [Google Scholar] [CrossRef]
- Taulean, R.; Zaharie, R.; Valean, D.; Usatiuc, L.; Dib, M.; Moiș, E.; Popa, C.; Ciocan, A.; Fetti, A.; Al-Hajjar, N.; et al. Influence of SARS-CoV2 Pandemic on Colorectal Cancer Diagnosis, Presentation, and Surgical Management in a Tertiary Center: A Retrospective Study. Diagnostics 2025, 15, 129. [Google Scholar] [CrossRef]
- Bom, F.B.; de Souza, B.Z.; Quaresma, A.B. Covid-19 pandemic increased the number of ostomies performed in the mid-west of Santa Catarina. J. Coloproctol. 2024, 44, 196–200. [Google Scholar] [CrossRef]
- Eklöv, K.; Nygren, J.; Bringman, S.; Löfgren, J.; Sjövall, A.; Nordenvall, C.; Everhov, Å.H. Trends in Treatment of Colorectal Cancer and Short-term Outcomes During the First Wave of the COVID-19 Pandemic in Sweden. JAMA Netw. Open 2022, 5, e2211065. [Google Scholar] [CrossRef]
- Chen, H.L.R.; Lee, P.P.; Zhao, Y.; Ng, W.H.C.; Zhao, J.; Tan, Y.E.C.; Loh, B.J.S.; Chow, K.P.; Tan, H.K.; Tan, K.E. The Impact of COVID-19 Pandemic on the Diagnosis, Treatment, and Outcomes of Colorectal Cancer in Singapore. Medicina 2025, 61, 138. [Google Scholar] [CrossRef]
- Yarikkaya, E.; Cin, M.; Ecin-Demezoglu, S.; Noyan-Mod, B.; Mahsuni Sevinc, M.; Bozkaya, Y.; Dursun-Kepkep, N. Impact of the COVID-19 pandemic on the diagnosis, tumor characteristics, and survival outcomes of colorectal cancer: A retrospective cohort study. Ann. Saudi Med. 2025, 45, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Ng, J.; Stovezky, Y.R.; Brenner, D.J.; Formenti, S.C.; Shuryak, I. Development of a Model to Estimate the Association Between Delay in Cancer Treatment and Local Tumor Control and Risk of Metastases. JAMA Netw. Open 2021, 4, e2034065. [Google Scholar] [CrossRef] [PubMed]
- Tevis, S.E.; Kennedy, G.D. Postoperative Complications: Looking Forward to a Safer Future. Clin. Colon. Rectal Surg. 2016, 29, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Silaghi, A.; Serban, D.; Tudor, C.; Cristea, B.M.; Tribus, L.C.; Shevchenko, I.; Motofei, A.F.; Serboiu, C.S.; Constantin, V.D. A Review of Postoperative Complications in Colon Cancer Surgery: The Need for Patient-Centered Therapy. J. Mind Med. Sci. 2025, 12, 21. [Google Scholar] [CrossRef]
- Issa, I.A.; Noureddine, M. Colorectal cancer screening: An updated review of the available options. World J. Gastroenterol. 2017, 23, 5086–5096. [Google Scholar] [CrossRef]
- Gupta, S. Screening for Colorectal Cancer. Hematol. Oncol. Clin. N. Am. 2022, 36, 393–414. [Google Scholar] [CrossRef]
- Gude, S.S.; Veeravalli, R.S.; Vejandla, B.; Gude, S.S.; Venigalla, T.; Chintagumpala, V. Colorectal Cancer Diagnostic Methods: The Present and Future. Cureus 2023, 15, e37622. [Google Scholar] [CrossRef]
- de Lima, P.N.; van den Puttelaar, R.; Hahn, A.I.; Harlass, M.; Collier, N.; Ozik, J.; Zauber, A.G.; Lansdorp-Vogelaar, I.; Rutter, C.M. Unequal Recovery in Colorectal Cancer Screening Following the COVID-19 Pandemic: A Comparative Microsimulation Analysis. medRxiv 2022. [Google Scholar] [CrossRef]
- Maksim, R.; Buczyńska, A.; Sidorkiewicz, I.; Krętowski, A.J.; Sierko, E. Imaging and Metabolic Diagnostic Methods in the Stage Assessment of Rectal Cancer. Cancers 2024, 16, 2553. [Google Scholar] [CrossRef]
- Alboaneen, D.; Alqarni, R.; Alqahtani, S.; Alrashidi, M.; Alhuda, R.; Alyahyan, E.; Alshammari, T. Predicting Colorectal Cancer Using Machine and Deep Learning Algorithms: Challenges and Opportunities. Big Data Cogn. Comput. 2023, 7, 74. [Google Scholar] [CrossRef]
- Spadaccini, M.; Massimi, D.; Mori, Y.; Alfarone, L.; Fugazza, A.; Maselli, R.; Sharma, P.; Facciorusso, A.; Hassan, C.; Repici, A. Artificial Intelligence-Aided Endoscopy and Colorectal Cancer Screening. Diagnostics 2023, 13, 1102. [Google Scholar] [CrossRef]
- Quero, G.; Mascagni, P.; Kolbinger, F.R.; Fiorillo, C.; De Sio, D.; Longo, F.; Schena, C.A.; Laterza, V.; Rosa, F.; Menghi, R.; et al. Artificial Intelligence in Colorectal Cancer Surgery: Present and Future Perspectives. Cancers 2022, 14, 3803. [Google Scholar] [CrossRef]
- Misawa, M.; Kudo, S.E. Current Status of Artificial Intelligence Use in Colonoscopy. Digestion 2025, 106, 138–145. [Google Scholar] [CrossRef]
- Kim, S.S.; Seo, H.; Choi, K.; Kim, S.; Han, K.; Kim, Y.Y.; Seo, N.; Chung, J.J.; Lim, J.S. Artificial Intelligence Model for Detection of Colorectal Cancer on Routine Abdominopelvic CT Examinations: A Training and External-Testing Study. AJR Am. J. Roentgenol. 2025, 224, e2432396. [Google Scholar] [CrossRef]
- Farhoudian, A.; Heidari, A.; Shahhosseini, R. A new era in colorectal cancer: Artificial Intelligence at the forefront. Comput. Biol. Med. 2025, 196, 110926. [Google Scholar] [CrossRef]
- Bokhorst, J.M.; Nagtegaal, I.D.; Fraggetta, F.; Vatrano, S.; Mesker, W.; Vieth, M.; van der Laak, J.; Ciompi, F. Deep learning for multi-class semantic segmentation enables colorectal cancer detection and classification in digital pathology images. Sci. Rep. 2023, 13, 8398. [Google Scholar] [CrossRef]
- Li, H.; Qin, J.; Li, Z.; Ouyang, R.; Chen, Z.; Huang, S.; Qin, S.; Huang, Q. Systematic review and meta-analysis of deep learning for MSI-H in colorectal cancer whole slide images. NPJ Digit. Med. 2025, 8, 456. [Google Scholar] [CrossRef] [PubMed]
- Ben Hamida, A.; Devanne, M.; Weber, J.; Truntzer, C.; Derangère, V.; Ghiringhelli, F.; Forestier, G.; Wemmert, C. Deep learning for colon cancer histopathological images analysis. Comput. Biol. Med. 2021, 136, 104730. [Google Scholar] [CrossRef] [PubMed]
- Davri, A.; Birbas, E.; Kanavos, T.; Ntritsos, G.; Giannakeas, N.; Tzallas, A.T.; Batistatou, A. Deep Learning on Histopathological Images for Colorectal Cancer Diagnosis: A Systematic Review. Diagnostics 2022, 12, 837. [Google Scholar] [CrossRef]
- Repici, A.; Badalamenti, M.; Maselli, R.; Correale, L.; Radaelli, F.; Rondonotti, E.; Ferrara, E.; Spadaccini, M.; Alkandari, A.; Fugazza, A.; et al. Efficacy of Real-Time Computer-Aided Detection of Colorectal Neoplasia in a Randomized Trial. Gastroenterology 2020, 159, 512–520.E7. [Google Scholar] [CrossRef] [PubMed]
- Soons, E.; Rath, T.; Hazewinkel, Y.; van Dop, W.A.; Esposito, D.; Testoni, P.A.; Siersema, P.D. Real-time colorectal polyp detection using a novel computer-aided detection system (CADe): A feasibility study. Int. J. Color. Dis. 2022, 37, 2219–2228. [Google Scholar] [CrossRef]
- Barkun, A.N.; von Renteln, D.; Sadri, H. Cost-effectiveness of Artificial Intelligence-Aided Colonoscopy for Adenoma Detection in Colon Cancer Screening. J. Can. Assoc. Gastroenterol. 2023, 6, 97–105. [Google Scholar] [CrossRef]
- Spadaccini, M.; Marco, A.; Franchellucci, G.; Sharma, P.; Hassan, C.; Repici, A. Discovering the first US FDA-approved computer-aided polyp detection system. Future Oncol. 2022, 18, 1405–1412. [Google Scholar] [CrossRef]
- Amanai, E.; Nakai, K.; Saito, J.; Hashiba, E.; Miura, T.; Morohashi, H.; Sakamoto, Y.; Mikami, A.; Hakamada, K.; Hirota, K. Usefulness of presepsin for the early detection of infectious complications after elective colorectal surgery, compared with C-reactive protein and procalcitonin. Sci. Rep. 2022, 12, 3960. [Google Scholar] [CrossRef]
- Mulita, F.; Tchabashvili, L.; Liolis, E.; Vailas, M.; Akinosoglou, K.; Maroulis, I.; Panos, G. Butyrylcholinesterase as a predictive marker for wound infection in elective colorectal cancer surgery. Ann. Oncol. 2021, 32, S541–S542. [Google Scholar] [CrossRef]
- Verras, G.I.; Mulita, F. Butyrylcholinesterase levels correlate with surgical site infection risk and severity after colorectal surgery: A prospective single-center study. Front. Surg. 2024, 11, 1379410. [Google Scholar] [CrossRef] [PubMed]
- Alburiahi, T.A.H.; Liang, L.; Liu, W.; Kou, Z.; Zhang, Y.; Xu, N.; Yang, J. Low Cholinesterase Is a Potential Poor Prognostic Factor in Colorectal Cancer Presenting with Tumor Markers Negative. Cancer Rep. 2025, 8, e70266. [Google Scholar] [CrossRef] [PubMed]
- Kei, C.; Gartrell, R.; Arafat, Y.; Degabriele, E.; Yeung, J.; Chan, S.; Faragher, I.; Yeung, J.M.C. Colorectal cancer treatment outcomes during the pandemic: Our experience of COVID-19 at a tertiary referral center. Asia Pac. J. Clin. Oncol. 2024, 20, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Okeke, C.C.; Uguru, N.P.; Uzochukwu, B.; Onwujekwe, O. How can health systems better prepare for the next pandemic? A qualitative study of lessons learned from the COVID-19 response in Nigeria. SSM Health Syst. 2025, 4, 100052. [Google Scholar] [CrossRef]
- Jaklevic, M.C. Pandemic Spotlights In-home Colon Cancer Screening Tests. JAMA 2020, 325, 116–118. [Google Scholar] [CrossRef]
- Atarere, J.; Chido-Amajuoyi, O.; Mensah, B.; Onyeaka, H.; Adewunmi, C.; Umoren, M.; Mele, A.A.; Kanth, P. Primary Care Telehealth Visits and Its Association with Provider Discussion on Colorectal Cancer Screening in the United States. Telemed. J. E Health 2024, 30, 1325–1329. [Google Scholar] [CrossRef] [PubMed]
- Elkaddoum, R.; Haddad, F.G.; Eid, R.; Kourie, H.R. Telemedicine for cancer patients during COVID-19 pandemic: Between threats and opportunities. Future Oncol. 2020, 16, 1225–1227. [Google Scholar] [CrossRef] [PubMed]
- Kennion, O.; Maitland, S.; Brady, R. Machine learning as a new horizon for colorectal cancer risk prediction? A systematic review. Health Sci. Rev. 2022, 4, 100041. [Google Scholar] [CrossRef]
- Qiu, H.; Ding, S.; Liu, J.; Wang, L.; Wang, X. Applications of Artificial Intelligence in Screening, Diagnosis, Treatment, and Prognosis of Colorectal Cancer. Curr. Oncol. 2022, 29, 1773–1795. [Google Scholar] [CrossRef]
- Yin, Z.; Yao, C.; Zhang, L.; Qi, S. Application of artificial intelligence in diagnosis and treatment of colorectal cancer: A novel Prospect. Front. Med. 2023, 10, 1128084. [Google Scholar] [CrossRef]
- Feng, X.; Yin, W.; Ye, Q.; Chi, Y.; Wen, H.; Sun, Y.; Zheng, J.; Wang, Q.; Wang, Q.; Zhao, M.; et al. Deepath-MSI: A clinic-ready deep learning model for microsatellite instability detection in colorectal cancer using whole-slide imaging. NPJ Precis. Oncol. 2025, 9, 302. [Google Scholar] [CrossRef]
- Glissen Brown, J.R.; Mansour, N.M.; Wang, P.; Chuchuca, M.A.; Minchenberg, S.B.; Chandnani, M.; Liu, L.; Gross, S.A.; Sengupta, N.; Berzin, T.M. Deep Learning Computer-aided Polyp Detection Reduces Adenoma Miss Rate: A United States Multi-center Randomized Tandem Colonoscopy Study (CADeT-CS Trial). Clin. Gastroenterol. Hepatol. 2022, 20, 1499–1507.E4. [Google Scholar] [CrossRef] [PubMed]
Parameters [Median (95%CI)] | Median | IQR | 95% CI |
---|---|---|---|
Age | 64 | 53–73 | 63–66 |
From diagnosis to surgery (days) | 8 | 5–14 | 8–10 |
From surgery to pathology (days) | 22 | 14–34 | 21–25 |
Preoperative CA19.9 | 22.5 | 8–125 | 18–34 |
Preoperative CEA | 2 | 1–7 | 2–3 |
Tumor size (mm) | 45 | 33–60 | 45–50 |
Total LN retrieved (number) | 23 | 14–38 | 22–26 |
Positive LN retrieved (number) | 1 | 1–3 | 1–2 |
Hospital stay (days) | 9 | 7–13 | 9–10 |
Follow up (months) | 49 | 38–59 | 47–51 |
Variables | Categories | Number (%) |
---|---|---|
Groups | Pre-COVID-19 | 213 (53.7) |
COVID-19 Era | 184 (46.4) | |
Center | Inonu University | 210 (52.9) |
Elazig City Hospital | 69 (17.4) | |
Firat University | 118 (29.7) | |
Gender | Male | 235 (59.2) |
Female | 162 (40.8) | |
Overall comorbidity | Absent | 207 (52.1) |
Present | 190 (47.9) | |
DM | Absent | 317 (79.9) |
Present | 80 (20.2) | |
HT | Absent | 295 (74.3) |
Present | 102 (25.7) | |
Pulmonary | Absent | 359 (90.4) |
Present | 38 (9.6) | |
Cardiac | Absent | 331 (83.4) |
Present | 66 (16.6) | |
Thyroid | Absent | 365 (91.9) |
Present | 32 (8.1) | |
ASA Score | ASA I | 20 (5.0) |
ASA II | 167 (42.1) | |
ASA III | 203 (51.1) | |
ASA IV | 7 (1.8) | |
Tumor locations | Transverse Colon | 6 (1.5) |
Sigmoid | 79 (19.9) | |
Right Colon | 85 (21.4) | |
Rectum | 137 (34.5) | |
Rectosigmoid | 18 (4.5) | |
Left Colon | 32 (8.1) | |
Cecum | 40 (10.1) | |
Timing of surgery | Elective | 301 (75.8) |
Emergency | 96 (24.2) | |
Intestinal obstruction (preop) | Absent | 320 (80.6) |
Present | 77 (19.4) | |
Intestinal perforation (preop) | Absent | 378 (95.2) |
Present | 19 (4.8) | |
Type of surgery | Open | 205 (51.6) |
Laparoscopic | 177 (44.6) | |
Conversion | 15 (3.8) | |
Ostomy (during index surgery) | Absent | 203 (51.1) |
Present | 194 (48.9) | |
Mucinous component | Absent | 337 (87.1) |
Present | 50 (12.9) | |
Tumor differentiation | Well | 81 (21.0) |
Moderately | 247 (64.0) | |
Poor | 48 (12.4) | |
Undifferentiated | 10 (2.6) | |
Primary tumor (T) | T1 | 15 (3.8) |
T2 | 47 (12.0) | |
T3 | 230 (58.7) | |
T4 | 96 (24.5) | |
Tis | 4 (1.0) | |
Lymph node involvement (N) | N0 | 195 (49.6) |
N1 | 110 (28.0) | |
N2 | 87 (22.1) | |
N3 | 1 (0.3) | |
Distant metastasis (M) | M0 | 317 (79.9) |
M1 | 80 (20.2) | |
Perineural Invasion | Absent | 246 (63.1) |
Present | 144 (36.9) | |
Lymphovascular invasion | Absent | 156 (39.8) |
Present | 236 (60.2) | |
Overall complications (postop) | Absent | 274 (69.0) |
Present | 123 (31.0) | |
Intestinal obstruction (postop) | Absent | 375 (94.5) |
Present | 22 (5.5) | |
Anastomotic leak (postop) | Absent | 385 (97.0) |
Present | 12 (3.0) | |
Intraabdominal abscess (postop) | Absent | 379 (95.5) |
Present | 18 (4.5) | |
Pulmonary complications (postop) | Absent | 375 (94.5) |
Present | 22 (5.5) | |
Wound infection (postop) | Absent | 346 (87.2) |
Present | 51 (12.9) | |
Sepsis (postop) | Absent | 376 (94.7) |
Present | 21 (5.3) | |
Metabolic complications (postop) | Absent | 383 (96.5) |
Present | 14 (3.5) | |
Neoadjuvant therapy | Absent | 320 (82.9) |
Present | 66 (17.1) | |
Adjuvant CT | Absent | 117 (31.5) |
Present | 255 (68.6) | |
Adjuvant RT | Absent | 332 (89.3) |
Present | 40 (10.8) | |
Outcomes | Alive | 298 (75.1) |
Dead | 99 (24.9) |
Parameters [Median (95%CI)] | Pre-COVID-19 | COVID-19 Era | p * |
---|---|---|---|
Age | 63 (62–65) | 65 (63–69) | 0.579 |
From diagnosis to surgery (days) | 8 (8–10) | 8 (8–10) | 0.526 |
From surgery to pathology (days) | 21 (18–25) | 22 (20–27) | 0.085 |
Preoperative CA19-9 | 22 (17–38) | 25 (17–39) | 0.758 |
Preoperative CEA | 2 (2–3) | 3 (3–5) | 0.128 |
Tumor size (mm) | 42 (40–45) | 50 (50–58) | <0.001 |
Total LN retrieved (number) | 21 (19–24) | 26 (23–29) | 0.006 |
Positive LN retrieved (number) | 0 (0–0) | 1 (1–2) | 0.115 |
Hospital stay (days) | 9 (8–10) | 8 (8–10) | 0.422 |
Follow up (months) | 58 (57–60) | 44 (42–44) | <0.001 |
Parameters | Categories (n; %) | Pre-COVID-19 | COVID-19 Era | p |
---|---|---|---|---|
Center | Inonu University | 102 (47.9) | 108 (58.7) | 0.064 * |
Elazig City Hospital | 44 (20.7) | 25 (13.6) | ||
Firat University | 67 (31.5) | 51 (27.7) | ||
Gender | Male | 128 (60.1) | 107 (58.2) | 0.695 * |
Female | 85 (39.9) | 77 (41.9) | ||
Overall comorbidity | Absent | 106 (49.8) | 101 (54.9) | 0.308 * |
Present | 107 (50.2) | 83 (45.1) | ||
DM | Absent | 172 (80.8) | 145 (78.8) | 0.630 * |
Present | 41 (19.3) | 39 (21.2) | ||
HT | Absent | 156 (73.2) | 139 (75.5) | 0.600 * |
Present | 57 (26.8) | 45 (24.5) | ||
Pulmonary | Absent | 193 (90.6) | 166 (90.2) | 0.999 ** |
Present | 20 (9.4) | 18 (9.8) | ||
Cardiac | Absent | 180 (84.5) | 151 (82.1) | 0.515 * |
Present | 33 (15.5) | 33 (17.9) | ||
Thyroid | Absent | 194 (91.1) | 171 (92.9) | 0.623 ** |
Present | 19 (8.9) | 13 (7.1) | ||
ASA Score | ASA I | 10 (4.7) | 10 (5.4) | 0.579 * |
ASA II | 90 (42.3) | 77 (41.9) | ||
ASA III | 111 (52.1) | 92 (50.0) | ||
ASA IV | 2 (0.9) | 5 (2.7) | ||
Tumor locations | Transverse Colon | 4 (1.9) | 2 (1.1) | 0.724 * |
Sigmoid | 42 (19.7) | 37 (20.1) | ||
Right Colon | 44 (20.7) | 41 (22.3) | ||
Rectum | 78 (36.6) | 59 (32.07) | ||
Rectosigmoid | 9 (4.2) | 9 (4.9) | ||
Left Colon | 19 (8.9) | 13 (7.1) | ||
Cecum | 17 (8.0) | 23 (12.5) | ||
Timing of surgery | Elective | 157 (73.7) | 144 (78.3) | 0.291 * |
Emergency | 56 (26.3) | 40 (21.7) | ||
Intestinal obstruction (preop) | Absent | 172 (80.8) | 148 (80.4) | 0.937 * |
Present | 41 (19.3) | 36 (19.6) | ||
Intestinal perforation (preop) | Absent | 198 (93.0) | 180 (97.8) | 0.042 ** |
Present | 15 (7.0) | 4 (2.2) | ||
Type of surgery | Open | 101 (47.4) | 104 (56.5) | 0.179 * |
Laparoscopic | 104 (48.8) | 73 (39.7) | ||
Conversion | 8 (3.8) | 7 (3.8) | ||
Ostomy (during index surgery) | Absent | 103 (48.4) | 100 (54.4) | 0.243 * |
Present | 110 (51.6) | 84 (45.7) | ||
Mucinous component | Absent | 188 (90.0) | 149 (83.7) | 0.068 * |
Present | 21 (10.1) | 29 (16.3) | ||
Tumor differentiation | Well | 44 (21.15) | 37 (20.8) | 0.030 * |
Moderately | 143 (68.8) | 104 (58.4) | ||
Poor | 17 (8.17) | 31 (17.4) | ||
Undifferentiated | 4 (1.9) | 6 (3.4) | ||
Primary tumor (T) | T1 | 12 (5.7) | 3 (1.7) | 0.007 * |
T2 | 29 (13.8) | 18 (9.9) | ||
T3 | 128 (61.0) | 102 (56.0) | ||
T4 | 38 (18.1) | 58 (31.9) | ||
Tis | 3 (1.4) | 1 (0.6) | ||
Lymph node involvement (N) | N0 | 108 (51.4) | 87 (47.5) | 0.027 * |
N1 | 66 (31.4) | 44 (24.0) | ||
N2 | 35 (16.7) | 52 (28.4) | ||
N3 | 1 (0.5) | 0 (0.0) | ||
Distant metastasis (M) | M0 | 176 (82.6) | 141 (76.6) | 0.137 * |
M1 | 37 (17.4) | 43 (23.4) | ||
Perineural Invasion | Absent | 147 (70.3) | 99 (54.7) | 0.001 * |
Present | 62 (29.7) | 82 (45.3) | ||
Lymphovascular invasion | Absent | 88 (41.9) | 68 (37.4) | 0.360 * |
Present | 122 (58.1) | 114 (62.6) | ||
Overall complications (postop) | Absent | 151 (70.9) | 123 (66.9) | 0.385 * |
Present | 62 (29.1) | 61 (33.15) | ||
Intestinal obstruction (postop) | Absent | 204 (95.8) | 171 (92.9) | 0.311 ** |
Present | 9 (4.2) | 13 (7.1) | ||
Anastomotic leak (postop) | Absent | 208 (97.7) | 177 (96.2) | 0.581 ** |
Present | 5 (2.4) | 7 (3.8) | ||
Intraabdominal abscess (postop) | Absent | 202 (94.8) | 177 (96.2) | 0.684 ** |
Present | 11 (5.2) | 7 (3.8) | ||
Pulmonary complications (postop) | Absent | 200 (93.9) | 175 (95.1) | 0.759 ** |
Present | 13 (6.1) | 9 (4.9) | ||
Wound infection (postop) | Absent | 180 (84.5) | 166 (90.2) | 0.122 ** |
Present | 33 (15.5) | 18 (9.8) | ||
Sepsis (postop) | Absent | 201 (94.4) | 175 (95.1) | 0.917 ** |
Present | 12 (5.6) | 9 (4.9) | ||
Metabolic complications (postop) | Absent | 209 (98.1) | 174 (94.6) | 0.055 ** |
Present | 4 (1.9) | 10 (5.4) | ||
Neoadjuvant therapy | Absent | 163 (79.5) | 157 (86.7) | 0.081 ** |
Present | 42 (20.5) | 24 (13.3) | ||
Adjuvant CT | Absent | 60 (30.5) | 57 (32.6) | 0.661 * |
Present | 137 (69.5) | 118 (67.4) | ||
Adjuvant RT | Absent | 177 (89.9) | 155 (88.6) | 0.692 * |
Present | 20 (10.2) | 20 (11.4) | ||
Outcomes | Alive | 161 (75.6) | 137 (74.5) | 0.795 * |
Dead | 52 (24.4) | 47 (25.5) |
Groups | Mean (Months) | p | |||
---|---|---|---|---|---|
Estimate | Std. Error | 95% CI | |||
Lower Bound | Upper Bound | ||||
Pre-COVID-19 | 68 | 2.2 | 64 | 73 | 0.319 |
COVID-19 Era | 46 | 1.5 | 43 | 49 | |
Overall | 67 | 1.7 | 64 | 70 |
Parameters [Median (95%CI)] | Survivor | Non-Survivor | p * |
---|---|---|---|
From diagnosis to surgery (days) | 8 (8–10) | 8(7–10) | 0.873 |
From surgery to pathology (days) | 22 (20–25) | 20 (18–24) | 0.184 |
Age (years) | 62 (61–64) | 70 (67–74) | <0.001 |
Preoperative CA19.9 | 21 (17–31) | 67.5 (20–121) | 0.007 |
Preoperative CEA | 2 (2–3) | 4 (3–8) | <0.001 |
Tumor size (mm) | 45 (45–50) | 50 (50–56) | 0.092 |
Total LN retrieved (number) | 24 (22–28) | 23 (21–27) | 0.288 |
Positive LN retrieved (number) | 0 (0–0) | 3 (2–5) | <0.001 |
Hospital stay (days) | 8 (8–10) | 10 (9–13) | 0.010 |
Follow up (months) | 54 (52–55) | 12 (11–17) | <0.001 |
Parameters | Categories | Survivor | Non-Survivor | p |
---|---|---|---|---|
Groups | Pre-COVID-19 | 161 (54.0) | 52 (52.5) | 0.795 * |
COVID-19 Era | 137 (46.0) | 47 (47.5) | ||
Gender | Male | 166 (55.7) | 69 (69.7) | 0.014 * |
Female | 132 (44.3) | 30 (30.3) | ||
Overall comorbidity | Absent | 163 (54.7) | 44 (44.4) | 0.077 * |
Present | 135 (45.3) | 55 (55.6) | ||
DM | Absent | 238 (79.9) | 79 (79.8) | 0.999 ** |
Present | 60 (20.1) | 20 (20.2) | ||
HT | Absent | 227 (76.2) | 68 (68.7) | 0.140 * |
Present | 71 (23.8) | 31 (31.3) | ||
Pulmonary | Absent | 278 (93.3) | 81 (81.8) | 0.002 ** |
Present | 20 (6.7) | 18 (18.2) | ||
Cardiac | Absent | 258 (86.6) | 73 (73.7) | 0.005 ** |
Present | 40 (13.4) | 26 (26.3) | ||
Thyroid | Absent | 273 (91.6) | 92 (92.9) | 0.838 ** |
Present | 25 (8.4) | 7 (7.1) | ||
ASA | ASA I | 18 (6.0) | 2 (2.0) | <0.001 * |
ASA II | 141 (47.3) | 26 (26.3) | ||
ASA III | 135 (45.3) | 68 (68.7) | ||
ASA IV | 4 (1.3) | 3 (3.0) | ||
Tumor locations | Transverse Colon | 4 (1.3) | 2 (2.0) | 0.083 * |
Sigmoid | 64 (21.5) | 15 (15.2) | ||
Right Colon | 60 (20.1) | 25 (25.3) | ||
Rectum | 110 (36.9) | 27 (27.3) | ||
Rectosigmoid | 11 (3.7) | 7 (7.1) | ||
Left Colon | 23 (7.72) | 9 (9.1) | ||
Cecum | 26 (8.72) | 14 (14.1) | ||
Timing of surgery | Elective | 240 (80.5) | 61 (61.6) | <0.001 * |
Emergency | 58 (19.5) | 38 (38.4) | ||
Intestinal obstruction (preop) | Absent | 249 (83.6) | 71 (71.7) | 0.015 ** |
Present | 49 (16.4) | 28 (28.3) | ||
Intestinal perforation (preop) | Absent | 289 (97.0) | 89 (89.9) | 0.010 ** |
Present | 9 (3.02) | 10 (10.1) | ||
Type of surgery | Open | 138 (46.3) | 67 (67.7) | 0.001 |
Laparoscopic | 149 (50.0) | 28 (28.3) | ||
Conversion | 11 (3.7) | 4 (4.0) | ||
Ostomy (during index surgery) | Absent | 156 (52.4) | 47 (47.5) | 0.401 * |
Present | 142 (47.7) | 52 (52.5) | ||
Mucinous component | Absent | 258 (89.0) | 79 (81.4) | 0.056 * |
Present | 32 (11.0) | 18 (18.6) | ||
Tumor differentiation | Well | 75 (25.9) | 6 (6.3) | <0.001 * |
Moderately | 182 (62.8) | 65 (67.7) | ||
Poor | 26 (9.0) | 22 (22.9) | ||
Undifferentiated | 7 (2.4) | 3 (3.1) | ||
Primary tumor (T) | T1 | 14 (4.8) | 1 (1.0) | 0.002 * |
T2 | 40 (13.61) | 7 (7.1) | ||
T3 | 177 (60.2) | 53 (54.1) | ||
T4 | 59 (20.1) | 37 (37.8) | ||
Tis | 4 (1.4) | 0 (0.0) | ||
Lymph node involvement (N) | N0 | 165 (55.9) | 30 (30.6) | <0.001 * |
N1 | 88 (29.8) | 22 (22.5) | ||
N2 | 41 (13.9) | 46 (46.9) | ||
N3 | 1 (0.3) | 0 (0.0) | ||
Distant metastasis (M) | M0 | 254 (85.2) | 63 (63.6) | <0.001 * |
M1 | 44 (14.8) | 36 (36.4) | ||
Perineural invasion | Absent | 194 (66.0) | 52 (54.2) | 0.037 * |
Present | 100 (34.0) | 44 (45.8) | ||
Lymphovascular invasion | Absent | 128 (43.5) | 28 (28.6) | 0.009 * |
Present | 166 (56.5) | 70 (71.4) | ||
Overall complications (postop) | Absent | 220 (73.8) | 54 (54.6) | <0.001 * |
Present | 78 (26.2) | 45 (45.5) | ||
Intestinal obstruction (postop) | Absent | 280 (94.0) | 95 (96.0) | 0.617 ** |
Present | 18 (6.0) | 4 (4.0) | ||
Anastomotic leak (postop) | Absent | 287 (96.3) | 98 (99.0) | 0.308 *** |
Present | 11 (3.7) | 1 (1.01) | ||
Intraabdominal abscess (postop) | Absent | 285 (95.64) | 94 (95.0) | 0.782 *** |
Present | 13 (4.4) | 5 (5.1) | ||
Pulmonary complications (postop) | Absent | 283 (95.0) | 92 (92.9) | 0.607 ** |
Present | 15 (5.0) | 7 (7.1) | ||
Wound infection (postop) | Absent | 265 (88.9) | 81 (81.8) | 0.097 ** |
Present | 33 (11.1) | 18 (18.2) | ||
Sepsis (postop) | Absent | 288 (96.6) | 88 (88.9) | 0.006 ** |
Present | 10 (3.4) | 11 (11.1) | ||
Metabolic complications (postop) | Absent | 294 (98.7) | 89 (89.9) | <0.001 *** |
Present | 4 (1.3) | 10 (10.1) | ||
Neoadjuvant therapy | Absent | 244 (83.6) | 76 (80.9) | 0.653 ** |
Present | 48 (16.4) | 18 (19.2) | ||
Adjuvant CT | Absent | 74 (26.6) | 43 (45.7) | 0.001 * |
Present | 204 (73.4) | 51 (54.3) | ||
Adjuvant RT | Absent | 246 (88.5) | 86 (91.5) | 0.536 |
Present | 32 (11.5) | 8 (8.5) |
Factors | B | SE | Wald | Sig. | Exp (B) | 95% CI | |
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
Positive LN retrieved | 0.129 | 0.037 | 11.89 | 0.001 | 1.14 | 1.06 | 1.224 |
Differentiation (Moderate) | 1.098 | 0.542 | 4.10 | 0.043 | 2.99 | 1.04 | 8.69 |
Differentiation (Poorly) | 1.518 | 0.666 | 5.20 | 0.023 | 4.57 | 1.24 | 16.83 |
Differentiation (Undifferentiated) | 1.938 | 0.881 | 4.84 | 0.028 | 6.95 | 1.24 | 39.05 |
Intestinal obstruction (preop) | 0.981 | 0.366 | 7.18 | 0.007 | 2.67 | 1.30 | 5.47 |
Intestinal perforation (preop) | 2.465 | 0.582 | 17.95 | <0.001 | 11.76 | 3.76 | 36.79 |
Metastasis | 1.049 | 0.393 | 7.14 | 0.008 | 2.86 | 1.32 | 6.16 |
Parameters [Median (95%CI)] | Non-Metastatic | Metastatic | p * |
---|---|---|---|
From diagnosis to surgery (days) | 8 (8–10) | 8 (7–10) | 0.490 |
From surgery to pathology (days) | 21 (19–24) | 22 (20–31) | 0.215 |
Age (years) | 64 (63–66) | 59 (54–65) | 0.001 |
Preoperative CA19.9 | 22 (18–34) | 30 (16–82) | 0.360 |
Preoperative CEA | 2 (2–3) | 6 (4–16) | <0.001 |
Tumor size (mm) | 45 (45–50) | 50 (47–56) | 0.054 |
Total LN retrieved (number) | 22 (21–25) | 25 (22–29) | 0.598 |
Positive LN retrieved (number) | 0 (0–1) | 3 (2–5) | <0.001 |
Hospital stay (days) | 8 (8–10) | 12 (10–15) | <0.001 |
Follow up (months) | 50 (48–53) | 44 (34–50) | 0.002 |
Parameters | Categories | Non-Metastatic | Metastatic | p |
---|---|---|---|---|
Groups | Pre-COVID-19 | 176 (55.5) | 37 (46.3) | 0.137 * |
COVID-19 Era | 141 (44.5) | 43 (53.8) | ||
Gender | Male | 187 (59.0) | 48 (60.0) | 0.870 * |
Female | 130 (41.0) | 32 (40.0) | ||
Overall comorbidity | Absent | 159 (50.2) | 48 (60.0) | 0.115 * |
Present | 158 (49.8) | 32 (40.0) | ||
DM | Absent | 246 (77.6) | 71 (88.8) | 0.039 ** |
Present | 71 (22.4) | 9 (11.3) | ||
HT | Absent | 230 (72.6) | 65 (81.3) | 0.148 ** |
Present | 87 (27.4) | 15 (18.8) | ||
Pulmonary | Absent | 286 (90.2) | 73 (91.3) | 0.947 ** |
Present | 31 (9.8) | 7 (8.8) | ||
Cardiac | Absent | 266 (83.9) | 65 (81.3) | 0.687 ** |
Present | 51 (16.1) | 15 (18.8) | ||
Thyroid | Absent | 288 (90.9) | 77 (96.3) | 0.175 ** |
Present | 29 (9.1) | 3 (9.4) | ||
ASA | ASA I | 14 (4.4) | 6 (7.5) | 0.709 * |
ASA II | 134 (42.3) | 33 (41.3) | ||
ASA III | 163 (51.4) | 40 (50.0) | ||
ASA IV | 6 (1.9) | 1 (1.3) | ||
Tumor locations | Transverse Colon | 5 (1.6) | 1 (1.39) | 0.838 * |
Sigmoid | 62 (19.6) | 17 (21.3) | ||
Right Colon | 70 (22.1) | 15 (18.8) | ||
Rectum | 113 (35.6) | 24 (30.0) | ||
Rectosigmoid | 13 (4.1) | 5 (6.3) | ||
Left Colon | 24 (7.6) | 8 (10.0) | ||
Cecum | 30 (9.5) | 10 (12.5) | ||
Timing of surgery | Elective | 244 (77.0) | 57 (71.3) | 0.357 ** |
Emergency | 73 (23.0) | 23 (28.7) | ||
Intestinal obstruction (preop) | Absent | 256 (80.8) | 64 (80.0) | 1.000 ** |
Present | 61 (19.2) | 16 (20.0) | ||
Intestinal perforation (preop) | Absent | 305 (96.2) | 73 (91.3) | 0.078 *** |
Present | 12 (3.8) | 7 (8.8) | ||
Type of surgery | Open | 140 (44.2) | 65 (81.3) | <0.001 * |
Laparoscopic | 166 (52.4) | 11 (13.8) | ||
Conversion | 11 (3.5) | 4 (5.0) | ||
Ostomy (during index surgery) | Absent | 165 (52.1) | 38 (47.5) | 0.529 * |
Present | 152 (47.9) | 42 (52.5) | ||
Mucinous component | Absent | 274 (88.1) | 63 (82.9) | 0.306 ** |
Present | 37 (11.9) | 13 (17.1) | ||
Tumor differentiation | Well | 74 (23.9) | 7 (9.2) | 0.001 * |
Moderately | 195 (62.9) | 52 (68.4) | ||
Poor | 31 (10.0) | 17 (22.4) | ||
Undifferentiated | 10 (3.2) | 0 (0.0) | ||
Primary tumor (T) | T1 | 15 (4.8) | 0 (80.0) | <0.001 * |
T2 | 45 (14.4) | 2 (2.5) | ||
T3 | 205 (65.5) | 25 (31.6) | ||
T4 | 44 (14.1) | 52 (65.8) | ||
Tis | 4 (1.3) | 0 (0.0) | ||
Lymph node involvement (N) | N0 | 180 (57.5) | 15 (18.8) | <0.001 * |
N1 | 84 (26.8) | 26 (32.5) | ||
N2 | 49 (15.7) | 38 (47.5) | ||
N3 | 0 (0.0) | 1 (1.3) | ||
Perineural invasion | Absent | 221 (70.6) | 25 (32.5) | <0.001 * |
Present | 92 (29.4) | 52 (67.5) | ||
Lymphovascular invasion | Absent | 148 (47.3) | 8 (10.1) | <0.001 * |
Present | 165 (52.7) | 71 (89.9) | ||
Overall complications (postop) | Absent | 236 (74.4) | 38 (47.5) | <0.001 ** |
Present | 81 (25.6) | 42 (52.5) | ||
Intestinal obstruction (postop) | Absent | 302 (95.3) | 73 (91.3) | 0.173 *** |
Present | 15 (4.7) | 7 (8.8) | ||
Anastomotic leak (postop) | Absent | 307 (96.8) | 78 (97.5) | 1.000 *** |
Present | 10 (3.2) | 2 (2.5) | ||
Intraabdominal abscess (postop) | Absent | 306 (96.5) | 73 (91.3) | 0.065 *** |
Present | 11 (3.5) | 7 (8.8) | ||
Pulmonary complications (postop) | Absent | 302 (95.3) | 73 (91.3) | 0.173 *** |
Present | 15 (4.7) | 7 (8.8) | ||
Wound infection (postop) | Absent | 284 (89.6) | 62 (77.5) | 0.007 ** |
Present | 33 (10.4) | 18 (22.5) | ||
Sepsis (postop) | Absent | 304 (95.9) | 72 (90.0) | 0.048 *** |
Present | 13 (4.1) | 8 (10.0) | ||
Metabolic complications (postop) | Absent | 307 (96.8) | 76 (95.0) | 0.494 *** |
Present | 10 (3.2) | 4 (5.0) | ||
Neoadjuvant therapy | Absent | 253 (82.1) | 67 (85.9) | 0536 ** |
Present | 55 (17.9) | 11 (14.1) | ||
Outcomes | Alive | 254 (80.1) | 44 (55.0) | <0.001 ** |
Dead | 63 (19.9) | 36 (45.0) |
Factors | B | SE | Wald | Sig. | Exp (B) | 95% CI | |
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
Preop CEA | 0.018 | 0.01 | 9.47 | 0.002 | 1.02 | 1.01 | 1.05 |
Lymph node involvement | 1.583 | 0.49 | 10.1 | 0.002 | 4.87 | 1.83 | 12.95 |
Perineural invasion | 0.778 | 0.36 | 4.55 | 0.033 | 2.17 | 1.07 | 4.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahin, E.; Akbulut, S.; Ogut, Z.; Yilmaz, S.; Dalda, Y.; Tuncer, A.; Kucukakcali, Z. Impact of the COVID-19 Pandemic on Colorectal Cancer Surgery: Surgical Outcomes and Tumor Characteristics in a Multicenter Retrospective Cohort. J. Clin. Med. 2025, 14, 6732. https://doi.org/10.3390/jcm14196732
Sahin E, Akbulut S, Ogut Z, Yilmaz S, Dalda Y, Tuncer A, Kucukakcali Z. Impact of the COVID-19 Pandemic on Colorectal Cancer Surgery: Surgical Outcomes and Tumor Characteristics in a Multicenter Retrospective Cohort. Journal of Clinical Medicine. 2025; 14(19):6732. https://doi.org/10.3390/jcm14196732
Chicago/Turabian StyleSahin, Emrah, Sami Akbulut, Zeki Ogut, Serkan Yilmaz, Yasin Dalda, Adem Tuncer, and Zeynep Kucukakcali. 2025. "Impact of the COVID-19 Pandemic on Colorectal Cancer Surgery: Surgical Outcomes and Tumor Characteristics in a Multicenter Retrospective Cohort" Journal of Clinical Medicine 14, no. 19: 6732. https://doi.org/10.3390/jcm14196732
APA StyleSahin, E., Akbulut, S., Ogut, Z., Yilmaz, S., Dalda, Y., Tuncer, A., & Kucukakcali, Z. (2025). Impact of the COVID-19 Pandemic on Colorectal Cancer Surgery: Surgical Outcomes and Tumor Characteristics in a Multicenter Retrospective Cohort. Journal of Clinical Medicine, 14(19), 6732. https://doi.org/10.3390/jcm14196732