Minimally Invasive Mitral Valve Replacement in the Gray Zone: Bioprosthetic vs. Mechanical Valves in Patients Aged 50–69 Years
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Choice of Prosthesis
2.3. Surgical Approaches
2.4. Data Collection and Follow-Up
2.5. Echocardiographic Assessment
2.6. Ethical Statement
2.7. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Procedural Characteristics
3.3. Echocardiographic Assessments
3.4. Early Outcomes
3.5. Late Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MIMVR | Minimally invasive mitral valve replacement |
MV | Mitral valve |
MI | Mitral valve insufficiency |
MS | Mitral valve stenosis |
CPB | Cardiopulmonary bypass |
NOAF | New-onset arrhythmias and atrial fibrillation |
LVEF | Left ventricular ejection fraction |
SD | Standard deviation |
AF | Atrial fibrillation |
NYHA | New York Heart Association |
ECMO | Extracorporeal membrane oxygenation |
FFP | Fresh frozen plasma |
SVD | Structural valve deterioration |
AHA/ACC | American Heart Association/American College of Cardiology |
ESC/EACTS | European Society of Cardiology/European Association for Cardio-Thoracic Surgery |
MICS | Minimally invasive cardiac surgery |
References
- Glauber, M.; Miceli, A.; Canarutto, D.; Lio, A.; Murzi, M.; Gilmanov, D.; Ferrarini, M.; Farneti, P.A.; Quaini, E.L.; Solinas, M. Early and long-term outcomes of minimally invasive mitral valve surgery through right minithoracotomy: A 10-year experience in 1604 patients. J. Cardiothorac. Surg. 2015, 10, 181. [Google Scholar] [CrossRef] [PubMed]
- Goecke, S.; Pitts, L.; Dini, M.; Montagner, M.; Wert, L.; Akansel, S.; Kofler, M.; Stoppe, C.; Ott, S.; Jacobs, S.; et al. Enhanced Recovery After Cardiac Surgery for Minimally Invasive Valve Surgery: A Systematic Review of Key Elements and Advancements. Medicina 2025, 61, 495. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Gupta, S.; Chandrakumar, D.; Nienaber, T.A.; Indraratna, P.; Ang, S.C.; Phan, K.; Yan, T.D. A meta-analysis of minimally invasive versus conventional mitral valve repair for patients with degenerative mitral disease. Ann. Cardiothorac. Surg. 2013, 2, 693–703. [Google Scholar] [CrossRef] [PubMed]
- Goldstone, A.B.; Chiu, P.; Baiocchi, M.; Lingala, B.; Patrick, W.L.; Fischbein, M.P.; Woo, Y.J. Mechanical or Biologic Prostheses for Aortic-Valve and Mitral-Valve Replacement. N. Engl. J. Med. 2017, 377, 1847–1857. [Google Scholar] [CrossRef] [PubMed]
- Chikwe, J.; Chiang, Y.P.; Egorova, N.N.; Itagaki, S.; Adams, D.H. Survival and outcomes following bioprosthetic vs mechanical mitral valve replacement in patients aged 50 to 69 years. JAMA 2015, 313, 1435–1442. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Awad, A.K.; Varghese, K.S.; Sehgal, V.S.; Hisham, K.; George, J.; Pandey, R.; Vega, E.; Polizzi, M.; Mathew, D.M. Bioprosthetic versus mechanical valves for mitral valve replacement in patients < 70 years: An updated pairwise meta-analysis. Gen. Thorac. Cardiovasc. Surg. 2024, 72, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Praz, F.; Borger, M.A.; Lanz, J.; Marin-Cuartas, M.; Abreu, A.; Adamo, M.; Marsan, N.A.; Barili, F.; Bonaros, N.; Cosyns, B.; et al. 2025 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2025, ehaf194. [Google Scholar] [CrossRef] [PubMed]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P., 3rd; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2021, 77, 450–500. [Google Scholar] [CrossRef]
- Salman, J.; Fleißner, F.; Naqizadah, J.; Avsar, M.; Shrestha, M.; Warnecke, G.; Ismail, I.; Rümke, S.; Cebotari, S.; Haverich, A.; et al. Minimally Invasive Mitral Valve Surgery in Re-Do Cases-The New Standard Procedure? Thorac. Cardiovasc. Surg. 2018, 66, 545–551. [Google Scholar] [CrossRef]
- Ali-Hasan-Al-Saegh, S.; Helms, F.; Aburahma, K.; Takemoto, S.; De Manna, N.D.; Amanov, L.; Ius, F.; Karsten, J.; Zubarevich, A.; Schmack, B.; et al. Can Obesity Serve as a Barrier to Minimally Invasive Mitral Valve Surgery? Overcoming the Limitations-A Multivariate Logistic Regression Analysis. J. Clin. Med. 2024, 13, 6355. [Google Scholar] [CrossRef] [PubMed]
- Fialka, N.M.; Watkins, A.R.; Alam, A.; El-Andari, R.; Kang, J.J.H.; Hong, Y.; Bozso, S.J.; Moon, M.C.; Nagendran, J. Tissue versus mechanical mitral valve replacement in patients aged 50–70: A propensity-matched analysis. Eur. J. Cardiothorac. Surg. 2024, 66, ezae283. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, T.; Aranki, S.; Javed, Q.; McGurk, S.; Shekar, P.; Davidson, M.; Cohn, L. Mechanical versus bioprosthetic mitral valve replacement in patients <65 years old. J. Thorac. Cardiovasc. Surg. 2014, 147, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Yanagawa, B.; Lee, J.; Ouzounian, M.; Bagai, A.; Cheema, A.; Verma, S.; Friedrich, J.O.; On Behalf of the Canadian Cardiovascular Surgery Meta-Analysis Working Group. Mitral valve prosthesis choice in patients < 70 years: A systematic review and meta-analysis of 20,219 patients. J. Card. Surg. 2020, 35, 818–825. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.H.; Kamel, H.; Singer, D.E.; Wu, Y.L.; Lee, M.; Ovbiagele, B. Perioperative/Postoperative Atrial Fibrillation and Risk of Subsequent Stroke and/or Mortality. Stroke 2019, 50, 1364–1371. [Google Scholar] [CrossRef] [PubMed]
- Bramer, S.; van Straten, A.H.; Soliman Hamad, M.A.; van den Broek, K.C.; Maessen, J.G.; Berreklouw, E. New-onset postoperative atrial fibrillation predicts late mortality after mitral valve surgery. Ann. Thorac. Surg. 2011, 92, 2091–2096. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, R.; Siems, C.; Potel, K.N.; Hingtgen, A.; Wang, Q.; Nijjar, P.S.; Huddleston, S.J.; John, R.; Kelly, R.F.; Voeller, R.K. New-onset postoperative atrial fibrillation after mitral valve surgery: Determinants and the effect on survival. JTCVS Open 2023, 16, 305–320. [Google Scholar] [CrossRef] [PubMed]
- Heimansohn, D.A.; Baker, C.; Rodriguez, E.; Takayama, H.; Dagenais, F.; Talton, D.S.; Mumtaz, M.A.; Pibarot, P.; Puskas, J.D. Mid-term outcomes of the COMMENCE trial investigating mitral valve replacement using a bioprosthesis with a novel tissue. JTCVS Open 2023, 15, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.H.; Whisenant, B.K.; Bleiziffer, S.; Delgado, V.; Schofer, N.; Eschenbach, L.; Fujita, B.; Sharma, R.; Ancona, M.; Yzeiraj, E.; et al. Transcatheter Mitral Valve Replacement for Degenerated Bioprosthetic Valves and Failed Annuloplasty Rings. J. Am. Coll. Cardiol. 2017, 70, 1121–1131. [Google Scholar] [CrossRef] [PubMed]
Variables | Biologic Prostheses N = 95 | Mechanical Prostheses N = 77 | p-Value |
---|---|---|---|
Age | 65.4 (8.1) | 61.0 (6.8) | 0.72 |
Female | 37 (38.9%) | 38 (49.4%) | 0.17 |
History of renal disease | 25 (26.3%) | 16 (20.8%) | 0.39 |
History of dialysis | 9 (9.5%) | 6 (7.8%) | 0.65 |
Hyperlipidemia | 49 (51.6%) | 32 (41.6%) | 0.19 |
Hypertension | 67 (70.5%) | 55 (71.4%) | 0.89 |
Insulin-dependent diabetes mellitus | 7 (7.4%) | 7 (9.1%) | 0.68 |
History of smoking | 28 (29.5%) | 27 (35.1%) | 0.43 |
Obesity | 28 (29.5%) | 27 (35.1%) | 0.40 |
Atrial fibrillation | 50 (52.6%) | 45 (58.4%) | 0.44 |
Paroxysmal | 18 (18.9%) | 15 (19.5%) | 0.92 |
Permanent | 18 (18.9%) | 13 (16.9%) | 0.72 |
Persistent | 14 (14.7%) | 17 (22.1%) | 0.21 |
Re-operation | 23 (24.2%) | 26 (33.8%) | 0.16 |
Active endocarditis | 10 (10.5%) | 8 (10.4%) | 0.97 |
History of coronary artery disease | 41 (43.2%) | 20 (26%) | 0.01 |
History of periphery artery disease | 13 (13.7%) | 10 (13%) | 0.89 |
Stroke | 17 (17.9%) | 10 (13%) | 0.37 |
Pulmonal hypertension | 54 (56.8%) | 43 (55.8%) | 0.89 |
Recent myocardial infarction | 2 (2.1%) | 2 (2.6%) | 0.83 |
Elective operation | 56 (58.9%) | 49 (63.6%) | 0.53 |
Urgent operation | 32 (33.7%) | 22 (28.6%) | 0.47 |
Emergency operation | 7 (7.4%) | 6 (7.8%) | 0.91 |
NYHA | |||
Class I | 1 (1.1%) | 2 (2.6%) | 0.44 |
Class II | 31 (32.6%) | 24 (31.2%) | 0.83 |
Class III | 48 (50.5%) | 40 (51.9%) | 0.85 |
Class IV | 7 (7.4%) | 4 (5.2%) | 0.56 |
Preoperative drug | |||
Amiodarone | 2 (2.1%) | 4 (5.2%) | 0.27 |
Beta blocker | 65 (68.4%) | 58 (75.3%) | 0.31 |
Calcium channel blocker | 11 (11.6%) | 16 (20.8%) | 0.09 |
Digoxin | 9 (9.5%) | 14 (18.2%) | 0.09 |
Variables | Biologic Prostheses N = 95 | Mechanical Prostheses N = 77 | p-Value |
---|---|---|---|
Duration of surgery (minutes) | 227 (191–263) | 209 (174–242) | 0.03 |
Time on CPB (minutes) | 147 (113–188) | 139 (118–173) | 0.33 |
Left atrial appendage occlusion | 28 (29.5%) | 12 (15.6%) | 0.03 |
Combined tricuspid valve repair | 17 (17.9%) | 8 (10.4%) | 0.16 |
Maze procedure | 21 (22.1%) | 11 (14.3%) | 0.19 |
Chordae tendineae rupture | 13 (13.7%) | 11 (14.3%) | 0.90 |
Time | Variables | Biologic Prostheses N = 95 | Mechanical Prostheses N = 77 | p-Value |
---|---|---|---|---|
Preoperative | LVEF (%) | 48.4 (19.1) | 49.2 (18.7) | 0.99 |
MI II | 10 (13.3%) | 15 (23.8%) | 0.11 | |
MI III | 61 (81.3%) | 45 (70.3%) | 0.12 | |
MI IV | 4 (5.3%) | 9 (14.1%) | 0.07 | |
MS II | 2 (2.5%) | 5 (7.6%) | 0.14 | |
MS III | 2 (2.5%) | 9 (13.8%) | 0.01 | |
Myxoma | 0 (0%) | 0 (0%) | 1 | |
Fibroma | 0 (0%) | 0 (0%) | 1 | |
Postoperative | LVEF (%) | 49.6 (11.7) | 50.4 (14.2) | 0.74 |
MI I | 11 (11.6%) | 10 (13%) | 0.77 | |
MI II | 1 (1.1%) | 0 (0%) | 0.36 | |
MI III | 0 (0%) | 0 (0%) | 1 | |
MI IV | 0 (0%) | 0 (0%) | 1 | |
MS II | 0 (0%) | 1 (1.3%) | 0.26 | |
MS III | 0 (0%) | 0 (0%) | 1 |
Variables | Biologic Prostheses N = 95 | Mechanical Prostheses N = 77 | p-Value |
---|---|---|---|
In-hospital mortality | 6 (6.3%) | 2 (2.6%) | 0.24 |
30-day mortality | 7 (7.4%) | 2 (2.6%) | 0.06 |
Duration of therapy with catecholamine (minutes) | 78.2 (140.5) | 51.7 (110.2) | 0.43 |
Blood transfusion (units) | |||
FFP | 2 (0–4) | 0 (0–3) | 0.57 |
Erythrocyte | 3 (2–7) | 3 (2–6) | 0.77 |
Platelet | 0 (0–1) | 0 (0–0) | 0.17 |
Respiratory insufficiency | 17 (17.9%) | 7 (9.1%) | 0.09 |
Early mitral valve re-operation | 2 (2.1%) | 1 (1.3%) | 0.68 |
Arrhythmia | 18 (18.9%) | 5 (6.5%) | 0.01 |
ECMO/right ventricular failure | 11 (11.6%) | 6 (7.8%) | 0.40 |
Re-thoracotomy | 12 (12.6%) | 9 (11.7%) | 0.85 |
Major bleeding | 12 (12.6%) | 9 (11.7%) | 0.85 |
New-onset atrial fibrillation | 11 (11.6%) | 8 (10.4%) | 0.80 |
Renal failure with new-onset dialysis | 11 (11.6%) | 4 (5.2%) | 0.14 |
Stroke | 3 (3.2%) | 2 (2.6%) | 0.82 |
Cerebral bleeding | 0 (0%) | 0 (0%) | 1 |
Seizure | 3 (3.2%) | 2 (2.6%) | 0.82 |
Delirium | 3 (3.2%) | 2 (2.6%) | 0.82 |
Thromboembolic events | 1 (1.1%) | 3 (3.9%) | 0.21 |
Wound dehiscence | 7 (7.4%) | 9 (11.7%) | 0.33 |
Sepsis | 4 (4.2%) | 1 (1.3%) | 0.25 |
Myocardial infarction | 1 (1.1%) | 2 (2.6%) | 0.44 |
Pacemaker implantation | 5 (5.3%) | 2 (2.6%) | 0.37 |
Pneumothorax | 7 (7.4%) | 2 (2.6%) | 0.16 |
Variables | Biologic Prostheses N = 95 | Mechanical Prostheses N = 77 | p-Value |
---|---|---|---|
Follow-up (years) | 7.1 (3.1) | 7.3 (3.1) | 0.79 |
Late mortality | |||
1 year mortality | 8 (8.4%) | 3 (3.9%) | 0.22 |
3-year mortality | 9 (9.5%) | 6 (7.8%) | 0.69 |
5-year mortality | 13 (13.7%) | 8 (10.4%) | 0.19 |
At longest follow-up | 13 (13.7%) | 8 (10.4%) | 0.51 |
Late mitral valve re-operation | 7 (7.4%) | 7 (9.1%) | 0.68 |
Re-hospitalization | |||
Arrhythmia | 17 (17.9%) | 15 (19.5%) | 0.79 |
Heart failure | 19 (20%) | 17 (22.1%) | 0.73 |
Myocardial infarction | 1 (1.1%) | 2 (2.6%) | 0.44 |
Stroke | 4 (4.3%) | 4 (5.2%) | 0.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weymann, A.; Ali-Hasan-Al-Saegh, S.; Takemoto, S.; De Manna, N.D.; Beneke, J.; Amanov, L.; Ius, F.; Stefan, R.; Schmack, B.; Zubarevich, A.; et al. Minimally Invasive Mitral Valve Replacement in the Gray Zone: Bioprosthetic vs. Mechanical Valves in Patients Aged 50–69 Years. J. Clin. Med. 2025, 14, 6666. https://doi.org/10.3390/jcm14186666
Weymann A, Ali-Hasan-Al-Saegh S, Takemoto S, De Manna ND, Beneke J, Amanov L, Ius F, Stefan R, Schmack B, Zubarevich A, et al. Minimally Invasive Mitral Valve Replacement in the Gray Zone: Bioprosthetic vs. Mechanical Valves in Patients Aged 50–69 Years. Journal of Clinical Medicine. 2025; 14(18):6666. https://doi.org/10.3390/jcm14186666
Chicago/Turabian StyleWeymann, Alexander, Sadeq Ali-Hasan-Al-Saegh, Sho Takemoto, Nunzio Davide De Manna, Jan Beneke, Lukman Amanov, Fabio Ius, Ruemke Stefan, Bastian Schmack, Alina Zubarevich, and et al. 2025. "Minimally Invasive Mitral Valve Replacement in the Gray Zone: Bioprosthetic vs. Mechanical Valves in Patients Aged 50–69 Years" Journal of Clinical Medicine 14, no. 18: 6666. https://doi.org/10.3390/jcm14186666
APA StyleWeymann, A., Ali-Hasan-Al-Saegh, S., Takemoto, S., De Manna, N. D., Beneke, J., Amanov, L., Ius, F., Stefan, R., Schmack, B., Zubarevich, A., Khalil, A., Ruhparwar, A., & Salman, J. (2025). Minimally Invasive Mitral Valve Replacement in the Gray Zone: Bioprosthetic vs. Mechanical Valves in Patients Aged 50–69 Years. Journal of Clinical Medicine, 14(18), 6666. https://doi.org/10.3390/jcm14186666