Comparison of Ocular Wavefront in Seated and Supine Positions Using a Hand-Held Hartmann–Shack Aberrometer
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Considerations
2.2. Study Design
2.3. Wavefront Aberration Measurements
2.4. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schallhorn, S.C.; Venter, J.A.; Hannan, S.J.; Hettinger, K.A. Wavefront-Guided Photorefractive Keratectomy with the Use of a New Hartmann-Shack Aberrometer in Patients with Myopia and Compound Myopic Astigmatism. J. Ophthalmol. 2015, 2015, 514837. [Google Scholar] [CrossRef]
- Maloney, R.K.; Kraff, C.R.; Coleman, S.C. Wavefront-guided myopic laser in situ keratomileusis with a high-resolution Hartmann-Shack aberrometer and a new nomogram. J. Cataract. Refract. Surg. 2021, 47, 847–854. [Google Scholar] [CrossRef]
- Padrick, T. IOL power calculations with ORA intraoperative aberrometer. In Intraocular Lens Calculations; Aramberri, J., Hoffer, K.J., Olsen, T., Savini, G., Shammas, H.J., Eds.; Springer International Publishing: Cham, Switzerland, 2024; pp. 443–455. [Google Scholar]
- Hemmati, H.D.; Gologorsky, D.; Pineda, R., 2nd. Intraoperative wavefront aberrometry in cataract surgery. Semin. Ophthalmol. 2012, 27, 100–106. [Google Scholar] [CrossRef]
- Sarver, E.J.; Van Heugten, T.Y.; Padrick, T.D.; Hall, M.T. Astigmatic refraction using peaks of the interferogram Fourier transform for a Talbot Moiré interferometer. J. Refract. Surg. 2007, 23, 972–977. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, A.R.; Pineda, R., 2nd. Intraoperative aberrometry: An update on applications and outcomes. Curr. Opin. Ophthalmol. 2023, 34, 48–57. [Google Scholar] [CrossRef]
- Ianchulev, S. Intraoperative aberrometry. In Intraocular Lens Calculations; Aramberri, J., Hoffer, K.J., Olsen, T., Savini, G., Shammas, H.J., Eds.; Springer International Publishing: Cham, Switzerland, 2024; pp. 673–687. [Google Scholar]
- Zhang, Z.; Thomas, L.W.; Leu, S.Y.; Carter, S.; Garg, S. Refractive outcomes of intraoperative wavefront aberrometry versus optical biometry alone for intraocular lens power calculation. Indian J. Ophthalmol. 2017, 65, 813–817. [Google Scholar] [PubMed]
- Blaylock, J.F.; Hall, B. Astigmatic Results of a Diffractive Trifocal Toric IOL Following Intraoperative Aberrometry Guidance. Clin. Ophthalmol. 2020, 14, 4373–4378. [Google Scholar] [CrossRef] [PubMed]
- Blaylock, J.F.; Hall, B.J. Clinical Outcomes of Monofocal Toric IOLs Using Digital Tracking and Intraoperative Aberrometry. Clin. Ophthalmol. 2021, 15, 3593–3600. [Google Scholar] [CrossRef]
- Yesilirmak, N.; Palioura, S.; Culbertson, W.; Yoo, S.H.; Donaldson, K. Intraoperative Wavefront Aberrometry for Toric Intraocular Lens Placement in Eyes With a History of Refractive Surgery. J. Refract. Surg. 2016, 32, 69–70. [Google Scholar] [CrossRef] [PubMed]
- Gouvea, L.; Sioufi, K.; Brown, C.E.; Waring Iv, G.; Chamon, W.; Rocha, K.M. Refractive Accuracy of Barrett True-K vs Intraoperative Aberrometry for IOL Power Calculation in Post-Corneal Refractive Surgery Eyes. Clin. Ophthalmol. 2021, 15, 4305–4315. [Google Scholar] [CrossRef]
- Ianchulev, T.; Hoffer, K.J.; Yoo, S.H.; Chang, D.F.; Breen, M.; Padrick, T.; Tran, D.B. Intraoperative Refractive Biometry for Predicting Intraocular Lens Power Calculation after Prior Myopic Refractive Surgery. Ophthalmology 2014, 121, 56–60. [Google Scholar] [CrossRef]
- Sandoval, H.P.; Serels, C.; Potvin, R.; Solomon, K.D. Cataract surgery after myopic laser in situ keratomileusis: Objective analysis to determine best formula and keratometry to use. J. Cataract. Refract. Surg. 2021, 47, 465–470. [Google Scholar] [CrossRef]
- Christopher, K.L.; Patnaik, J.L.; Miller, D.C.; Lynch, A.M.; Taravella, M.J.; Davidson, R.S. Accuracy of Intraoperative Aberrometry, Barrett True-K With and Without Posterior Cornea Measurements, Shammas-PL, and Haigis-L Formulas After Myopic Refractive Surgery. J. Refract. Surg. 2021, 37, 60–68. [Google Scholar] [CrossRef]
- Hovanesian, J.A. Comparison of Preoperative Measurements with Intraoperative Aberrometry in Predicting Need for Correction in Eyes with Low Astigmatism Undergoing Cataract Surgery. Clin. Ophthalmol. 2021, 15, 2189–2196. [Google Scholar] [CrossRef]
- Chen, M.; Reinsbach, M.; Wilbanks, N.D.; Chang, C.; Chao, C.C. Utilizing intraoperative aberrometry and digital eye tracking to develop a novel nomogram for manual astigmatic keratotomy to effectively decrease mild astigmatism during cataract surgery. Taiwan. J. Ophthalmol. 2019, 9, 27–32. [Google Scholar] [CrossRef]
- Terauchi, R.; Horiguchi, H.; Ogawa, T.; Shiba, T.; Tsuneoka, H.; Nakano, T. Posture-related ocular cyclotorsion during cataract surgery with an ocular registration system. Sci. Rep. 2020, 10, 2136. [Google Scholar] [CrossRef] [PubMed]
- Srujana, D.; Singh, R.; Titiyal, J.S.; Sinha, R. Assessment of posture-induced cyclotorsion during cataract surgery using the Verion image-guided system. Med. J. Armed Forces India 2021, 77, 293–296. [Google Scholar] [CrossRef]
- Hummel, C.D.; Diakonis, V.F.; Desai, N.R.; Arana, A.; Weinstock, R.J. Cyclorotation during femtosecond laser-assisted cataract surgery measured using iris registration. J. Cataract. Refract. Surg. 2017, 43, 952–955. [Google Scholar] [CrossRef] [PubMed]
- Febbraro, J.L.; Koch, D.D.; Khan, H.N.; Saad, A.; Gatinel, D. Detection of static cyclotorsion and compensation for dynamic cyclotorsion in laser in situ keratomileusis. J. Cataract. Refract. Surg. 2010, 36, 1718–1723. [Google Scholar] [CrossRef]
- Chernyak, D.A. Cyclotorsional eye motion occurring between wavefront measurement and refractive surgery. J. Cataract. Refract. Surg. 2004, 30, 633–638. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.L.; Yeh, P.T.; Huang, J.Y.; Wang, I.J.; Chen, W.L.; Hu, F.R.; Hou, Y.C. Pupil centroid shift and cyclotorsion in bilateral wavefront-guided laser refractive surgery and the correlation between both eyes. J. Formos. Med. Assoc. 2013, 112, 64–71. [Google Scholar] [CrossRef]
- Kawamorita, T.; Handa, T.; Uozato, H. Changes of corneal aberrations in sitting and supine positions. Am. J. Ophthalmol. 2006, 141, 412–414. [Google Scholar] [CrossRef] [PubMed]
- Gelles, J.D.; Su, B.; Kelly, D.; Brown, N.; Wong, J.; Yoon, G.; Pfeifer, T.; Erdman, C.; Hersh, P.S.; Greenstein, S.A. Visual Improvement with Wavefront-Guided Scleral Lenses for Irregular Corneal Astigmatism. Eye Contact Lens 2025, 51, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Moon, B.-Y.; Kim, S.-Y.; Cho, H.-G. Predicting of uncorrected astigmatism from decimal visual acuity in spherical equivalent. J. Opt. Soc. Korea 2013, 17, 219–223. [Google Scholar] [CrossRef]
- Atchison, D.A.; Mathur, A. Visual Acuity with Astigmatic Blur. Optom. Vision Sci. 2011, 88, E798–E805. [Google Scholar] [CrossRef]
- Han, J.Y.; Yoon, S.; Brown, N.S.; Han, S.H.; Han, J. Accuracy of the Hand-held Wavefront Aberrometer in Measurement of Refractive Error. Korean J. Ophthalmol. 2020, 34, 227–234. [Google Scholar] [CrossRef]
- McBee, D.; Kozhaya, K.; Wang, L.; Weikert, M.P.; Koch, D.D. Repeatability of a Combined Adaptive Optics Visual Simulator and Hartman-Shack Aberrometer in Pseudophakic Eyes With and Without Previous Corneal Refractive Surgery. J. Refract. Surg. 2024, 40, e645–e653. [Google Scholar] [CrossRef]
- Otero, C.; Vilaseca, M.; Arjona, M.; Martínez-Roda, J.A.; Pujol, J. Repeatability of aberrometric measurements with a new instrument for vision analysis based on adaptive optics. J. Refract. Surg. 2015, 31, 188–194. [Google Scholar] [CrossRef]
- López-Miguel, A.; Martínez-Almeida, L.; González-García, M.J.; Coco-Martín, M.B.; Sobrado-Calvo, P.; Maldonado, M.J. Precision of higher-order aberration measurements with a new Placido-disk topographer and Hartmann-Shack wavefront sensor. J. Cataract. Refract. Surg. 2013, 39, 242–249. [Google Scholar] [CrossRef]
- Xu, Z.; Hua, Y.; Qiu, W.; Li, G.; Wu, Q. Precision and agreement of higher order aberrations measured with ray tracing and Hartmann-Shack aberrometers. BMC Ophthalmol. 2018, 18, 18. [Google Scholar] [CrossRef]
- Visser, N.; Berendschot, T.T.; Verbakel, F.; Tan, A.N.; de Brabander, J.; Nuijts, R.M. Evaluation of the comparability and repeatability of four wavefront aberrometers. Investig. Ophthalmol. Vis. Sci. 2011, 52, 1302–1311. [Google Scholar] [CrossRef]
- Taneri, S.; Arba-Mosquera, S.; Rost, A.; Kießler, S.; Dick, H.B. Repeatability and reproducibility of manifest refraction. J. Cataract. Refract. Surg. 2020, 46, 1659–1666. [Google Scholar] [CrossRef]
- Schallhorn, S.C.; Hettinger, K.A.; Pelouskova, M.; Teenan, D.; Venter, J.A.; Hannan, S.J.; Schallhorn, J.M. Effect of residual astigmatism on uncorrected visual acuity and patient satisfaction in pseudophakic patients. J. Cataract. Refract. Surg. 2021, 47, 991–998. [Google Scholar] [CrossRef] [PubMed]
- Rosenfield, M.; Chiu, N.N. Repeatability of subjective and objective refraction. Optom. Vis. Sci. 1995, 72, 577–579. [Google Scholar] [CrossRef] [PubMed]
- Atchison, D.A.; Guo, H. Subjective blur limits for higher order aberrations. Optom. Vis. Sci. 2010, 87, E890–E898. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.M., Jr.; Talamo, J.H.; Assil, K.K.; Petashnick, D.E. Comparison of astigmatic axis in the seated and supine positions. J. Refract. Corneal Surg. 1994, 10, 615–620. [Google Scholar] [CrossRef]
- Smith, E.M., Jr.; Talamo, J.H. Cyclotorsion in the seated and supine patient. J. Cataract. Refract. Surg. 1995, 21, 402–403. [Google Scholar] [CrossRef]
- Tjon-Fo-Sang, M.J.; de Faber, J.T.; Kingma, C.; Beekhuis, W.H. Cyclotorsion: A possible cause of residual astigmatism in refractive surgery. J. Cataract. Refract. Surg. 2002, 28, 599–602. [Google Scholar] [CrossRef]
- Lam, A.K.; Douthwaite, W.A. The effect of an artificially elevated intraocular pressure on the central corneal curvature. Ophthalmic Physiol. Opt. 1997, 17, 18–24. [Google Scholar] [CrossRef]
- Schweier, C.; Hanson, J.V.; Funk, J.; Töteberg-Harms, M. Repeatability of intraocular pressure measurements with Icare PRO rebound, Tono-Pen AVIA, and Goldmann tonometers in sitting and reclining positions. BMC Ophthalmol. 2013, 13, 44. [Google Scholar] [CrossRef]
- Lee, T.E.; Yoo, C.; Hwang, J.Y.; Lin, S.; Kim, Y.Y. Comparison of Intraocular Pressure Measurements between Icare Pro Rebound Tonometer and Tono-Pen XL Tonometer in Supine and Lateral Decubitus Body Positions. Curr. Eye Res. 2015, 40, 923–929. [Google Scholar] [CrossRef] [PubMed]
- De Bernardo, M.; Abbinante, G.; Borrelli, M.; Di Stasi, M.; Cione, F.; Rosa, N. Intraocular Pressure Measurements in Standing, Sitting, and Supine Position: Comparison between Tono-Pen Avia and Icare Pro Tonometers. J. Clin. Med. 2022, 11, 6234. [Google Scholar] [CrossRef]
- Barkana, Y. Postural change in intraocular pressure: A comparison of measurement with a Goldmann tonometer, Tonopen XL, pneumatonometer, and HA-2. J. Glaucoma 2014, 23, e23–e28. [Google Scholar] [CrossRef]
- Xu, M.; Simmons, B.; Lerner, A.L.; Yoon, G. Controlled elevation of intraocular pressure and its impact on ocular aberrations in healthy eyes. Exp. Eye Res. 2018, 171, 68–75. [Google Scholar] [CrossRef]
- Dieterich, M.; Brandt, T. Vestibulo-ocular reflex. Curr. Opin. Neurol. 1995, 8, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Schmid-Priscoveanu, A.; Straumann, D.; Kori, A.A. Torsional vestibulo-ocular reflex during whole-body oscillation in the upright and the supine position. I. Responses in healthy human subjects. Exp. Brain Res. 2000, 134, 212–219. [Google Scholar] [PubMed]
- Anderson, A.P.; Swan, J.G.; Phillips, S.D.; Knaus, D.A.; Kattamis, N.T.; Toutain-Kidd, C.M.; Zegans, M.E.; Fellows, A.M.; Buckey, J.C. Acute effects of changes to the gravitational vector on the eye. J. Appl. Physiol. 2016, 120, 939–946. [Google Scholar] [CrossRef]
- Petersen, L.G.; Whittle, R.S.; Lee, J.H.; Sieker, J.; Carlson, J.; Finke, C.; Shelton, C.M.; Petersen, J.C.G.; Diaz-Artiles, A. Gravitational effects on intraocular pressure and ocular perfusion pressure. J. Appl. Physiol. 2022, 132, 24–35. [Google Scholar] [CrossRef]
- Salimi, S.; Park, S.S.; Freiheit, T. Dynamic response of intraocular pressure and biomechanical effects of the eye considering fluid-structure interaction. J. Biomech. Eng. 2011, 133, 091009. [Google Scholar] [CrossRef]
- Lee, T.E.; Yoo, C.; Lin, S.C.; Kim, Y.Y. Effect of Different Head Positions in Lateral Decubitus Posture on Intraocular Pressure in Treated Patients With Open-Angle Glaucoma. Am. J. Ophthalmol. 2015, 160, 929–936.e4. [Google Scholar] [CrossRef]
- Lee, J.Y.; Yoo, C.; Kim, Y.Y. The effect of lateral decubitus position on intraocular pressure in patients with untreated open-angle glaucoma. Am. J. Ophthalmol. 2013, 155, 329–335.e2. [Google Scholar] [CrossRef]
- Park, C.Y.; Do, J.R.; Kim, S.H.; Lim, C.Y.; Chuck, R.S. The effect of head tilt on keratometric measurement using the IOLMaster. Eye 2013, 27, 1411–1417. [Google Scholar] [CrossRef]
- Fesharaki, H.; Azizzadeh, A.; Ghoreishi, S.M.; Fasihi, M.; Badiei, S.; Rezaei, L. The effects of lateral head tilt on ocular astigmatic axis. Adv. Biomed. Res. 2014, 3, 10. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Boyd, K.E.; Burns, J. Age, stability of the precorneal tear film and the refractive index of tears. Cont. Lens Anterior Eye 2000, 23, 44–47. [Google Scholar] [CrossRef]
- Oh, T.; Jung, Y.; Chang, D.; Kim, J.; Kim, H. Changes in the tear film and ocular surface after cataract surgery. Jpn. J. Ophthalmol. 2012, 56, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Namba, H.; Kawasaki, R.; Sugano, A.; Murakami, T.; Nishitsuka, K.; Kato, T.; Kayama, T.; Yamashita, H. Age-Related Changes in Ocular Aberrations and the Yamagata Study (Funagata). Cornea 2017, 36 (Suppl. 1), S34–S40. [Google Scholar] [CrossRef]
- Namba, H.; Kawasaki, R.; Narumi, M.; Sugano, A.; Homma, K.; Nishi, K.; Murakami, T.; Kato, T.; Kayama, T.; Yamashita, H. Ocular higher-order wavefront aberrations in the Japanese adult population: The Yamagata Study (Funagata). Investig. Ophthalmol. Vis. Sci. 2014, 56, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Packer, M. Refractive surgery current status: Expanding options. Expert. Rev. Ophthalmol. 2022, 17, 231–232. [Google Scholar] [CrossRef]
- Wang, L.; Koch, D.D. Intraocular Lens Power Calculations in Eyes with Previous Corneal Refractive Surgery: Review and Expert Opinion. Ophthalmology 2021, 128, e121–e131. [Google Scholar] [CrossRef]
Parameter | Mean ± SD | p-Values | |||
---|---|---|---|---|---|
Condition 1 | Condition 2 | Condition 3 | Condition 2 vs. Condition 3 | Condition 1 vs. Condition 2 | |
Sph (D) | −3.10 ± 2.74 | −3.36 ± 2.79 | −3.40 ± 2.85 | 1 | 1 |
Cyl (D) | −0.99 ± 0.76 | −0.98 ± 0.73 | −0.96 ± 0.84 | 1 | 1 |
Axis (°) | 23.16 ± 49.32 | 26.79 ± 42.77 | 22.82 ± 40.35 | 0.210 | 0.326 |
Z(3, −3), V. Trefoil | −0.072 ± 0.18 | −0.077 ± 0.19 | −0.055 ± 0.17 | 0.724 | 1 |
Z(3, −1), V. Coma | 0.031 ± 0.32 | 0.024 ± 0.31 | 0.048 ± 0.29 | 0.382 | 0.686 |
Z(3, 1), H. Coma | 0.045 ± 0.16 | 0.063 ± 0.18 | 0.057 ± 0.17 | 0.514 | 0.566 |
Z(3, 3), H. Trefoil | −0.025 ± 0.11 | −0.036 ± 0.12 | −0.038 ± 0.12 | 0.566 | 0.292 |
Z(4, −4), Ob. Quadrafoil | 0.001 ± 0.05 | −0.001 ± 0.05 | 0.002 ± 0.05 | 0.928 | 0.550 |
Z(4, −2), Ob. 2nd Astig | 0.003 ± 0.05 | 0.003 ± 0.05 | 0.006 ± 0.04 | 0.764 | 1 |
Z(4, 0), Spherical | 0.13 ± 0.19 | 0.11 ± 0.21 | 0.06 ± 0.21 | 0.748 | 0.466 |
Z(4, 2), V. 2nd Astig | −0.033 ± 0.11 | −0.024 ± 0.12 | −0.012 ± 0.12 | 0.306 | 0.916 |
Z(4, 4), V. Quadrafoil | 0.029 ± 0.08 | 0.029 ± 0.09 | 0.033 ± 0.09 | 1 | 1 |
HOA_RMS | 0.45 ± 0.24 | 0.46 ± 0.25 | 0.42 ± 0.25 | 1 | 1 |
Parameter | Srm | ICC | ||||
---|---|---|---|---|---|---|
Condition 1 | Condition 2 | Condition 3 | Condition 1 | Condition 2 | Condition 3 | |
Sph (D) | 0.37 | 0.38 | 0.40 | 0.937 | 0.965 | 0.916 |
Cyl (D) | 0.10 | 0.10 | 0.11 | 0.920 | 0.957 | 0.967 |
Axis (º) | 5.00 | 5.64 | 6.91 | 0.918 | 0.906 | 0.958 |
Z(3,−3), V. Trefoil | 0.038 | 0.021 | 0.033 | 0.988 | 0.986 | 0.975 |
Z(3,−1), V. Coma | 0.049 | 0.057 | 0.039 | 0.932 | 0.911 | 0.925 |
Z(3, 1), H. Coma | 0.039 | 0.031 | 0.039 | 0.914 | 0.912 | 0.901 |
Z(3, 3), H. Trefoil | 0.034 | 0.027 | 0.032 | 0.924 | 0.975 | 0.915 |
Z(4,−4), Ob. Quadrafoil | 0.026 | 0.023 | 0.025 | 0.981 | 0.986 | 0.914 |
Z(4,−2), Ob. 2nd Astig | 0.021 | 0.017 | 0.018 | 0.911 | 0.915 | 0.923 |
Z(4, 0), Spherical | 0.055 | 0.051 | 0.045 | 0.968 | 0.919 | 0.909 |
Z(4, 2), V. 2nd Astig | 0.030 | 0.026 | 0.025 | 0.932 | 0.922 | 0.933 |
Z(4, 4), V. Quadrafoil | 0.029 | 0.026 | 0.024 | 0.956 | 0.957 | 0.963 |
Parameter | Condition 1 | Condition 2 | Condition 3 |
---|---|---|---|
Mean ± SD (°) | 0.090 ± 10.96 | −1.700 ± 11.90 | −3.733 ± 10.97 |
Srm | 1.991 | 2.149 | 2.280 |
ICC | 0.99 | 0.99 | 0.99 |
Axis deviation | |||
axis ≤ ±5° | 87 (97) | 89 (99) | 89 (99) |
±5° < axis ≤ ±10° | 3 (3) | 1 (1) | 1 (1) |
axis > ±10° | 0 (0) | 0 (0) | 0 (0) |
Difference in Axis (n = 18) | Conditions 1 and 2 | Conditions 2 and 3 |
---|---|---|
mean ± SD (°) | 2.58 ± 3.05 | 3.95 ± 2.67 |
p-value | 0.284 | 0.148 |
Δ axis | ||
Δ axis < ±3° | 15 (83) | 5 (28) |
Δ axis ≤ ±5° | 15 (83) | 14 (78) |
±5° < Δ axis ≤ ±10° | 3 (17) | 3 (17) |
Δ axis > ±10° | 0 (0) | 1 (6) |
Parameter | Mean Cyclotorsion (°) | Incyclotorsion (n) | Excyclotorsion (n) |
---|---|---|---|
Right eye (n = 9) | 5.28 ± 2.87 | 7 (77%) | 2 (22%) |
Left eye (n = 9) | 2.62 ± 1.58 | 4 (44%) | 5 (55%) |
Total (n = 18) | 3.95 ± 2.67 | 11 (61%) | 7 (38%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, N.E.; Brown, N.; Jun, J.H.; Bang, S.P. Comparison of Ocular Wavefront in Seated and Supine Positions Using a Hand-Held Hartmann–Shack Aberrometer. J. Clin. Med. 2025, 14, 6688. https://doi.org/10.3390/jcm14186688
Kwon NE, Brown N, Jun JH, Bang SP. Comparison of Ocular Wavefront in Seated and Supine Positions Using a Hand-Held Hartmann–Shack Aberrometer. Journal of Clinical Medicine. 2025; 14(18):6688. https://doi.org/10.3390/jcm14186688
Chicago/Turabian StyleKwon, Noh Eun, Nicolas Brown, Jong Hwa Jun, and Seung Pil Bang. 2025. "Comparison of Ocular Wavefront in Seated and Supine Positions Using a Hand-Held Hartmann–Shack Aberrometer" Journal of Clinical Medicine 14, no. 18: 6688. https://doi.org/10.3390/jcm14186688
APA StyleKwon, N. E., Brown, N., Jun, J. H., & Bang, S. P. (2025). Comparison of Ocular Wavefront in Seated and Supine Positions Using a Hand-Held Hartmann–Shack Aberrometer. Journal of Clinical Medicine, 14(18), 6688. https://doi.org/10.3390/jcm14186688