Immune Checkpoint Inhibitors Beyond Progression in Various Solid Tumors: A Systematic Review and Pooled Analysis
Abstract
1. Introduction
2. Material and Methods
2.1. Search Strategy and Eligibility Criteria
2.2. Study Selection, Data Extraction, and Quality Appraisal
2.3. Data Synthesis and Statistical Analysis
3. Results
3.1. Literature Search and Study Selection
3.2. Quality Assessment of Included Studies
3.3. Definition of Progression
- RECIST v1.1 was the dominant standard: 41/50 studies (82%)—including 27/29 lung cancer cohorts and all but 1 RCC series—declared progression exclusively by RECIST v1.1;
- Immune-adapted criteria were used in six studies (12%): four trial or post hoc datasets applied iRECIST and two melanoma cohorts used immune-related or immunomodified RECIST (irRC/imRECIST) to mandate confirmatory scans after an initial ≥20% tumor-burden increase.
3.4. Treatment Efficacy
3.4.1. Lung Cancer (Table 1, Table 2 and Table 3)
Study | Hazard Ratio for OS (95% CI) | Weight (%) |
---|---|---|
Stinchcombe et al. [32] | 0.69 (0.62–0.76) | 28.5 |
Ge et al. [23] | 0.40 (0.19–0.84) | 5.2 |
Tian et al. [33] | 0.44 (0.23–0.85) | 6.3 |
Won et al. [38] | 0.37 (0.20–0.70) | 6.6 |
Li et al. (SCLC) [25] | 0.55 (0.29–1.04) | 6.4 |
Ricciuti et al. [28] | 0.34 (0.22–0.51) | 10.8 |
Cheng et al. [19] | 0.13 (0.03–0.52) | 1.7 |
Saal et al. (NSCLC) [29] | 0.62 (0.41–0.92) | 11.2 |
Pooled HR | 0.53 (0.44–0.64) |
Subgroup | Hazard Ratio (HR) | 95% CI | |
---|---|---|---|
Overall NSCLC | 0.45 | 0.32–0.63 | |
Squamous NSCLC | 0.51 | 0.32–0.81 | |
Non-squamous NSCLC | 0.42 | 0.28–0.63 | |
Driver gene–negative NSCLC | 0.13 | 0.01–0.74 | |
Driver gene–positive NSCLC | 0.68 | 0.42–1.10 | |
Extensive-stage SCLC | 0.39 | 0.16–0.92 | |
Category | Subgroup | HR | 95% CI |
PD-L1 expression | High (≥50%) | 0.32 | 0.18–0.57 |
Intermediate (1–49%) | 0.47 | 0.29–0.76 | |
Negative (<1%) | 0.61 | 0.39–0.95 | |
Treatment line | First-line | 0.39 | 0.18–0.84 |
Second-line | 0.44 | 0.29–0.67 | |
Third-line or later | 0.51 | 0.32–0.81 | |
Pattern of progression | Slow progression (≤20% increase) | 0.31 | 0.18–0.53 |
Rapid progression (>20% increase) | 0.62 | 0.41–0.94 | |
New lesions only | 0.45 | 0.28–0.72 | |
Target lesion growth + new lesions | 0.58 | 0.37–0.91 | |
Duration of TBP | <6 weeks | 0.65 | 0.43–0.98 |
6–12 weeks | 0.42 | 0.27–0.65 | |
>12 weeks | 0.29 | 0.17–0.49 |
Study | Median PFS2 for TBP | Median PFS2 for non-TBP | HR (95% CI) |
---|---|---|---|
Cheng et al. [19] | 4.6 months | 2.1 months | 0.51 (0.34–0.76) |
Guven et al. [24] | 3.8 months | 1.9 months | 0.48 (0.33–0.69) |
Li et al. [55] | 4.2 months | 2.3 months | 0.45 (0.21–0.97) |
Yin et al. [43] | 4.6 months | Not reported | Not reported |
Pooled HR | 0.49 (0–37-0.65) |
3.4.2. Melanoma
3.4.3. RCC
3.4.4. Other Cancers
3.5. Safety
- -
- Dermatologic (rash, pruritus) and endocrine (thyroiditis, hypophysitis) events were most frequent;
- -
- Gastrointestinal (colitis, hepatitis) and pulmonary (pneumonitis) irAEs accounted for most grade ≥3 cases;
- -
- Lateonset but serious toxicities, such as myocarditis and nephritis, were mentioned in isolated reports but remained uncommon (<1%).
3.6. Biomarkers and Predictive Factors
3.7. Meta-Analysis of TBP in Cancer
3.7.1. Response Rates to Treatment Beyond Progression
- Overall response rate (ORR): 16.2% (95% CI: 12.8–20.1%);
- Disease control rate (DCR): 67.5% (95% CI: 61.3–73.2%).
3.7.2. Other Cancers (Table 4)
- RCC shows particularly strong benefit (HRs 0.18–0.54);
- HCC benefits from multiple post-progression strategies, with combined approaches (ICI + TKI) showing the greatest benefits;
- Benefits observed across various tumor types in mixed-cancer studies.
Study | Cancer Type | Outcome | Hazard Ratio (95% CI) | p-Value |
---|---|---|---|---|
George et al. [49] | mRCC | OS | Not directly reported | - |
Talbot et al. [59] | HCC | PPS (ICI beyond progression) | 0.52 (0.32–0.84) | 0.0075 |
Talbot et al. [59] | HCC | PPS (Post-PD TKI) | 0.38 (0.25–0.56) | <0.0001 |
Talbot et al. [59] | HCC | PPS (ICI + subsequent TKI) | 0.24 (0.12–0.49) | 0.0001 |
Talbot et al. [59] | HCC | PPS (Other post-PD therapies) | 0.41 (0.22–0.73) | 0.0031 |
Guven et al. [24] | Various | OS (TBP vs. non TBP) | 0.50 (0.35–0.72) | <0.001 |
Lim et al. [57] | HCC | PFS2 and OS2 | Comparable outcomes | - |
Saal et al. [29] | RCC | OS (TBP in low-risk) | 0.18 (0.06–0.55) | 0.002 |
Saal et al. [29] | UC | OS (TBP in low-risk) | 0.59 (0.34–1.00) | 0.052 |
Murianni et al. [64] | mRCC | OS (TBP vs. non-TBP) | 0.54 (0.40–0.72) | <0.001 |
3.7.3. Overall Pooled Analysis (All Studies; Table 5)
Subgroup | Hazard Ratio (95% CI) | Notes |
---|---|---|
By Cancer Type | ||
–Lung cancers | 0.53 (0.44–0.64) | Consistent OS benefit |
–Other cancers | 0.52 (0.42–0.65) | No difference vs. lung |
–Comparison (lung vs. other) | — | p = 0.91 (NS) |
By Treatment Type | ||
–Immunotherapy beyond progression | 0.45 (0.36–0.57) | Larger OS benefit |
–Other TBP approaches | 0.59 (0.51–0.69) | Benefit but less pronounced |
–Comparison (ICI vs. other TBP) | — | p = 0.07 (trend only) |
3.7.4. Heterogeneity Assessment
- Moderate heterogeneity was observed in the lung cancer studies (I2 = 67%), likely reflecting differences in patient populations, treatment regimens, and study designs;
- Low heterogeneity was observed in the non-lung cancer studies (I2 = 0%);
- The overall heterogeneity was moderate (I2 = 52%).
3.8. Ratings of the Quality of Evidence
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Pavlick, A.C.; Ariyan, C.E.; Buchbinder, E.I.; Postow, M.A.; Ernstoff, M.S.; Johnson, D.B.; Callahan, M.K.; Khushalani, N.I.; Luke, J.J.; Sullivan, R.J.; et al. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of melanoma, version 3.0. J. Immunother. Cancer 2023, 11, e006947. [Google Scholar] [CrossRef]
- Herbst, R.S.; Garon, E.B.; Kim, D.W.; Cho, B.C.; Gervais, R.; Perez-Gracia, J.L.; Han, J.Y.; Majem, M.; Forster, M.D.; Monnet, I.; et al. Five-year survival update from KEYNOTE-010: Pembrolizumab versus docetaxel for previously treated, programmed death-ligand 1-positive advanced NSCLC. J. Thorac. Oncol. 2021, 16, 1718–1732. [Google Scholar] [CrossRef]
- Tannir, N.M.; Albiges, L.; McDermott, D.F.; Plimack, E.R.; Barthélemy, P.; Porta, C.; Powles, T.; Lee, J.L.; Suarez, C.; Stroyakovskiy, D.; et al. Nivolumab plus ipilimumab versus sunitinib for first-line treatment of advanced renal cell carcinoma: Extended 8-year follow-up results of efficacy and safety from the phase III CheckMate 214 trial. Ann. Oncol. 2024, 35, 1026–1038. [Google Scholar] [CrossRef]
- Sharma, P.; Siddiqui, B.A.; Anandhan, S.; Yadav, S.S.; Subudhi, S.K.; Gao, J.; Goswami, S.; Singh, P.; Allison, J.P.; Ribas, A.; et al. The next decade of immune checkpoint therapy. Cancer Discov. 2021, 11, 838–857. [Google Scholar] [CrossRef]
- Seymour, L.; Bogaerts, J.; Perrone, A.; Ford, R.; Schwartz, L.H.; Mandrekar, S.; Lin, N.U.; Litière, S.; Dancey, J.; Chen, A.; et al. iRECIST: Guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017, 18, e143–e152. [Google Scholar] [CrossRef]
- Ristow, I.; Well, L.; Wiese, N.J.; Warncke, M.; Tintelnot, J.; Karimzadeh, A.; Koehler, D.; Adam, G.; Bannas, P.; Sauer, M. Tumor response evaluation using iRECIST: Feasibility and reliability of manual versus software-assisted assessments. Cancers 2024, 16, 993. [Google Scholar] [CrossRef] [PubMed]
- Nishino, M.; Giobbie-Hurder, A.; Gargano, M.; Suda, M.; Ramaiya, N.H.; Hodi, F.S. Developing a common language for tumor response to immunotherapy: Immune-related response criteria using unidimensional measurements. Clin. Cancer Res. 2013, 19, 3936–3943. [Google Scholar] [CrossRef] [PubMed]
- Garralda, E.; Laurie, S.A.; Seymour, L.; de Vries, E.G.E. Towards evidence-based response criteria for cancer immunotherapy. Nat. Commun. 2023, 14, 3001. [Google Scholar] [CrossRef] [PubMed]
- Adashek, J.J.; Moran, J.A.; Le, D.T.; Kurzrock, R. Lessons learned from a decade of immune checkpoint inhibition: The good, the bad, and the ugly. Cancer Metastasis Rev. 2025, 44, 43. [Google Scholar] [CrossRef]
- Long, G.V.; Weber, J.S.; Larkin, J.; Atkinson, V.; Grob, J.J.; Schadendorf, D.; Dummer, R.; Robert, C.; Marquez-Rodas, I.; McNeil, C.; et al. Nivolumab for patients with advanced melanoma treated beyond progression: Analysis of 2 phase 3 clinical trials. JAMA Oncol. 2017, 3, 1511–1519. [Google Scholar] [CrossRef]
- Beaver, J.A.; Hazarika, M.; Mulkey, F.; Mushti, S.; Chen, H.; He, K.; Sridhara, R.; Goldberg, K.B.; Chuk, M.K.; Chi, D.C.; et al. Patients with melanoma treated with an anti–PD-1 antibody beyond RECIST progression: A US FDA pooled analysis. Lancet Oncol. 2018, 19, 229–239. [Google Scholar] [CrossRef]
- Gandara, D.R.; von Pawel, J.; Mazieres, J.; Sullivan, R.; Helland, Å.; Han, J.Y.; Aix, S.P.; Rittmeyer, A.; Barlesi, F.; Kubo, T.; et al. Atezolizumab treatment beyond progression in advanced NSCLC: Results from the randomized, phase III OAK study. JAMA Oncol. 2018, 4, e182982. [Google Scholar] [CrossRef]
- Escudier, B.; Motzer, R.J.; Sharma, P.; McDermott, D.F.; George, S.; Hammers, H.J.; Plimack, E.R.; Porta, C.; Donskov, F.; Gurney, H.; et al. Treatment beyond progression with nivolumab in advanced renal cell carcinoma (CheckMate 025). Eur. Urol. 2017, 72, 368–376. [Google Scholar] [CrossRef]
- Garon, E.B.; Rizvi, N.A.; Hui, R.; Leighl, N.; Balmanoukian, A.S.; Eder, J.P.; Patnaik, A.; Aggarwal, C.; Gubens, M.; Horn, L.; et al. Five-Year Overall Survival for Patients with Advanced Non-Small-Cell Lung Cancer Treated with Pembrolizumab: Results from the Phase I KEYNOTE-001 Study. J. Clin. Oncol. 2019, 37, 2518–2527. [Google Scholar] [CrossRef]
- Powles, T.; Durán, I.; van der Heijden, M.S.; Loriot, Y.; Vogelzang, N.J.; De Giorgi, U.; Oudard, S.; Retz, M.; Castellano, D.; Bamias, A.; et al. Atezolizumab vs chemotherapy in platinum-treated urothelial carcinoma: Long-term OS and safety (IMvigor211). Lancet 2020, 395, 1547–1557. [Google Scholar] [CrossRef]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef] [PubMed]
- Metro, G.; Signorelli, D.; Ricciuti, B.; Gili, A.; Rossi, G.; Zilembo, N.; Migliorino, M.R.; Tiseo, M.; Zullo, L.; Brambilla, M.; et al. Outcomes of NSCLC patients treated with immune checkpoint inhibitors beyond progression. Clin. Lung Cancer 2020, 21, 9–15. [Google Scholar] [CrossRef]
- Chen, C.; Xiong, X.; Cheng, Y.; Fang, Y.; Zhao, J.; Wang, J.; Hu, Y.; Wang, Y.; Xu, Y.; Zhou, Q.; et al. Expanding applications of immune checkpoint inhibitors in advanced lung cancer beyond progression. Front. Immunol. 2023, 14, 1266992. [Google Scholar] [CrossRef]
- Cheng, Y.; Ye, Z.; Xie, Y.; Zhang, C.; Wang, Z.; Liu, S.; Li, H.; Li, Z.; Wang, W.; Zhang, Y.; et al. Continuation of immunotherapy beyond progression benefits survival in advanced NSCLC. Clin. Transl. Oncol. 2024, 26, 1357–1367. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Kang, W.; Chen, Y.; Zhang, W.; Liu, Y.; Huang, Q.; Sun, H.; Wang, Y.; Zhao, X.; Li, J.; et al. Continuous immunotherapy beyond disease progression in advanced NSCLC and SCLC. Cancer Immunol. Immunother. 2025, 74, 124. [Google Scholar] [CrossRef]
- Deng, J.Y.; Yang, M.Y.; Yang, X.R.; Zhang, L.; Wang, Y.; Liu, J.; Chen, X.; Li, Q.; Li, J.; Zhou, C.; et al. Patterns of failure and subsequent treatment after progression on first-line immunotherapy monotherapy in advanced NSCLC. BMC Cancer 2024, 24, 1190. [Google Scholar] [CrossRef] [PubMed]
- Enomoto, T.; Tamiya, A.; Matsumoto, K.; Kanazu, M.; Atagi, S.; Yoshida, T.; Okishio, K.; Komuta, K.; Kawachi, H.; Takayama, K.; et al. Nivolumab treatment beyond progressive disease in advanced NSCLC. Clin. Transl. Oncol. 2021, 23, 582–590. [Google Scholar] [CrossRef]
- Ge, X.; Zhang, Z.; Zhang, S.; Liu, T.; Zhou, J.; Zhu, H.; Wang, M.; Qiu, Y.; Wang, R.; Huang, J.; et al. Immunotherapy beyond progression in advanced NSCLC. Transl. Lung Cancer Res. 2020, 9, 2391–2400. [Google Scholar] [CrossRef]
- Guven, D.C.; Yekeduz, E.; Erul, E.; Kilickap, S.; Dizdar, O.; Esin, E.; Aksoy, S.; Arik, Z.; Sahin, T.K.; Koyuncu, A.; et al. Benefit of treatment beyond progression with immune checkpoint inhibitors: A multicenter cohort. Clin. Transl. Oncol. 2023, 25, 3599–3606. [Google Scholar] [CrossRef]
- Li, L.; Liu, T.; Liu, Q.; Zhang, J.; Wang, Y.; Zhang, P.; Chen, X.; Xu, Y.; Wang, H.; Sun, Y.; et al. Rechallenge of immunotherapy beyond progression in extensive-stage small-cell lung cancer. Front. Pharmacol. 2022, 13, 967559. [Google Scholar] [CrossRef]
- Liang, H.; Xu, Y.; Chen, M.; Zhong, W.; Zhao, J.; Wang, M.; Zhang, L.; Li, H.; Peng, W.; Zhang, J.; et al. Response patterns in metastatic NSCLC during PD-1/PD-L1 therapy: RECIST 1.1 vs iRECIST. Thorac. Cancer 2020, 11, 1068–1075. [Google Scholar] [CrossRef]
- Pourmir, I.; Elaidi, R.; Maaradji, Z.; Boudjemaa, A.; Le Moulec, S.; Deloger, M.; Allouache, D.; Girard, N.; Chouaïd, C.; Monnet, I.; et al. Strategies for anti–PD-1/PD-L1 continuation beyond progression after initial durable benefit in advanced NSCLC: Longitudinal study. Cancers 2023, 15, 5587. [Google Scholar] [CrossRef]
- Ricciuti, B.; Genova, C.; Bassanelli, M.; Brambilla, M.; Metro, G.; Baglivo, S.; Grossi, F.; Chiari, R.; De Giglio, A.; Maio, M.; et al. Safety and efficacy of nivolumab in advanced NSCLC treated beyond progression. Clin. Lung Cancer 2019, 20, 178–185. [Google Scholar] [CrossRef]
- Saal, J.; Eckstein, M.; Ritter, M.; Kroiss, M.; Becker, A.; Stief, C.G.; Heter, P.F.; Zeman, F.; Porres, D.; Tauber, R.; et al. Modified Glasgow Prognostic Score to guide decisions for immunotherapy treatment beyond progression. Eur. J. Cancer 2025, 215, 115163. [Google Scholar] [CrossRef] [PubMed]
- Salous, T.; Shukla, N.A.; Althouse, S.K.; Eid, S.M.; Tokarski, A.; Kiedrowski, L.A.; Park, K.; Dahlberg, S.E.; Owonikoko, T.K.; Langer, C.J.; et al. Phase 2 trial of chemotherapy plus pembrolizumab in advanced NSCLC previously treated with a PD-1/PD-L1 inhibitor. Cancer 2023, 129, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Singhi, E.K.; Mott, F.; Worst, M.; Gilbert, C.; Lee, M.; Boyce, L.; Rossi, G.; Patel, M.R.; Patel, S.P.; Taverna, J.A.; et al. Clinical outcomes of immunotherapy continued beyond radiographic progression in older adults with advanced NSCLC. Oncol. Lett. 2023, 25, 262. [Google Scholar] [CrossRef]
- Stinchcombe, T.E.; Miksad, R.A.; Gossai, A.; Goldberg, S.B.; Blumenthal, G.M.; Menzin, J.; Estok, R.; Lucci, J.; Wakelee, H.A. Real-world outcomes for advanced NSCLC patients treated with a PD-L1 inhibitor beyond progression. Clin. Lung Cancer 2020, 21, 389–394. [Google Scholar] [CrossRef]
- Tian, T.; Yu, M.; Yu, Y.; Zhang, X.; Liu, Q.; Zhang, Y.; Wang, W.; Chen, J.; Xu, J.; Li, J.; et al. ICI-based treatment beyond progression with prior immunotherapy in stage IV NSCLC: A retrospective study. Transl. Lung Cancer Res. 2022, 11, 1027–1037. [Google Scholar] [CrossRef]
- Topp, B.G.; Channavazzala, M.; Mayawala, K.; Thakur, A.; Zhang, J.; Gupta, A.; Fan, J.; Lin, J.; O’Brien, D.; Robbins, P.B.; et al. Tumor dynamics in patients with solid tumors treated with pembrolizumab beyond disease progression. Cancer Cell 2023, 41, 1680–1688.e2. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liang, N.; Qiao, L.; Sun, Y.; Li, Y.; Wang, Y.; Zhao, J.; Fan, Y.; Zhang, J.; Zhou, C.; et al. Clinical features and prognosis of stage III/IV lung cancer after toripalimab: Real-world retrospective. J. Cancer Res. Ther. 2025, 20, 2021–2028. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Jing, X.; Chen, F.; Zhang, W.; Li, J.; Liu, X.; Zhang, Y.; He, Y.; Huang, J.; Xu, J.; et al. ICI-Based Treatment Beyond Progression with Prior Immunotherapy in Driver-Gene–Negative Advanced NSCLC. BMC Cancer 2024, 24, 569. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, S.; Zhang, X.; Li, H.; Wang, Z.; Liu, J.; Zhou, J.; Zhao, Y.; Xu, L.; Zhou, C.; et al. Continuation of Anti–PD-1 Therapy Plus Physician-Choice Treatment Beyond First Progression Is Not Associated with Benefit in Advanced NSCLC. Front. Immunol. 2023, 14, 1151385. [Google Scholar] [CrossRef]
- Won, S.E.; Park, H.J.; Byun, S.; Kang, J.; Kang, E.J.; Kim, H.R.; Lim, S.M.; Cho, B.C. Impact of Pseudoprogression and TBP on Outcomes in NSCLC Treated with ICIs. Oncoimmunology 2020, 9, 1776058. [Google Scholar] [CrossRef]
- Xu, Y.; Li, H.; Fan, Y. Progression Patterns, Treatment, and Prognosis Beyond Resistance of Responders to Immunotherapy in Advanced NSCLC. Front. Oncol. 2021, 11, 642883. [Google Scholar] [CrossRef]
- Xu, M.; Hao, Y.; Zeng, X.; Zhang, X.; Wang, J.; Zhang, L.; Li, Y.; Chen, H.; Chen, M.; Wu, Y.; et al. ICIs Beyond First-Line Progression with Prior Immunotherapy in Advanced NSCLC. J. Thorac. Dis. 2023, 15, 1648–1657. [Google Scholar] [CrossRef]
- Yan, X.; Zhao, L.; Wu, F.; Li, H.; Liu, J.; Zhou, C.; Zhang, J.; Xu, Y.; Liu, S.; Wang, J.; et al. Efficacy and safety of ICI re-challenge in locally advanced and advanced NSCLC: A retrospective study. J. Thorac. Dis. 2024, 16, 1787–1803. [Google Scholar] [CrossRef]
- Yamamoto, K.; Ninomaru, T.; Okada, H.; Kobayashi, K.; Hayashi, K.; Otsubo, K.; Hara, S.; Inoue, T.; Watanabe, K.; Ito, H.; et al. Continuous immunotherapy beyond progression in clinical practice for SCLC. Thorac. Cancer 2024, 15, 1271–1275. [Google Scholar] [CrossRef]
- Yin, G.; Liu, X.; Yu, X.; Wang, H.; Li, L.; Xu, J.; Zhang, J.; Sun, Y.; Zhao, J.; Zhou, C.; et al. Outcomes of ICI rechallenge alone or in combination after progression from first-line ICI plus chemotherapy in advanced NSCLC. Sci. Rep. 2025, 15, 30. [Google Scholar] [CrossRef]
- Yin, Y.; Tang, R.; Wang, H.; Li, Z.; Zhang, X.; Guo, W.; Liu, Q.; Sun, J.; Li, Y.; Liu, J.; et al. Pembrolizumab plus chemotherapy as second-line treatment in NSCLC after ICI failure: Phase 2 study. Transl. Lung Cancer Res. 2022, 11, 833–845. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, W.; Liu, J.; Zhao, Y.; Li, L.; Sun, H.; Chen, J.; Wang, Z.; Xu, X.; Liu, Y.; et al. Clinical impact of PD-1 blockade beyond progression in advanced NSCLC. J. Cancer Res. Clin. Oncol. 2023, 149, 4789–4798. [Google Scholar] [CrossRef]
- Ahmed, F.S.; Dercle, L.; Goldmacher, G.V.; Luber, B.; Ammar, R.; Finkel, G.; Tang, Y.; Wang, L.; Schwartz, L.H.; Menzies, A.M.; et al. Comparing RECIST 1.1 and iRECIST in advanced melanoma patients treated with pembrolizumab: Phase II trial. Eur. Radiol. 2021, 31, 1853–1862. [Google Scholar] [CrossRef]
- Czarnecka, A.M.; Sobczuk, P.; Rogala, P.; Adamowicz, M.; Sienkiewicz, B.; Gajewska, J.; Walendzik, K.; Kalinka, E.; Gorczyca, M.; Krawczyk, P.; et al. Immunotherapy beyond RECIST progression in advanced melanoma: Real-world evidence. Cancer Immunol. Immunother. 2022, 71, 1949–1958. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, L.; Apuri, S.; Eroglu, Z.; Kottschade, L.A.; Forschner, A.; Gutzmer, R.; Schlaak, M.; Schmidt, H.; van Akkooi, A.C.J.; Rutkowski, P.; et al. Ipilimumab alone or with nivolumab after anti–PD-1 progression in advanced melanoma. Eur. J. Cancer 2017, 75, 47–55. [Google Scholar] [CrossRef] [PubMed]
- George, S.; Motzer, R.J.; Hammers, H.J.; Redman, B.G.; Kuzel, T.M.; Tykodi, S.S.; Plimack, E.R.; Jiang, J.; Waxman, I.M.; Rini, B.I.; et al. Safety and efficacy of nivolumab in mRCC treated beyond progression: Subgroup analysis of a randomized trial. JAMA Oncol. 2016, 2, 1179–1186. [Google Scholar] [CrossRef]
- Ishihara, H.; Takagi, T.; Kondo, T.; Omae, K.; Iizuka, J.; Kobayashi, H.; Tanabe, K. Nivolumab beyond progression for mRCC: New role of metastasectomy in the ICI era? Int. J. Urol. 2020, 27, 691–694. [Google Scholar] [CrossRef]
- Colle, R.; Radzik, A.; Cohen, R.; Kawakami, H.; Jary, M.; André, T.; Aparicio, T.; Tougeron, D.; Svrcek, M.; Lievre, A.; et al. Pseudoprogression in patients treated with ICIs for MSI-H/dMMR metastatic colorectal cancer. Eur. J. Cancer 2021, 144, 9–16. [Google Scholar] [CrossRef]
- Parseghian, C.M.; Patnana, M.; Bhosale, P.; Hess, K.; Varadhachary, G.R.; Overman, M.J.; Wolff, R.A.; Javle, M.; Shroff, R.T.; Pant, S.; et al. Evaluating pseudoprogression in colorectal and pancreatic tumors treated with immuno-therapy. J. Immunother. 2018, 41, 284–291. [Google Scholar] [CrossRef]
- Boku, N.; Satoh, T.; Ryu, M.H.; Chao, Y.; Kato, K.; Chung, H.C.; Chen, J.S.; Muro, K.; Kang, W.K.; Yeh, K.H.; et al. Nivolumab in previously treated advanced gastric cancer (ATTRACTION-2): 3-year update and outcomes beyond progression. Gastric Cancer 2021, 24, 946–958. [Google Scholar] [CrossRef]
- Necchi, A.; Joseph, R.W.; Loriot, Y.; Hoffman-Censits, J.; Perez-Gracia, J.L.; Petrylak, D.P.; Derleth, C.L.; Ding, B.; Kaiser, C.; Hussain, M.H.; et al. Atezolizumab in platinum-treated urothelial carcinoma: Post-progression outcomes (IMvigor210). Ann. Oncol. 2017, 28, 3044–3050. [Google Scholar] [CrossRef]
- Li, J.; Ding, F.; Zhang, S.; Zhang, H.; Wang, Y.; Gao, Y.; Wang, X.; Zhao, X.; Xu, J.; Wang, Z.; et al. Continuation of the same PD-1 inhibitor beyond progression: A novel option for advanced gastric cancer. BMC Cancer 2024, 24, 1292. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chu, X.; Liu, H.; Liu, Y.; Chen, Y.; Wang, J.; Liu, Z.; Guo, H.; Li, J.; Xu, B.; et al. Nomogram predicting prognosis of HCC patients following ICI treatment beyond progression: Single-center Chinese cohort. Hepatobiliary Surg. Nutr. 2024, 13, 771–787. [Google Scholar] [CrossRef]
- Lim, M.; Muquith, M.; Miramontes, B.; Nikanjam, M.; Kim, A.K.; Yang, J.D.; Mody, K.; Singal, A.G.; Yarchoan, M.; Kelley, R.K.; et al. Treatment beyond progression after anti–PD-1 blockade in hepatocellular carcinoma. Cancer Res. Commun. 2023, 3, 1912–1920. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Qin, S.; Meng, Z.; Chen, Z.; Chai, X.; Xu, L.; Bai, Y.; Yin, X.; Zhang, X.; Lu, Y.; et al. Camrelizumab for advanced HCC: Two-year outcomes and treatment beyond progression. Liver Cancer 2021, 10, 500–509. [Google Scholar] [CrossRef] [PubMed]
- Talbot, T.; D’Alessio, A.; Pinter, M.; Galle, P.R.; Kudo, M.; Abou-Alfa, G.K.; Vogel, A.; Kelley, R.K.; Meyer, T.; Rimassa, L.; et al. Progression patterns and therapeutic sequencing after ICI in HCC: International observational study. Liver Int. 2023, 43, 695–707. [Google Scholar] [CrossRef]
- Bei, W.; Dong, S.; Liu, G.; Wang, H.; Zhang, J.; Sun, Y.; Huang, J.; Lin, J.; Chen, W.; Liu, Q.; et al. Efficacy and safety of PD-1 rechallenge as second-line treatment in metastatic nasopharyngeal carcinoma. Cancer Manag. Res. 2024, 16, 771–780. [Google Scholar] [CrossRef]
- Jiang, Y.; Fang, T.; Lu, N.; Sun, Y.; Zhang, J.; Wu, Z.; Lin, J.; Zhao, H.; Wang, F.; Guo, J.; et al. Anti–PD-1 rechallenge with anti-angiogenesis or anti-EGFR therapy beyond progression in recurrent/metastatic nasopharyngeal carcinoma. Crit. Rev. Oncol. Hematol. 2023, 190, 104113. [Google Scholar] [CrossRef]
- Haddad, R.; Concha-Benavente, F.; Blumenschein, G.; Fayette, J.; Guigay, J.; Colevas, A.D.; Licitra, L.; Vokes, E.E.; Worden, F.; Saba, N.F.; et al. Nivolumab beyond progression in recurrent/metastatic HNSCC (CheckMate 141). Cancer 2019, 125, 3208–3218. [Google Scholar] [CrossRef] [PubMed]
- Fukuokaya, W.; Kimura, T.; Yanagisawa, T.; Yonese, J.; Takahashi, A.; Kitamura, H.; Iwamura, H.; Takahashi, N.; Yamamoto, H.; Ozono, S.; et al. Benefit of continuing pembrolizumab beyond progression in metastatic urothelial carcinoma. Cancer Immunol. Immunother. 2022, 71, 229–236. [Google Scholar] [CrossRef]
- Murianni, V.; Signori, A.; Buti, S.; Rebuzzi, S.E.; Bimbatti, D.; De Giorgi, U.; Chiellino, S.; Galli, L.; Zucali, P.A.; Masini, C.; et al. Time to strategy failure and treatment beyond progression in pretreated metastatic renal cell carcinoma patients receiving nivolumab: Post-hoc analysis of the Meet-URO 15 study. Front. Oncol. 2024, 14, 1307635. [Google Scholar] [CrossRef]
- Grothey, A.; Sobrero, A.F.; Shields, A.F.; Yoshino, T.; Paul, J.; Taieb, J.; Souglakos, J.; Shi, Q.; Kerr, R.; Lenz, H.J.; et al. Continuation of bevacizumab after first progression in mCRC: Phase III ML18147 trial. J. Clin. Oncol. 2013, 31, 3219–3225. [Google Scholar] [CrossRef]
- Tinker, A.V.; Ellard, S.; Welch, S.; Eisenhauer, E.; Tu, D.; Ayoub, J.P.; Norris, B.; Vandenberg, T.; Sawyer, M.B.; Seymour, L.; et al. Continued chemotherapy beyond progression: Clinical benefits and limitations. Ann. Oncol. 2010, 21, 2047–2053. [Google Scholar] [CrossRef]
- Robert, C.; Ribas, A.; Hamid, O.; Daud, A.; Wolchok, J.D.; Joshua, A.M.; Hwu, W.J.; Weber, J.S.; Gangadhar, T.C.; Joseph, R.W.; et al. Durable complete response after pembrolizumab discontinuation in metastatic melanoma. J. Clin. Oncol. 2018, 36, 1668–1674. [Google Scholar] [CrossRef]
- Eggermont, A.M.M.; Blank, C.U.; Mandala, M.; Long, G.V.; Atkinson, V.; Dalle, S.; Haydon, A.; Lichinitser, M.; Khattak, A.; Carlino, M.S.; et al. Adjuvant pembrolizumab vs placebo in resected stage III melanoma (KEYNOTE-054). N. Engl. J. Med. 2018, 378, 1789–1801. [Google Scholar] [CrossRef]
- Luke, J.J.; Ascierto, P.A.; Khattak, M.A.; Rutkowski, P.; Grob, J.J.; Hauschild, A.; Patel, S.P.; Dalle, S.; Yamazaki, N.; Gogas, H.; et al. Pembrolizumab vs placebo as adjuvant therapy in resected stage IIB/IIC melanoma: Long-term follow-up (KEYNOTE-716). Eur. J. Cancer 2025, 220, 115381. [Google Scholar] [CrossRef] [PubMed]
- Palma, D.A.; Olson, R.; Harrow, S.; Gaede, S.; Louie, A.V.; Haasbeek, C.; Mulroy, L.; Lock, M.; Rodrigues, G.B.; Yaremko, B.P.; et al. SABR-COMET phase II randomized trial: Long-term results in oligometastatic cancers. J. Clin. Oncol. 2020, 38, 2830–2838. [Google Scholar] [CrossRef] [PubMed]
- Haibe, Y.; El Husseini, Z.; El Sayed, R.; Shamseddine, A. Resisting resistance to immune checkpoint therapy: Systematic review. Int. J. Mol. Sci. 2020, 21, 6176. [Google Scholar] [CrossRef]
- Karam, J.A.; Jacobsen, A.; McKay, R.R.; Zhang, T.; Hernandez-Alejandro, R.; Powles, T.; Rini, B.I.; Atkins, M.B.; Hammers, H.J.; Choueiri, T.K.; et al. Oligoprogression in metastatic renal cell carcinoma: Clinical implications and future directions. Eur. Urol. Focus 2020, 6, 601–607. [Google Scholar] [CrossRef]
- Han, J.; Li, Y.; Zhang, J.; Zhang, Z.; Xiang, X.; Guo, Y.; Xie, W.; Zhang, Y.; Chen, Y.; Huang, Y.; et al. Monitoring response to immunotherapy using ctDNA: Case series and review. Clin. Transl. Med. 2020, 10, e167. [Google Scholar] [CrossRef]
- Sivapalan, L.; Ott, P.A.; Hellmann, M.D.; Johnson, M.L.; Puzanov, I.; Lopes, G.; Awad, M.M.; McDermott, D.F.; Rizvi, N.A.; Wolchok, J.D.; et al. Circulating tumor DNA dynamics predict response and progression in patients receiving ICIs. J. Immunother. Cancer 2023, 11, e005924. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Guo, T.; Huang, J.; Li, J.; Duan, J.; Bai, H.; Wang, J.; Wang, J.; Zhou, C. TCR repertoire diversity of peripheral PD-1+ CD8+ T cells predicts outcomes after immunotherapy in NSCLC. Biomark. Res. 2020, 8, 49. [Google Scholar] [CrossRef]
- Jun, T.; Park, J.; Kim, H.; Lee, Y.; Cho, J.; Kim, H.R.; Cho, B.C.; Lee, S.H.; Ahn, M.J.; Han, J.Y.; et al. Peripheral TCR repertoire diversity as a predictor of benefit from ICIs. Cancer Immunol. Immunother. 2025, 74, 211–223. [Google Scholar] [CrossRef]
- Weickhardt, A.J.; Scheier, B.; Burke, J.M.; Gan, G.; Lu, X.; Bunn, P.A., Jr.; Aisner, D.L.; Gaspar, L.E.; Kavanagh, B.D.; Doebele, R.C.; et al. Local ablative therapy of oligoprogressive disease prolongs disease control by TKIs in onco-gene-addicted NSCLC. J. Thorac. Oncol. 2012, 7, 1807–1814. [Google Scholar] [CrossRef]
- Li, C.; Qi, X.; Yan, M.; Xu, L.; Zhang, H.; Yu, J.; Zhou, Y.; Chen, Y.; Liu, Z.; Liu, Y.; et al. Chemotherapy-induced immunogenic cell death combined with ICIs: Mechanisms and clinical implications. Front. Pharmacol. 2025, 16, 1572195. [Google Scholar] [CrossRef]
- Drew, Y.; Kim, J.W.; Penson, R.T.; Gore, M.; Alvarez, E.C.; Friedlander, M.; Christensen, R.D.; López, J.; Floquet, A.; Lund, B.; et al. Olaparib ± durvalumab ± bevacizumab in PARPi-naïve platinum-sensitive relapsed ovarian cancer (MEDIOLA). Clin. Cancer Res. 2024, 30, 50–62. [Google Scholar] [CrossRef]
- Li, W.; Chen, J.; Huang, T.; Zhang, Y.; Zhou, H.; Liu, Y.; Wang, H.; Chen, X.; Zhang, J.; Sun, Y.; et al. Safety of ICI rechallenge after severe immune-related adverse events: Retrospective analysis. Front. Oncol. 2024, 14, 1403658. [Google Scholar] [CrossRef]
- Tawbi, H.A.; Hodi, F.S.; Lipson, E.J.; Ascierto, P.A.; Matamala, L.; Castillo Gutierrez, E.; Carlino, M.S.; Grob, J.J.; Mortier, L.; Hernandez-Aya, L.F.; et al. Three-year overall survival with nivolumab + relatlimab in advanced melanoma (RELATIVITY-047). J. Clin. Oncol. 2024, 43, 1546–1552. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Melanoma: Cutaneous. Version 2.2024. Available online: www.nccn.org (accessed on 15 April 2025).
- National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Non–Small Cell Lung Cancer. Version 3.2024. Available online: www.nccn.org (accessed on 15 April 2025).
- Michielin, O.; van Akkooi, A.C.J.; Ascierto, P.A.; Dummer, R.; Keilholz, U.; Lorigan, P.; Mandalà, M.; Queirolo, P.; Robert, C.; Spatz, A.; et al. Cutaneous melanoma: ESMO Clinical Practice Guidelines. Ann. Oncol. 2022, 33, 676–689. [Google Scholar] [CrossRef]
- Planchard, D.; Popat, S.; Kerr, K.; Novello, S.; Smit, E.F.; Faivre-Finn, C.; Mok, T.S.; Reck, M.; Van Schil, P.E.; Hellmann, M.D.; et al. Metastatic NSCLC: ESMO Clinical Practice Guidelines. Ann. Oncol. 2023, 34, 272–286. [Google Scholar] [CrossRef]
- Sullivan, R.J.; Atkins, M.B.; Kirkwood, J.M.; Agarwala, S.S.; Clark, J.I.; Ernstoff, M.S.; Fecher, L.; Gajewski, T.F.; Gastman, B.; Lawson, D.H.; et al. An Update on the Society for Immunotherapy of Cancer Consensus Statement on Tumor Immunotherapy for the Treatment of Cutaneous Melanoma: Version 2.0. J. Immunother. Cancer 2018, 6, 44. [Google Scholar] [CrossRef] [PubMed]
- Govindan, R.; Aggarwal, C.; Antonia, S.J.; Davies, M.; Dubinett, S.M.; Ferris, A.; Forde, P.M.; Garon, E.B.; Goldberg, S.B.; Hassan, R.; et al. SITC clinical practice guideline on immunotherapy for lung cancer and mesothelioma. J. Immunother. Cancer 2022, 10, e003956. [Google Scholar] [CrossRef]
- Brahmer, J.R.; Lacchetti, C.; Schneider, B.J.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; Ernstoff, M.S.; Gardner, T.J.; Ginex, P.; et al. Management of immune-related adverse events in patients treated with ICIs: ASCO–SITC guideline. J. Clin. Oncol. 2022, 40, 3993–4012. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrelli, F.; Ghidini, A.; Parati, M.C.; Borgonovo, K.; Rossitto, M.; Ghilardi, M.; Dognini, G.; Petro’, D.; Angeli, I.; Lonati, V.; et al. Immune Checkpoint Inhibitors Beyond Progression in Various Solid Tumors: A Systematic Review and Pooled Analysis. J. Clin. Med. 2025, 14, 6680. https://doi.org/10.3390/jcm14186680
Petrelli F, Ghidini A, Parati MC, Borgonovo K, Rossitto M, Ghilardi M, Dognini G, Petro’ D, Angeli I, Lonati V, et al. Immune Checkpoint Inhibitors Beyond Progression in Various Solid Tumors: A Systematic Review and Pooled Analysis. Journal of Clinical Medicine. 2025; 14(18):6680. https://doi.org/10.3390/jcm14186680
Chicago/Turabian StylePetrelli, Fausto, Antonio Ghidini, Maria Chiara Parati, Karen Borgonovo, Mauro Rossitto, Mara Ghilardi, Giuseppina Dognini, Daniela Petro’, Irene Angeli, Veronica Lonati, and et al. 2025. "Immune Checkpoint Inhibitors Beyond Progression in Various Solid Tumors: A Systematic Review and Pooled Analysis" Journal of Clinical Medicine 14, no. 18: 6680. https://doi.org/10.3390/jcm14186680
APA StylePetrelli, F., Ghidini, A., Parati, M. C., Borgonovo, K., Rossitto, M., Ghilardi, M., Dognini, G., Petro’, D., Angeli, I., Lonati, V., Dottorini, L., & Iaculli, A. (2025). Immune Checkpoint Inhibitors Beyond Progression in Various Solid Tumors: A Systematic Review and Pooled Analysis. Journal of Clinical Medicine, 14(18), 6680. https://doi.org/10.3390/jcm14186680