Anterior Vertebral Body Tethering Versus Posterior Spinal Fusion in Adolescent Idiopathic Scoliosis: A Systematic Review and Meta-Analysis of Comparative Outcomes
Abstract
1. Introduction
2. Materials and Methods
2.1. Protocol Registration and Reporting Standards
2.2. Literature Search Strategy
2.3. Study Selection
2.4. Data Extraction and Outcome Definitions
2.5. Risk of Bias Assessment
2.6. Data Synthesis and Statistical Analysis
3. Results
3.1. Literature Search Results
3.2. Baseline Characteristics of Included Studies
3.3. Methodological Quality of Included Studies
3.4. Primary Endpoints
3.4.1. Main Thoracic Curve
3.4.2. Proximal Thoracic Curve
3.4.3. Lumbar (Lumbo-Thoracic) Curve
3.4.4. Main Curve (Thoracic) Cobb
3.5. Secondary Endpoints
3.5.1. Lumbar Cobb
3.5.2. Sagittal Lordosis
3.5.3. Thoracic Kyphosis
3.5.4. T1 Tilt
3.6. Clinical and Patient-Reported Outcomes
3.6.1. Operative Time (mins)
3.6.2. Amount of Blood Loss (mL)
3.6.3. Length of Hospital Stay
3.6.4. Opiate Morphine Equivalent (OME)
3.6.5. Revision Surgery Rate
3.6.6. Scoliosis Research Society-22 (SRS-22)
4. Discussion
4.1. Curve Correction and Radiographic Outcomes
4.2. Sagittal Parameters and Spinal Balance
4.3. Operative Metrics and Clinical Recovery
4.4. Patient-Reported Outcomes
4.5. Limitations and Future Directions
4.6. Clinical Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AIS | Adolescent Idiopathic Scoliosis |
PSF | Posterior Spinal Fusion |
VBT | Vertebral Body Tethering |
MD | Mean Difference |
OR | Odds Ratio |
CI | Confidence Interval |
SRS-22 | Scoliosis Research Society-22 Questionnaire |
SD | Standard Deviation |
IQR | Interquartile Range |
NIH | National Institutes of Health |
CSVL | Central Sacral Vertical Line |
OME | Opiate Morphine Equivalent |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
PROSPERO | International Prospective Register of Systematic Reviews |
RCT | Randomized Controlled Trial |
References
- Li, M.; Nie, Q.; Liu, J.; Jiang, Z. Prevalence of scoliosis in children and adolescents: A systematic review and meta-analysis. Front. Pediatr. 2024, 12, 1399049. [Google Scholar] [CrossRef]
- Mousavi, L.; Seidi, F.; Minoonejad, H.; Nikouei, F. Prevalence of idiopathic scoliosis in athletes: A systematic review and meta-analysis. BMJ Open Sport Exerc. Med. 2022, 8, e001312. [Google Scholar] [CrossRef]
- Weiss, H.-R. Adolescent idiopathic scoliosis (AIS)—An indication for surgery? A systematic review of the literature. Disabil. Rehabil. 2008, 30, 799–807. [Google Scholar] [CrossRef]
- Kwan, M.K.; Loh, K.W.; Chung, W.H.; Chiu, C.K.; Hasan, M.S.; Chan, C.Y.W. Perioperative outcome and complications following single-staged Posterior Spinal Fusion (PSF) using pedicle screw instrumentation in Adolescent Idiopathic Scoliosis (AIS): A review of 1057 cases from a single centre. BMC Musculoskelet. Disord. 2021, 22, 413. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Sun, Z.; He, J.; Xu, Y.; Li, Z.; Zou, Q.; Li, B. Effectiveness and safety of surgical interventions for treating adolescent idiopathic scoliosis: A Bayesian meta-analysis. BMC Musculoskelet. Disord. 2020, 21, 427. [Google Scholar] [CrossRef]
- Rushton, P.R.; Nasto, L.; Parent, S.; Turgeon, I.; Aldebeyan, S.; Miyanji, F. Anterior vertebral body tethering for treatment of idiopathic scoliosis in the skeletally immature: Results of 112 cases. Spine 2021, 46, 1461–1467. [Google Scholar] [CrossRef]
- Lau, K.K.L.; Kwan, K.Y.H.; Wong, T.K.T.; Cheung, J.P.Y. Current status of vertebral body tethering for adolescent idiopathic scoliosis: An umbrella review. Orthop. Res. Rev. 2024, 16, 305–315. [Google Scholar] [CrossRef]
- Bauer, J.M.; Shah, S.A.; Brooks, J.; Lonner, B.; Samdani, A.; Miyanji, F.; Newton, P.; Yaszay, B. Compensatory thoracic curve correction in lumbar anterior vertebral body tether (VBT) versus lumbar posterior spinal fusion (PSF). Spine Deform. 2025, 13, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Mathew, S.E.; Hargiss, J.B.; Milbrandt, T.A.; Stans, A.A.; Shaughnessy, W.J.; Larson, A.N. Vertebral body tethering compared to posterior spinal fusion for skeletally immature adolescent idiopathic scoliosis patients: Preliminary results from a matched case-control study. Spine Deform. 2022, 10, 1123–1131. [Google Scholar] [CrossRef] [PubMed]
- Newton, P.O.; Parent, S.; Miyanji, F.; Alanay, A.; Lonner, B.S.; Neal, K.M.; Hoernschemeyer, D.G.; Yaszay, B.; Blakemore, L.C.; Shah, S.A.; et al. Anterior Vertebral Body Tethering Compared with Posterior Spinal Fusion for Major Thoracic Curves: A Retrospective Comparison by the Harms Study Group. J. Bone Jt. Surg. 2022, 104, 2170–2177. [Google Scholar] [CrossRef]
- Qiu, C.; Talwar, D.; Gordon, J.; Capraro, A.; Lott, C.; Cahill, P.J. Patient-Reported Outcomes Are Equivalent in Patients Who Receive Vertebral Body Tethering Versus Posterior Spinal Fusion in Adolescent Idiopathic Scoliosis. Orthopedics 2021, 44, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Bernard, J.; Bishop, T.; Herzog, J.; Haleem, S.; Lupu, C.; Ajayi, B.; Lui, D.F. Dual modality of vertebral body tethering: Anterior scoliosis correction versus growth modulation with mean follow-up of five years. Bone Jt. Open 2022, 3, 123–129. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372. [Google Scholar] [CrossRef]
- Talaia, A.M.; Elnahhas, A.; Talaia, N.M.; Abdelaal, A. Prevalence of restless legs syndrome in adults with epilepsy: A systematic review and meta-analysis of observational studies. Sleep Med. 2024, 119, 258–266. [Google Scholar] [CrossRef]
- Abdelaal, A.; Hassan, A.R.; Katamesh, B.E.; Eltaras, M.M.; Serhan, H.A. The Incidence and Presentation Features of Glaucoma in Vogt-Koyanagi-Harada Syndrome: A Systematic Review and Meta-Analysis. Ophthalmol. Glaucoma 2024, 7, 587–601. [Google Scholar] [CrossRef]
- Aydin, O.; Yassikaya, M.Y. Validity and reliability analysis of the PlotDigitizer software program for data extraction from single-case graphs. Perspect. Behav. Sci. 2022, 45, 239–257. [Google Scholar] [CrossRef]
- Ma, L.-L.; Wang, Y.-Y.; Yang, Z.-H.; Huang, D.; Weng, H.; Zeng, X.-T. Methodological quality (risk of bias) assessment tools for primary and secondary medical studies: What are they and which is better? Mil. Med. Res. 2020, 7, 7. [Google Scholar] [CrossRef]
- Luo, D.; Wan, X.; Liu, J.; Tong, T. Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat. Methods Med. Res. 2018, 27, 1785–1805. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Wang, W.; Liu, J.; Tong, T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol. 2014, 14, 135. [Google Scholar] [CrossRef] [PubMed]
- Thornton, A.; Lee, P. Publication bias in meta-analysis: Its causes and consequences. J. Clin. Epidemiol. 2000, 53, 207–216. [Google Scholar] [CrossRef]
- De Varona-Cocero, A.; Ani, F.; Kim, N.; Robertson, D.; Myers, C.; Ashayeri, K.; Maglaras, C.; Protopsaltis, T.; Rodriguez-Olaverri, J.C. Correction of L5 Tilt in 2-Row Vertebral Body Tethering Versus Posterior Spinal Fusion for Adolescent Idiopathic Scoliosis. Clin. Spine Surg. 2025, 38, E186–E192. [Google Scholar] [CrossRef] [PubMed]
- Meyers, J.; Eaker, L.; Samdani, A.; Miyanji, F.; Herrera, M.; Wilczek, A.; Alanay, A.; Yilgor, C.; Hoernschemeyer, D.; Shah, S.; et al. Anterior vertebral body tethering shows clinically comparable shoulder balance outcomes to posterior spinal fusion. Spine Deform. 2024, 12, 1033–1042. [Google Scholar] [CrossRef]
- Pehlivanoglu, T.; Oltulu, I.; Erdag, Y.; Akturk, U.D.; Korkmaz, E.; Yildirim, E.; Sarioglu, E.; Ofluoglu, E.; Aydogan, M. Comparison of clinical and functional outcomes of vertebral body tethering to posterior spinal fusion in patients with adolescent idiopathic scoliosis and evaluation of quality of life: Preliminary results. Spine Deform. 2021, 9, 1175–1182. [Google Scholar] [CrossRef]
- Pulido, N.S.; Milbrandt, T.A.; Larson, A.N. Comparison of postoperative and outpatient opioid use in adolescent idiopathic scoliosis patients treated with posterior spinal fusion surgery and vertebral body tethering. Spine Deform. 2025, 13, 729–735. [Google Scholar] [CrossRef] [PubMed]
- Siu, J.W.; Wu, H.H.; Saggi, S.; Allahabadi, S.; Katyal, T.; Diab, M. Perioperative Outcomes of Open Anterior Vertebral Body Tethering and Instrumented Posterior Spinal Fusion for Skeletally Immature Patients With Idiopathic Scoliosis. J. Pediatr. Orthop. 2023, 43, 143–150. [Google Scholar] [CrossRef]
- Yücekul, A.; Ergene, G. Outcomes of posterior spinal fusion and vertebral body tethering in patients with adolescent idiopathic scoliosis and evaluation of quality of life. Ank. Med. J. 2021, 21, 441–453. [Google Scholar] [CrossRef]
- Baroncini, A.; Courvoisier, A. The different applications of Vertebral Body Tethering-Narrative review and clinical experience. J. Orthop. 2023, 37, 86–92. [Google Scholar] [CrossRef]
- Bizzoca, D.; Piazzolla, A.; Moretti, L.; Vicenti, G.; Moretti, B.; Solarino, G. Anterior vertebral body tethering for idiopathic scoliosis in growing children: A systematic review. World J. Orthop. 2022, 13, 481. [Google Scholar] [CrossRef]
- Raitio, A.; Syvänen, J.; Helenius, I. Vertebral body tethering: Indications, surgical technique, and a systematic review of published results. J. Clin. Med. 2022, 11, 2576. [Google Scholar] [CrossRef]
- Oeding, J.F.; Siu, J.; O’Donnell, J.; Wu, H.H.; Allahabadi, S.; Saggi, S.; Flores, M.; Brown, K.; Baldwin, A.; Diab, M. Combined Anterior Thoracic Vertebral Body Tethering and Posterior Lumbar Tethering Results in Quicker Return to Sport and Activity Compared to Posterior Spinal Instrumented Fusion in Patients with Adolescent Idiopathic Scoliosis. Glob. Spine J. 2025, 15, 1068–1076. [Google Scholar] [CrossRef]
- Shah, S.A.; Kraft, D.B.; Miyanji, F. Anterior vertebral body tethering: A review of the available evidence. JAAOS-J. Am. Acad. Orthop. Surg. 2024, 32, 247–256. [Google Scholar] [CrossRef]
- Vatkar, A.; Najjar, E.; Patel, M.; Quraishi, N.A. Vertebral body tethering in adolescent idiopathic scoliosis with more than 2 years of follow-up-systematic review and meta-analysis. Eur. Spine J. 2023, 32, 3047–3057. [Google Scholar] [CrossRef]
- Pahys, J.M.; Samdani, A.F.; Hwang, S.W.; Warshauer, S.; Gaughan, J.P.; Chafetz, R.S. Trunk range of motion and patient outcomes after anterior vertebral body tethering versus posterior spinal fusion: Comparison using computerized 3D motion capture technology. J. Bone Jt. Surg. 2022, 104, 1563–1572. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.; Arguelles, G.R.; Cahill, P.J.; Flynn, J.M.; Baldwin, K.D.; Anari, J.B. Complications, reoperations, and mid-term outcomes following anterior vertebral body tethering versus posterior spinal fusion: A meta-analysis. JBJS Open Access 2021, 6, e21. [Google Scholar] [CrossRef] [PubMed]
- Wong, D.L.L.; Mong, P.T.; Ng, C.Y.; Ong, C.K.; Qian, Z.; Shao, M.H.; Sin, L.K.E.; Wong, B.Y.; Wong, C.M.; Cheung, J.P.Y. Can anterior vertebral body tethering provide superior range of motion outcomes compared to posterior spinal fusion in adolescent idiopathic scoliosis? A systematic review. Eur. Spine J. 2023, 32, 3058–3071. [Google Scholar] [CrossRef] [PubMed]
Study ID | Study Design | YOI | Country | Sample Size | Age; Mean (SD) | Female (%) | |||
---|---|---|---|---|---|---|---|---|---|
VBT | PSF | VBT | PSF | VBT | PSF | ||||
Meyers 2024 [22] | Retrospective cohort | 2024 | USA | 46 | 45 | 12.8 (2.1) | 13.5 (2.2) | 89.1% | 91.1% |
Bauer 2025 [8] | Prospective cohort | 2025 | USA | 24 | 24 | 13.5 | 14 | - | - |
Varona-Cocero 2025 [21] | Retrospective cohort | 2025 | USA | 49 | 50 | 13.6 (1.4) | 13.2 (1.9) | 84% | 97.2% |
Yücekul 2021 [26] | Retrospective cohort | 2014–2019 | Turkey | 18 | 16 | 15.7(2) | 13.4 (1.75) | 94.4% | 81.3% |
Mathew 2022 [9] | Prospective cohort | 2022 | USA | 26 | 26 | 13.2 (0.23) | 13.4 (0.2) | 88.5% | 88.5% |
Pehlivanoglu 2021 [23] | Retrospective cohort | 2021 | Turkey | 21 | 22 | 11.1 (1.5) | 10.9 (1.5) | 71.4% | 72.7% |
Pulido 2025 [24] | Retrospective cohort | 2024 | USA | 109 | 89 | 13.3 (2.3) | 14.8 (2.5) | 82.6% | 85.4% |
Qiu 2021 [11] | Prospective cohort | 2017–2020 | USA | 20 | 62 | 11.8 (1.9) | 11.7 (0.9) | 80% | 87% |
Newton 2022 [10] | Retrospective cohort | - | USA | 237 | 237 | 12.1 (1.6) | 13.4 (1.4) | 83.97% | 83.97% |
Siu 2023 [25] | Retrospective cohort | 2014–2019 | USA | 23 | 24 | 12 (1) | 13 (1) | 87% | 92% |
ID | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 | Q10 | Q11 | Q12 | Q13 | Q14 | Total Score | Overall Rating |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Meyers 2024 [22] | 1 | 2 | 2 | 1 | 0 | 1 | 2 | 2 | 2 | 1 | 2 | 1 | 2 | 0 | 19 | Fair |
Bauer 2025 [8] | 2 | 2 | 2 | 1 | 0 | 2 | 2 | 2 | 2 | 1 | 2 | 1 | 2 | 0 | 21 | Good |
Varona-Cocero 2025 [21] | 1 | 1 | 2 | 1 | 0 | 1 | 2 | 2 | 2 | 1 | 2 | 1 | 1 | 0 | 17 | Fair |
Yücekul 2021 [26] | 2 | 2 | 2 | 1 | 0 | 1 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 0 | 20 | Fair |
Mathew 2022 [9] | 2 | 2 | 2 | 1 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 0 | 22 | Good |
Pehlivanoglu 2021 [23] | 1 | 1 | 2 | 1 | 0 | 1 | 2 | 2 | 2 | 1 | 2 | 1 | 0 | 0 | 16 | Fair |
Pulido 2025 [24] | 2 | 2 | 2 | 1 | 0 | 1 | 2 | 2 | 2 | 1 | 2 | 1 | 0 | 0 | 18 | Fair |
Qiu 2021 [11] | 1 | 1 | 2 | 1 | 0 | 2 | 2 | 2 | 2 | 1 | 2 | 1 | 0 | 0 | 17 | Fair |
Newton 2022 [10] | 2 | 2 | 2 | 1 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 0 | 22 | Good |
Siu 2023 [25] | 1 | 1 | 2 | 1 | 0 | 2 | 2 | 2 | 2 | 1 | 2 | 1 | 0 | 0 | 17 | Fair |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelaal, M.; Ghandour, M.; Mert, Ü.; Pishnamaz, M.; Knobe, M.; Hildebrand, F.; Sobottke, R.; Kabir, K.; Mahmoud, M.A. Anterior Vertebral Body Tethering Versus Posterior Spinal Fusion in Adolescent Idiopathic Scoliosis: A Systematic Review and Meta-Analysis of Comparative Outcomes. J. Clin. Med. 2025, 14, 6707. https://doi.org/10.3390/jcm14196707
Abdelaal M, Ghandour M, Mert Ü, Pishnamaz M, Knobe M, Hildebrand F, Sobottke R, Kabir K, Mahmoud MA. Anterior Vertebral Body Tethering Versus Posterior Spinal Fusion in Adolescent Idiopathic Scoliosis: A Systematic Review and Meta-Analysis of Comparative Outcomes. Journal of Clinical Medicine. 2025; 14(19):6707. https://doi.org/10.3390/jcm14196707
Chicago/Turabian StyleAbdelaal, Mohamed, Maher Ghandour, Ümit Mert, Miguel Pishnamaz, Matthias Knobe, Frank Hildebrand, Rolf Sobottke, Koroush Kabir, and Mohamad Agha Mahmoud. 2025. "Anterior Vertebral Body Tethering Versus Posterior Spinal Fusion in Adolescent Idiopathic Scoliosis: A Systematic Review and Meta-Analysis of Comparative Outcomes" Journal of Clinical Medicine 14, no. 19: 6707. https://doi.org/10.3390/jcm14196707
APA StyleAbdelaal, M., Ghandour, M., Mert, Ü., Pishnamaz, M., Knobe, M., Hildebrand, F., Sobottke, R., Kabir, K., & Mahmoud, M. A. (2025). Anterior Vertebral Body Tethering Versus Posterior Spinal Fusion in Adolescent Idiopathic Scoliosis: A Systematic Review and Meta-Analysis of Comparative Outcomes. Journal of Clinical Medicine, 14(19), 6707. https://doi.org/10.3390/jcm14196707