Dynamics of the Epigenome, Microbiome, and Metabolome in Relation to Early Adiposity in the Maternal–Infant Axis: Protocol for a Prospective, Observational Pilot Study in the Spanish NEMO Cohort
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Objectives
- To determine DNA methylation patterns, gut microbiota composition, and metabolomic profiles at different early-life stages to identify potential biomarkers related to increased adiposity.
- To establish the relationship between changes in epigenetic, microbial, and metabolomic profiles during the first years of life.
- To evaluate the influence of maternal pregestational epigenetic, microbial, and metabolomic patterns on changes in neonatal adiposity and to establish links with corresponding neonatal patterns.
2.3. Study Settings
2.4. Eligibility Criteria
2.4.1. Inclusion Criteria
- Age between 18 and 45 years of age.
- Within the third trimester of gestation.
2.4.2. Exclusion Criteria
- Toxic habits during pregnancy.
- Volunteers who suffer from autoimmune disease.
- Volunteers who suffer or have suffered from cancer.
- Severe malformation of the fetus.
- Multiple pregnancy.
- Pregestational diabetes.
- Preeclampsia.
- Altered mental state that prevents understanding of the informed consent process and/or completion of the study.
- Birthweight below the third percentile.
- Children requiring hospitalization by pediatrics immediately after birth.
- Antibiotic consumption.
- Consumption of probiotics at least within the month prior to sample collection.
- Any condition that, in the judgement of the investigators, could interfere with the study objectives or participant safety.
2.5. Consent
2.6. Withdrawal
- Presence of adverse events that at the discretion of the investigator implies the withdrawal of the subject.
- Deviation from the protocol that affects the interpretation of the results of the study and its scientific validity.
- Medical decision.
- Resignation of the individual to continue in the study.
- Loss of follow-up.
2.7. Safety Assessment During Childbirth
2.8. Research Ethics Approval
2.9. Protocol Amendments
2.10. Outcomes
2.11. Participant Timeline
2.12. Sample Size
2.13. Data and Sample Collection and Analysis of Variables
2.13.1. Data Collection
2.13.2. Sample Collection and Storage
2.14. Epigenetic Changes
2.15. Analysis of Microbiota Composition
2.16. Targeted Metabolomic Analysis
2.17. Statistical Analysis
2.18. Data Management
- Identification data of the physician responsible:
- Name.
- Work center.
- Administrative data of the intervention:
- c.
- Date of ultrasound.
- d.
- Date of delivery.
- e.
- Date of the first follow-up visit of the newborn (1 month).
- f.
- Date of the second follow-up visit of the newborn (6 months).
- g.
- Date of the third follow-up visit of the newborn (1 year).
- h.
- Date of the fourth follow-up visit of the newborn (2 years).
- i.
- Date of the fifth follow-up visit of the newborn (3 years).
- Demographic data:
- j.
- Age.
- k.
- Ethnicity.
- l.
- Gender of the child.
- Maternal antepartum data:
- m.
- Physical examination: pregestational and gestational anthropometric data.
- n.
- Quality of life questionnaire.
- o.
- Nutritional questionnaire.
- p.
- Personal and medical history, including arterial hypertension, diabetes mellitus, and cardiovascular, hepatic, respiratory or renal diseases, as well as chronic consumption of toxic substances (alcohol, tobacco), or chronic consumption of drugs (including anti-inflammatory drugs, immunosuppressants, etc.).
- q.
- Ultrasound data: fetal growth assessment, hemodynamic evaluation of the maternal-fetal compartment, and evaluation of fetal adiposity.
- Maternal data after childbirth:
- r.
- Type of delivery.
- Data of the neonate after delivery:
- s.
- Anthropometric data obtained by physical examination.
- Follow-up data of the neonate:
- t.
- Anthropometric data obtained by physical examination at 1 month, 6 months, 1 year, 2 years and 3 years.
- u.
- Type of nutrition; breast milk, formula, or combined.
- v.
- Adverse events.
2.19. Study Limitations
3. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HCUVA | Virgen de la Arrixaca University Hospital |
SCFA | Short-chain fatty acids |
BCAA | Branched-chain amino acids |
FFQ | Food frequency questionnaires |
References
- World Health Organization. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 2 May 2025).
- Jebeile, H.; Kelly, A.S.; O’Malley, G.; Baur, L.A. Obesity in children and adolescents: Epidemiology, causes, assessment, and management. Lancet Diabetes Endocrinol. 2022, 10, 351–365. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, D.; Dee, A.; Perry, I.J. The lifetime costs of overweight and obesity in childhood and adolescence: A systematic review. Obes. Rev. 2018, 19, 452–463. [Google Scholar] [CrossRef]
- Leung, A.K.C.; Wong, A.H.C.; Hon, K.L. Childhood Obesity: An Updated Review. Curr. Pediatr. Rev. 2024, 20, 2–26. [Google Scholar] [CrossRef]
- Raitakari, O.T.; Juonala, M.; Viikari, J.S. Obesity in childhood and vascular changes in adulthood: Insights into the Cardiovascular Risk in Young Finns Study. Int. J. Obes. 2005, 29 (Suppl. S2), S101–S104. [Google Scholar] [CrossRef]
- Skinner, A.C.; Ravanbakht, S.N.; Skelton, J.A.; Perrin, E.M.; Armstrong, S.C. Prevalence of Obesity and Severe Obesity in US Children, 1999–2016. Pediatrics 2018, 141, e20173459. [Google Scholar] [CrossRef] [PubMed]
- Kelsey, M.M.; Pyle, L.; Hilkin, A.; Severn, C.D.; Utzschneider, K.; Van Pelt, R.E.; Nadeau, K.J.; Zeitler, P.S. The Impact of Obesity On Insulin Sensitivity and Secretion During Pubertal Progression: A Longitudinal Study. J. Clin. Endocrinol. Metab. 2020, 105, e2061–e2068. [Google Scholar] [CrossRef]
- Maximova, K.; Kuhle, S.; Davidson, Z.; Fung, C.; Veugelers, P.J. Cardiovascular risk-factor profiles of normal and overweight children and adolescents: Insights from the Canadian Health Measures Survey. Can. J. Cardiol. 2013, 29, 976–982. [Google Scholar] [CrossRef] [PubMed]
- Li, X.M.; Lv, Q.; Chen, Y.J.; Yan, L.B.; Xiong, X. Association between childhood obesity and gut microbiota: 16S rRNA gene sequencing-based cohort study. World J. Gastroenterol. 2024, 30, 2249–2257. [Google Scholar] [CrossRef]
- Sarni, R.O.S.; Kochi, C.; Suano-Souza, F.I. Childhood obesity: An ecological perspective. J. Pediatr. 2022, 98 (Suppl. S1), S38–S46. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Robiou-du-Pont, S.; Anand, S.S.; Morrison, K.M.; McDonald, S.D.; Atkinson, S.A.; Teo, K.K.; Meyre, D. Parental and child genetic contributions to obesity traits in early life based on 83 loci validated in adults: The FAMILY study. Pediatr. Obes. 2018, 13, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Munthali, R.J.; Sahibdeen, V.; Kagura, J.; Hendry, L.M.; Norris, S.A.; Ong, K.K.; Day, F.R.; Lombard, Z. Genetic risk score for adult body mass index associations with childhood and adolescent weight gain in an African population. Genes Nutr. 2018, 13, 24. [Google Scholar] [CrossRef] [PubMed]
- Carlsen, E.M.; Renault, K.M.; Norgaard, K.; Nilas, L.; Jensen, J.E.; Hyldstrup, L.; Michaelsen, K.F.; Cortes, D.; Pryds, O. Newborn regional body composition is influenced by maternal obesity, gestational weight gain and the birthweight standard score. Acta Paediatr. 2014, 103, 939–945. [Google Scholar] [CrossRef]
- Renault, K.M.; Carlsen, E.M.; Norgaard, K.; Nilas, L.; Pryds, O.; Secher, N.J.; Cortes, D.; Jensen, J.E.; Olsen, S.F.; Halldorsson, T.I. Intake of carbohydrates during pregnancy in obese women is associated with fat mass in the newborn offspring. Am. J. Clin. Nutr. 2015, 102, 1475–1481. [Google Scholar] [CrossRef]
- Patel, N.; Godfrey, K.M.; Pasupathy, D.; Levin, J.; Flynn, A.C.; Hayes, L.; Briley, A.L.; Bell, R.; Lawlor, D.A.; Oteng-Ntim, E.; et al. Infant adiposity following a randomised controlled trial of a behavioural intervention in obese pregnancy. Int. J. Obes. 2017, 41, 1018–1026. [Google Scholar] [CrossRef] [PubMed]
- Koontz, M.B.; Gunzler, D.D.; Presley, L.; Catalano, P.M. Longitudinal changes in infant body composition: Association with childhood obesity. Pediatr. Obes. 2014, 9, e141–e144. [Google Scholar] [CrossRef]
- Entringer, S.; Rasmussen, J.; Cooper, D.M.; Ikenoue, S.; Waffarn, F.; Wadhwa, P.D.; Buss, C. Association between supraclavicular brown adipose tissue composition at birth and adiposity gain from birth to 6 months of age. Pediatr. Res. 2017, 82, 1017–1021. [Google Scholar] [CrossRef]
- Moore, B.F.; Harrall, K.K.; Sauder, K.A.; Glueck, D.H.; Dabelea, D. Neonatal Adiposity and Childhood Obesity. Pediatrics 2020, 146, e20200737. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Lee, Y.S.; Wang, J.P.; Jiang, Y.Y.; Li, H.; An, Y.L.; Hu, Y.H.; Lee, K.O.; Li, G.W. Longitudinal study of childhood adiposity and the risk of developing components of metabolic syndrome-the Da Qing children cohort study. Pediatr. Res. 2011, 70, 307–312. [Google Scholar] [CrossRef]
- Kumaran, K.; Lubree, H.; Bhat, D.S.; Joshi, S.; Joglekar, C.; Yajnik, P.; Bhave, S.; Pandit, A.; Fall, C.H.D.; Yajnik, C.S. Birth weight, childhood and adolescent growth and diabetes risk factors in 21-year-old Asian Indians: The Pune Children’s Study. J. Dev. Orig. Health Dis. 2021, 12, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Bowers, K.; Liu, G.; Wang, P.; Ye, T.; Tian, Z.; Liu, E.; Yu, Z.; Yang, X.; Klebanoff, M.; Yeung, E.; et al. Birth weight, postnatal weight change, and risk for high blood pressure among chinese children. Pediatrics 2011, 127, e1272–e1279. [Google Scholar] [CrossRef]
- Tsai, H.J.; Wang, G.; Hong, X.; Yao, T.C.; Ji, Y.; Radovick, S.; Ji, H.; Cheng, T.L.; Wang, X. Early Life Weight Gain and Development of Childhood Asthma in a Prospective Birth Cohort. Ann. Am. Thorac. Soc. 2018, 15, 1197–1204. [Google Scholar] [CrossRef]
- Taveras, E.M.; Rifas-Shiman, S.L.; Camargo, C.A., Jr.; Gold, D.R.; Litonjua, A.A.; Oken, E.; Weiss, S.T.; Gillman, M.W. Higher adiposity in infancy associated with recurrent wheeze in a prospective cohort of children. J. Allergy Clin. Immunol. 2008, 121, 1161–1166.e3. [Google Scholar] [CrossRef]
- Robinson, N.; Brown, H.; Antoun, E.; Godfrey, K.M.; Hanson, M.A.; Lillycrop, K.A.; Crozier, S.R.; Murray, R.; Pearce, M.S.; Relton, C.L.; et al. Childhood DNA methylation as a marker of early life rapid weight gain and subsequent overweight. Clin. Epigenetics 2021, 13, 8. [Google Scholar] [CrossRef]
- Lesseur, C.; Armstrong, D.A.; Paquette, A.G.; Li, Z.; Padbury, J.F.; Marsit, C.J. Maternal obesity and gestational diabetes are associated with placental leptin DNA methylation. Am. J. Obstet. Gynecol. 2014, 211, 654.e1–654.e9. [Google Scholar] [CrossRef]
- Vahamiko, S.; Laiho, A.; Lund, R.; Isolauri, E.; Salminen, S.; Laitinen, K. The impact of probiotic supplementation during pregnancy on DNA methylation of obesity-related genes in mothers and their children. Eur. J. Nutr. 2019, 58, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, J.; Renault, K.M.; Garcia-Calzon, S.; Perfilyev, A.; Estampador, A.C.; Norgaard, K.; Lind, M.V.; Vaag, A.; Hjort, L.; Michaelsen, K.F.; et al. Lifestyle Intervention in Pregnant Women With Obesity Impacts Cord Blood DNA Methylation, Which Associates With Body Composition in the Offspring. Diabetes 2021, 70, 854–866. [Google Scholar] [CrossRef] [PubMed]
- Kumar, H.; Lund, R.; Laiho, A.; Lundelin, K.; Ley, R.E.; Isolauri, E.; Salminen, S. Gut microbiota as an epigenetic regulator: Pilot study based on whole-genome methylation analysis. mBio 2014, 5, e02113-14. [Google Scholar] [CrossRef]
- Joyce, S.A.; Gahan, C.G. The gut microbiota and the metabolic health of the host. Curr. Opin. Gastroenterol. 2014, 30, 120–127. [Google Scholar] [CrossRef]
- Cuevas-Sierra, A.; Ramos-Lopez, O.; Riezu-Boj, J.I.; Milagro, F.I.; Martinez, J.A. Diet, Gut Microbiota, and Obesity: Links with Host Genetics and Epigenetics and Potential Applications. Adv. Nutr. 2019, 10, S17–S30. [Google Scholar] [CrossRef]
- Milani, C.; Duranti, S.; Bottacini, F.; Casey, E.; Turroni, F.; Mahony, J.; Belzer, C.; Delgado Palacio, S.; Arboleya Montes, S.; Mancabelli, L.; et al. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiol. Mol. Biol. Rev. 2017, 81, e00036-17. [Google Scholar] [CrossRef] [PubMed]
- Fulde, M.; Hornef, M.W. Maturation of the enteric mucosal innate immune system during the postnatal period. Immunol. Rev. 2014, 260, 21–34. [Google Scholar] [CrossRef]
- Wang, X.A.; Li, J.P.; Lee, M.S.; Yang, S.F.; Chang, Y.S.; Chen, L.; Li, C.W.; Chao, Y.H. A common trajectory of gut microbiome development during the first month in healthy neonates with limited inter-individual environmental variations. Sci. Rep. 2024, 14, 3264. [Google Scholar] [CrossRef] [PubMed]
- Backhed, F.; Roswall, J.; Peng, Y.; Feng, Q.; Jia, H.; Kovatcheva-Datchary, P.; Li, Y.; Xia, Y.; Xie, H.; Zhong, H.; et al. Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host Microbe 2015, 17, 690–703. [Google Scholar] [CrossRef]
- Neumann, C.J.; Mohammadzadeh, R.; Woh, P.Y.; Kobal, T.; Pausan, M.R.; Shinde, T.; Haid, V.; Mertelj, P.; Weiss, E.C.; Kolovetsiou-Kreiner, V.; et al. First-year dynamics of the anaerobic microbiome and archaeome in infants’ oral and gastrointestinal systems. mSystems 2025, 10, e0107124. [Google Scholar] [CrossRef]
- Koenig, J.E.; Spor, A.; Scalfone, N.; Fricker, A.D.; Stombaugh, J.; Knight, R.; Angenent, L.T.; Ley, R.E. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl. Acad. Sci. USA 2011, 108 (Suppl. S1), 4578–4585. [Google Scholar] [CrossRef] [PubMed]
- Kashtanova, D.A.; Popenko, A.S.; Tkacheva, O.N.; Tyakht, A.B.; Alexeev, D.G.; Boytsov, S.A. Association between the gut microbiota and diet: Fetal life, early childhood, and further life. Nutrition 2016, 32, 620–627. [Google Scholar] [CrossRef]
- Li, S.; Ma, X.; Mei, H.; Chang, X.; He, P.; Sun, L.; Xiao, H.; Wang, S.; Li, R. Association between gut microbiota and short-chain fatty acids in children with obesity. Sci. Rep. 2025, 15, 483. [Google Scholar] [CrossRef]
- Solon-Biet, S.M.; Cogger, V.C.; Pulpitel, T.; Wahl, D.; Clark, X.; Bagley, E.; Gregoriou, G.C.; Senior, A.M.; Wang, Q.P.; Brandon, A.E.; et al. Branched chain amino acids impact health and lifespan indirectly via amino acid balance and appetite control. Nat. Metab. 2019, 1, 532–545. [Google Scholar] [CrossRef] [PubMed]
- Bui, T.N.Y.; Paul, A.; Guleria, S.; O’Sullivan, J.M.; Toldi, G. Short-chain fatty acids-a key link between the gut microbiome and T-lymphocytes in neonates? Pediatr. Res. 2025. [Google Scholar] [CrossRef]
- van Best, N.; Rolle-Kampczyk, U.; Schaap, F.G.; Basic, M.; Olde Damink, S.W.M.; Bleich, A.; Savelkoul, P.H.M.; von Bergen, M.; Penders, J.; Hornef, M.W. Bile acids drive the newborn’s gut microbiota maturation. Nat. Commun. 2020, 11, 3692. [Google Scholar] [CrossRef]
- Francis, E.C.; Hunt, K.J.; Grobman, W.A.; Skupski, D.W.; Mani, A.; Hinkle, S.N. Maternal Obesity and Differences in Child Urine Metabolome. Metabolites 2024, 14, 574. [Google Scholar] [CrossRef] [PubMed]
- Dogra, S.; Sakwinska, O.; Soh, S.E.; Ngom-Bru, C.; Bruck, W.M.; Berger, B.; Brussow, H.; Lee, Y.S.; Yap, F.; Chong, Y.S.; et al. Dynamics of infant gut microbiota are influenced by delivery mode and gestational duration and are associated with subsequent adiposity. mBio 2015, 6, e02419-14. [Google Scholar] [CrossRef]
- Raspini, B.; Vacca, M.; Porri, D.; De Giuseppe, R.; Calabrese, F.M.; Chieppa, M.; Liso, M.; Cerbo, R.M.; Civardi, E.; Garofoli, F.; et al. Early Life Microbiota Colonization at Six Months of Age: A Transitional Time Point. Front. Cell. Infect. Microbiol. 2021, 11, 590202. [Google Scholar] [CrossRef]
- Hernandez-Morante, J.J.; Larque, E.; Lujan, J.A.; Zamora, S.; Garaulet, M. N-6 from different sources protect from metabolic alterations to obese patients: A factor analysis. Obesity 2009, 17, 452–459. [Google Scholar] [CrossRef]
- Martin-Moreno, J.M.; Boyle, P.; Gorgojo, L.; Maisonneuve, P.; Fernandez-Rodriguez, J.C.; Salvini, S.; Willett, W.C. Development and validation of a food frequency questionnaire in Spain. Int. J. Epidemiol. 1993, 22, 512–519. [Google Scholar] [CrossRef]
- Call, C.C.; Jouppi, R.J.; Tavernier, R.L.E.; Grace, J.L.; Sweeney, G.M.; Conlon, R.P.K.; Ferguson, E.A.; Levine, M.D. Pregnancy Eating Attitudes-Questionnaire (PEA-Q): Exploratory factor analysis and psychometric performance in a pregnant community sample with body mass index ≥ 25. Appetite 2025, 206, 107828. [Google Scholar] [CrossRef]
- van Beijsterveldt, I.; Dorrepaal, D.J.; de Fluiter, K.S.; de Ridder, M.A.J.; Hokken-Koelega, A.C.S. Skinfold-based-equations to assess longitudinal body composition in children from birth to age 5 years. Clin. Nutr. 2023, 42, 1213–1218. [Google Scholar] [CrossRef]
- Bullich-Vilarrubias, C.; Romani-Perez, M.; Lopez-Almela, I.; Rubio, T.; Garcia, C.J.; Tomas-Barberan, F.A.; Sanz, Y. Nav1.8-expressing neurons control daily oscillations of food intake, body weight and gut microbiota in mice. Commun. Biol. 2024, 7, 219. [Google Scholar] [CrossRef] [PubMed]
- Verma, M.; Kapoor, N.; Senapati, S.; Singh, O.; Bhadoria, A.S.; Khetarpal, P.; Kumar, S.; Bansal, K.; Ranjan, R.; Kakkar, R.; et al. Comprehending the Epidemiology and Aetiology of Childhood Obesity: Integrating Life Course Approaches for Prevention and Intervention. Diabetes Ther. 2025, 16, 1177–1206. [Google Scholar] [CrossRef] [PubMed]
- Masuyama, H.; Mitsui, T.; Nobumoto, E.; Hiramatsu, Y. The Effects of High-Fat Diet Exposure In Utero on the Obesogenic and Diabetogenic Traits Through Epigenetic Changes in Adiponectin and Leptin Gene Expression for Multiple Generations in Female Mice. Endocrinology 2015, 156, 2482–2491. [Google Scholar] [CrossRef]
- Franzago, M.; Borrelli, P.; Di Nicola, M.; Cavallo, P.; D’Adamo, E.; Di Tizio, L.; Gazzolo, D.; Stuppia, L.; Vitacolonna, E. From Mother to Child: Epigenetic Signatures of Hyperglycemia and Obesity during Pregnancy. Nutrients 2024, 16, 3502. [Google Scholar] [CrossRef] [PubMed]
- Pang, H.; Ling, D.; Cheng, Y.; Akbar, R.; Jin, L.; Ren, J.; Wu, H.; Chen, B.; Zhou, Y.; Zhu, H.; et al. Gestational high-fat diet impaired demethylation of Pparalpha and induced obesity of offspring. J. Cell. Mol. Med. 2021, 25, 5404–5416. [Google Scholar] [CrossRef] [PubMed]
- Shiau, S.; Wang, L.; Liu, H.; Zheng, Y.; Drong, A.; Joyce, B.T.; Wang, J.; Li, W.; Leng, J.; Shen, Y.; et al. Prenatal gestational diabetes mellitus exposure and accelerated offspring DNA methylation age in early childhood. Epigenetics 2021, 16, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Pauwels, S.; Symons, L.; Vanautgaerden, E.L.; Ghosh, M.; Duca, R.C.; Bekaert, B.; Freson, K.; Huybrechts, I.; Langie, S.A.S.; Koppen, G.; et al. The Influence of the Duration of Breastfeeding on the Infant’s Metabolic Epigenome. Nutrients 2019, 11, 1408. [Google Scholar] [CrossRef]
- Hays, K.E.; Pfaffinger, J.M.; Ryznar, R. The interplay between gut microbiota, short-chain fatty acids, and implications for host health and disease. Gut Microbes 2024, 16, 2393270. [Google Scholar] [CrossRef]
- Kelly, C.J.; Zheng, L.; Campbell, E.L.; Saeedi, B.; Scholz, C.C.; Bayless, A.J.; Wilson, K.E.; Glover, L.E.; Kominsky, D.J.; Magnuson, A.; et al. Crosstalk between Microbiota-Derived Short-Chain Fatty Acids and Intestinal Epithelial HIF Augments Tissue Barrier Function. Cell Host Microbe 2015, 17, 662–671. [Google Scholar] [CrossRef]
- White, P.J.; Newgard, C.B. Branched-chain amino acids in disease. Science 2019, 363, 582–583. [Google Scholar] [CrossRef] [PubMed]
- Wahlstrom, A.; Sayin, S.I.; Marschall, H.U.; Backhed, F. Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism. Cell Metab. 2016, 24, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Sánchez, M.A.; Herisson, F.M.; Keane, J.M.; Garcia-Gonzalez, N.; Rossini, V.; Pinhiero, J.; Daly, J.; Bustamante-Garrido, M.; Hueston, C.M.; Patel, S.; et al. Microbial bile salt hydrolase activity influences gene expression profiles and gastrointestinal maturation in infant mice. Gut Microbes 2022, 14, 2149023. [Google Scholar] [CrossRef]
Study Period | |||||||
---|---|---|---|---|---|---|---|
Enrollment | Follow-Up | Close-Out | |||||
t1 | t2 | t3 | t4 | t5 | t6 | t7 | |
Enrollment: | |||||||
Eligibility screen | X | ||||||
Informed consent | X | ||||||
Inclusion criteria | X | ||||||
Exclusion criteria | X | ||||||
Assessments: | |||||||
Clinical Assessment | X | ||||||
Anthropometric measurements (mother) | X | ||||||
Food frequency questionnaires (FFQ) | X | ||||||
Quality of life questionnaires | X | ||||||
Ultrasound | X | ||||||
Buccal swab (mother) | X | X | |||||
Blood (mother) | X | X | |||||
Stool (mother) | X | X | |||||
Buccal swab (infant) | X | X | X | X | X | X | |
Stool (Infant) | X | X | X | X | X | X | |
Anthropometric measurements (infant) | X | X | X | X | X | X |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suárez-Cortés, M.; Juan-Pérez, A.; Molina-Rodríguez, A.; Araújo de Castro, J.; Castaño-Molina, M.Á.; Fernández-Ruiz, V.E.; Jiménez-Méndez, A.; Martínez Pérez-Munar, P.; Rico-Chazarra, S.; Ramos-Molina, B.; et al. Dynamics of the Epigenome, Microbiome, and Metabolome in Relation to Early Adiposity in the Maternal–Infant Axis: Protocol for a Prospective, Observational Pilot Study in the Spanish NEMO Cohort. J. Clin. Med. 2025, 14, 6694. https://doi.org/10.3390/jcm14196694
Suárez-Cortés M, Juan-Pérez A, Molina-Rodríguez A, Araújo de Castro J, Castaño-Molina MÁ, Fernández-Ruiz VE, Jiménez-Méndez A, Martínez Pérez-Munar P, Rico-Chazarra S, Ramos-Molina B, et al. Dynamics of the Epigenome, Microbiome, and Metabolome in Relation to Early Adiposity in the Maternal–Infant Axis: Protocol for a Prospective, Observational Pilot Study in the Spanish NEMO Cohort. Journal of Clinical Medicine. 2025; 14(19):6694. https://doi.org/10.3390/jcm14196694
Chicago/Turabian StyleSuárez-Cortés, María, Almudena Juan-Pérez, Alonso Molina-Rodríguez, Julia Araújo de Castro, María Ángeles Castaño-Molina, Virginia Esperanza Fernández-Ruiz, Almudena Jiménez-Méndez, Paula Martínez Pérez-Munar, Sara Rico-Chazarra, Bruno Ramos-Molina, and et al. 2025. "Dynamics of the Epigenome, Microbiome, and Metabolome in Relation to Early Adiposity in the Maternal–Infant Axis: Protocol for a Prospective, Observational Pilot Study in the Spanish NEMO Cohort" Journal of Clinical Medicine 14, no. 19: 6694. https://doi.org/10.3390/jcm14196694
APA StyleSuárez-Cortés, M., Juan-Pérez, A., Molina-Rodríguez, A., Araújo de Castro, J., Castaño-Molina, M. Á., Fernández-Ruiz, V. E., Jiménez-Méndez, A., Martínez Pérez-Munar, P., Rico-Chazarra, S., Ramos-Molina, B., Sánchez-Solís, M., Blanco-Carnero, J. E., Ruiz-Alcaraz, A. J., & Núñez-Sánchez, M. Á. (2025). Dynamics of the Epigenome, Microbiome, and Metabolome in Relation to Early Adiposity in the Maternal–Infant Axis: Protocol for a Prospective, Observational Pilot Study in the Spanish NEMO Cohort. Journal of Clinical Medicine, 14(19), 6694. https://doi.org/10.3390/jcm14196694