Determinants of Multi-Organ Morbidity in Neo-Transfusion-Dependent Thalassemia: A Cross-Sectional Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Iron Overload Assessment
2.3. Laboratory and Instrumental Assessment
2.4. Diagnostic Criteria for Complications
2.5. Statistical Analysis
3. Results
3.1. Characteristics of neo-TDT Patients
3.2. Comparisons Between Complication and No-Complication Groups
3.2.1. EMH
3.2.2. PH
3.2.3. Arrhythmias
3.2.4. Endocrinopathies
3.2.5. Bone Metabolism Disorders
3.2.6. Other Morbidities
3.3. Determinants of Complications
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weatherall, D.J.; Clegg, J.B. The Thalassemia Syndromes; Blackwell Science: Oxford, UK, 2001. [Google Scholar]
- Sadiq, I.Z.; Abubakar, F.S.; Usman, H.S.; Abdullahi, A.D.; Ibrahim, B.; Kastayal, B.S.; Ibrahim, M.; Hassan, H.A. Thalassemia: Pathophysiology, Diagnosis, and Advances in Treatment. Thalass. Rep. 2024, 14, 81–102. [Google Scholar] [CrossRef]
- Angastiniotis, M.; Lobitz, S. Thalassemias: An Overview. Int. J. Neonatal. Screen 2019, 5, 16. [Google Scholar] [CrossRef] [PubMed]
- Taher, A.T.; Weatherall, D.J.; Cappellini, M.D. Thalassaemia. Lancet 2018, 391, 155–167. [Google Scholar] [CrossRef] [PubMed]
- Weatherall, D.J. The definition and epidemiology of non-transfusion-dependent thalassemia. Blood Rev. 2012, 26 (Suppl. S1), S3–S6. [Google Scholar] [CrossRef]
- Musallam, K.M.; Rivella, S.; Vichinsky, E.; Rachmilewitz, E.A. Non-transfusion-dependent thalassemias. Haematologica 2013, 98, 833–844. [Google Scholar] [CrossRef]
- Taher, A.T.; Radwan, A.; Viprakasit, V. When to consider transfusion therapy for patients with non-transfusion-dependent thalassaemia. Vox Sang. 2015, 108, 1–10. [Google Scholar] [CrossRef]
- Ricchi, P.; Meloni, A.; Pistoia, L.; Spasiano, A.; Rita Gamberini, M.; Maggio, A.; Gerardi, C.; Messina, G.; Campisi, S.; Allo, M.; et al. Longitudinal follow-up of patients with thalassaemia intermedia who started transfusion therapy in adulthood: A cohort study. Br. J. Haematol. 2020, 191, 107–114. [Google Scholar] [CrossRef]
- Musallam, K.M.; Taher, A.T.; Cappellini, M.D.; Hermine, O.; Kuo, K.H.M.; Sheth, S.; Viprakasit, V.; Porter, J.B. Untreated Anemia in Nontransfusion-dependent β-thalassemia: Time to Sound the Alarm. HemaSphere 2022, 6, e806. [Google Scholar] [CrossRef]
- Musallam, K.M.; Cappellini, M.D.; Viprakasit, V.; Kattamis, A.; Rivella, S.; Taher, A.T. Revisiting the non-transfusion-dependent (NTDT) vs. transfusion-dependent (TDT) thalassemia classification 10 years later. Am. J. Hematol 2021, 96, E54–E56. [Google Scholar] [CrossRef]
- Ginzburg, Y.; Rivella, S. β-thalassemia: A model for elucidating the dynamic regulation of ineffective erythropoiesis and iron metabolism. Blood 2011, 118, 4321–4330. [Google Scholar] [CrossRef]
- Musallam, K.M. Iron overload in non-transfusion-dependent thalassemia. Thal. Rep. 2013, 3, e11. [Google Scholar] [CrossRef]
- Porter, J.B.; Cappellini, M.D.; Kattamis, A.; Viprakasit, V.; Musallam, K.M.; Zhu, Z.; Taher, A.T. Iron overload across the spectrum of non-transfusion-dependent thalassaemias: Role of erythropoiesis, splenectomy and transfusions. Br. J. Haematol. 2017, 176, 288–299. [Google Scholar] [CrossRef]
- Camaschella, C.; Nai, A.; Silvestri, L. Iron metabolism and iron disorders revisited in the hepcidin era. Haematologica 2020, 105, 260–272. [Google Scholar] [CrossRef]
- Meloni, A.; Pistoia, L.; Gamberini, M.R.; Ricchi, P.; Cecinati, V.; Sorrentino, F.; Cuccia, L.; Allo, M.; Righi, R.; Fina, P.; et al. The Link of Pancreatic Iron with Glucose Metabolism and Cardiac Iron in Thalassemia Intermedia: A Large, Multicenter Observational Study. J. Clin. Med. 2021, 10, 5561. [Google Scholar] [CrossRef]
- Meloni, A.; Pistoia, L.; Ricchi, P.; Longo, F.; Cecinati, V.; Sorrentino, F.; Cuccia, L.; Corigliano, E.; Rossi, V.; Righi, R.; et al. Multiparametric cardiac magnetic resonance in patients with thalassemia intermedia: New insights from the E-MIOT network. Radiol. Med. 2024, 129, 879–889. [Google Scholar] [CrossRef] [PubMed]
- Winichakoon, P.; Tantiworawit, A.; Rattanathammethee, T.; Hantrakool, S.; Chai-Adisaksopha, C.; Rattarittamrong, E.; Norasetthada, L.; Charoenkwan, P. Prevalence and Risk Factors for Complications in Patients with Nontransfusion Dependent Alpha- and Beta-Thalassemia. Anemia 2015, 2015, 793025. [Google Scholar] [CrossRef] [PubMed]
- Sleiman, J.; Tarhini, A.; Bou-Fakhredin, R.; Saliba, A.N.; Cappellini, M.D.; Taher, A.T. Non-Transfusion-Dependent Thalassemia: An Update on Complications and Management. Int. J. Mol. Sci. 2018, 19, 182. [Google Scholar] [CrossRef] [PubMed]
- Baldini, M.; Marcon, A.; Cassin, R.; Ulivieri, F.M.; Spinelli, D.; Cappellini, M.D.; Graziadei, G. Beta-Thalassaemia Intermedia: Evaluation of Endocrine and Bone Complications. BioMed Res. Int. 2014, 2014, 174581. [Google Scholar] [CrossRef]
- Musallam, K.M.; Cappellini, M.D.; Taher, A.T. Evaluation of the 5mg/g liver iron concentration threshold and its association with morbidity in patients with β-thalassemia intermedia. Blood Cells Mol. Dis. 2013, 51, 35–38. [Google Scholar] [CrossRef]
- Meloni, A.; De Marchi, D.; Pistoia, L.; Grassedonio, E.; Peritore, G.; Preziosi, P.; Restaino, G.; Righi, R.; Riva, A.; Renne, S.; et al. Multicenter validation of the magnetic resonance T2* technique for quantification of pancreatic iron. Eur. Radiol. 2019, 29, 2246–2252. [Google Scholar] [CrossRef]
- Meloni, A.; Luciani, A.; Positano, V.; De Marchi, D.; Valeri, G.; Restaino, G.; Cracolici, E.; Caruso, V.; Dell’amico, M.C.; Favilli, B.; et al. Single region of interest versus multislice T2* MRI approach for the quantification of hepatic iron overload. J. Magn. Reson. Imaging 2011, 33, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Restaino, G.; Meloni, A.; Positano, V.; Missere, M.; Rossi, G.; Calandriello, L.; Keilberg, P.; Mattioni, O.; Maggio, A.; Lombardi, M.; et al. Regional and global pancreatic T*(2) MRI for iron overload assessment in a large cohort of healthy subjects: Normal values and correlation with age and gender. Magn. Reson. Med. 2011, 65, 764–769. [Google Scholar] [CrossRef]
- Meloni, A.; Restaino, G.; Borsellino, Z.; Caruso, V.; Spasiano, A.; Zuccarelli, A.; Valeri, G.; Toia, P.; Salvatori, C.; Positano, V.; et al. Different patterns of myocardial iron distribution by whole-heart T2* magnetic resonance as risk markers for heart complications in thalassemia major. Int. J. Cardiol. 2014, 177, 1012–1019. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.C.; Enriquez, C.; Ghugre, N.; Tyzka, J.M.; Carson, S.; Nelson, M.D.; Coates, T.D. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood 2005, 106, 1460–1465. [Google Scholar] [CrossRef] [PubMed]
- Angelucci, E.; Brittenham, G.M.; McLaren, C.E.; Ripalti, M.; Baronciani, D.; Giardini, C.; Galimberti, M.; Polchi, P.; Lucarelli, G. Hepatic iron concentration and total body iron stores in thalassemia major. N. Engl. J. Med. 2000, 343, 327–331. [Google Scholar] [CrossRef]
- Meloni, A.; De Marchi, D.; Positano, V.; Neri, M.G.; Mangione, M.; Keilberg, P.; Lendini, M.; Cirotto, C.; Pepe, A. Accurate estimate of pancreatic T2* values: How to deal with fat infiltration. Abdom. Imaging 2015, 40, 3129–3136. [Google Scholar] [CrossRef]
- Cerqueira, M.D.; Weissman, N.J.; Dilsizian, V.; Jacobs, A.K.; Kaul, S.; Laskey, W.K.; Pennell, D.J.; Rumberger, J.A.; Ryan, T.; Verani, M.S. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002, 105, 539–542. [Google Scholar]
- Meloni, A.; Martini, N.; Positano, V.; De Luca, A.; Pistoia, L.; Sbragi, S.; Spasiano, A.; Casini, T.; Bitti, P.P.; Allò, M.; et al. Myocardial iron overload by cardiovascular magnetic resonance native segmental T1 mapping: A sensitive approach that correlates with cardiac complications. J. Cardiovasc. Magn. Reson. 2021, 23, 70. [Google Scholar] [CrossRef]
- Gretch, D.R. Diagnostic tests for hepatitis C. Hepatology 1997, 26, 43S–47S. [Google Scholar] [CrossRef]
- Phillips, P.J. Oral glucose tolerance testing. Aust. Fam. Physician 2012, 41, 391–393. [Google Scholar]
- Slart, R.H.J.A.; Punda, M.; Ali, D.S.; Bazzocchi, A.; Bock, O.; Camacho, P.; Carey, J.J.; Colquhoun, A.; Compston, J.; Engelke, K.; et al. Updated practice guideline for dual-energy X-ray absorptiometry (DXA). Eur. J. Nucl. Med. Mol. Imaging 2025, 52, 539–563. [Google Scholar] [CrossRef] [PubMed]
- Valesky, E.M.; Hach-Wunderle, V.; Protz, K.; Zeiner, K.N.; Erfurt-Berge, C.; Goedecke, F.; Jäger, B.; Kahle, B.; Kluess, H.; Knestele, M.; et al. Diagnosis and treatment of venous leg ulcers: S2k Guideline of the German Society of Phlebology and Lymphology (DGPL) e.V. JDDG J. Dtsch. Dermatol. Ges. 2024, 22, 1039–1051. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver (EASL) Recommendations on Treatment of Hepatitis C 2018. J. Hepatol. 2018, 69, 461–511. [CrossRef] [PubMed]
- Cogliandro, T.; Derchi, G.; Mancuso, L.; Mayer, M.C.; Pannone, B.; Pepe, A.; Pili, M.; Bina, P.; Cianciulli, P.; De Sanctis, V.; et al. Guideline recommendations for heart complications in thalassemia major. J. Cardiovasc. Med. 2008, 9, 515–525. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Bohm, M.; Burri, H.; Butler, J.; Celutkiene, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Buxton, A.E.; Calkins, H.; Callans, D.J.; DiMarco, J.P.; Fisher, J.D.; Greene, H.L.; Haines, D.E.; Hayes, D.L.; Heidenreich, P.A.; Miller, J.M.; et al. ACC/AHA/HRS 2006 key data elements and definitions for electrophysiological studies and procedures: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Data Standards (ACC/AHA/HRS Writing Committee to Develop Data Standards on Electrophysiology). Circulation 2006, 114, 2534–2570. [Google Scholar]
- De Sanctis, V.; Soliman, A.T.; Elsedfy, H.; Yaarubi, S.A.; Skordis, N.; Khater, D.; El Kholy, M.; Stoeva, I.; Fiscina, B.; Angastiniotis, M.; et al. The ICET-A Recommendations for the Diagnosis and Management of Disturbances of Glucose Homeostasis in Thalassemia Major Patients. Mediterr. J. Hematol. Infect. Dis. 2016, 8, e2016058. [Google Scholar] [CrossRef]
- De Sanctis, V.; Soliman, A.T.; Elsedfy, H.; Skordis, N.; Kattamis, C.; Angastiniotis, M.; Karimi, M.; Yassin, M.A.; El Awwa, A.; Stoeva, I.; et al. Growth and endocrine disorders in thalassemia: The international network on endocrine complications in thalassemia (I-CET) position statement and guidelines. Indian J. Endocrinol. Metab. 2013, 17, 8–18. [Google Scholar] [CrossRef]
- De Sanctis, V.; Soliman, A.T.; Canatan, D.; Yassin, M.A.; Daar, S.; Elsedfy, H.; Di Maio, S.; Raiola, G.; Corrons, J.V.; Kattamis, C. Thyroid Disorders in Homozygous β-Thalassemia: Current Knowledge, Emerging Issues and Open Problems. Mediterr. J. Hematol. Infect. Dis. 2019, 11, e2019029. [Google Scholar] [CrossRef]
- De Sanctis, V.; Soliman, A.; Fiscina, B. Hypoparathyroidism: From diagnosis to treatment. Curr. Opin. Endocrinol. Diabetes Obes. 2012, 19, 435–442. [Google Scholar] [CrossRef]
- World Health Organization. Assessment of Fracture Risk and Its Application to Screening for Postmenopausal Osteoporosis: Report of a WHO Study Group [Meeting Held in Rome from 22 to 25 June 1992]; World Health Organization: Geneva, Switzerland, 1994. [Google Scholar]
- Taher, A.T.; Musallam, K.M.; Karimi, M.; El-Beshlawy, A.; Belhoul, K.; Daar, S.; Saned, M.S.; El-Chafic, A.H.; Fasulo, M.R.; Cappellini, M.D. Overview on practices in thalassemia intermedia management aiming for lowering complication rates across a region of endemicity: The OPTIMAL CARE study. Blood 2010, 115, 1886–1892. [Google Scholar] [CrossRef] [PubMed]
- Angelucci, E.; Pilo, F. Treatment of hepatitis C in patients with thalassemia. Haematologica 2008, 93, 1121–1123. [Google Scholar] [CrossRef] [PubMed]
- Motta, I.; Rumi, M.G.; Cesaretti, C.; Aghemo, A.; Fraquelli, M.; Roghi, A.; Cappellini, M.D. Evaluation of Liver Disease in a Cohort of Patients Affected by Thalassemia Intermedia. Blood 2009, 114, 4064. [Google Scholar] [CrossRef]
- Rottenstreich, A.; Kleinstern, G.; Spectre, G.; Da’as, N.; Ziv, E.; Kalish, Y. Thromboembolic Events Following Splenectomy: Risk Factors, Prevention, Management and Outcomes. World J. Surg. 2018, 42, 675–681. [Google Scholar] [CrossRef]
- Kalamara, T.V.; Dodos, K.; Vlachaki, E. Splenectomy is significantly associated with thrombosis but not with pulmonary hypertension in patients with transfusion-dependent thalassemia: A meta-analysis of observational studies. Front. Med. 2023, 10, 1259785. [Google Scholar] [CrossRef]
- Ricchi, P.; Ammirabile, M.; Spasiano, A.; Costantini, S.; Di Matola, T.; Pepe, A.; Cinque, P.; Pagano, L.; Casale, M.; Filosa, A.; et al. Extramedullary haematopoiesis correlates with genotype and absence of cardiac iron overload in polytransfused adults with thalassaemia. Blood Transfus. 2014, 12 (Suppl. S1), s124–s130. [Google Scholar]
- Issaragrisil, S.; Piankigagum, A.; Wasi, P. Spinal cord compression in thalassemia. Report of 12 cases and recommendations for treatment. Arch. Intern. Med. 1981, 141, 1033–1036. [Google Scholar] [CrossRef]
- Hapgood, G.; Walsh, T.; Cukierman, R.; Paul, E.; Cheng, K.; Bowden, D.K. Erythropoiesis is not equally suppressed in transfused males and females with β thalassemia major: Are there clinical implications? Haematologica 2015, 100, e292–e294. [Google Scholar]
- Pasricha, S.R.; Frazer, D.M.; Bowden, D.K.; Anderson, G.J. Transfusion suppresses erythropoiesis and increases hepcidin in adult patients with β-thalassemia major: A longitudinal study. Blood 2013, 122, 124–133. [Google Scholar] [CrossRef]
- Jelkmann, W. Regulation of erythropoietin production. J. Physiol. 2011, 589, 1251–1258. [Google Scholar] [CrossRef]
- Taher, A.T.; Musallam, K.M.; El-Beshlawy, A.; Karimi, M.; Daar, S.; Belhoul, K.; Saned, M.S.; Graziadei, G.; Cappellini, M.D. Age-related complications in treatment-naive patients with thalassaemia intermedia. Br. J. Haematol. 2010, 150, 486–489. [Google Scholar] [CrossRef]
- Derchi, G.; Galanello, R.; Bina, P.; Cappellini, M.D.; Piga, A.; Lai, M.E.; Quarta, A.; Casu, G.; Perrotta, S.; Pinto, V.; et al. Prevalence and risk factors for pulmonary arterial hypertension in a large group of β-thalassemia patients using right heart catheterization: A Webthal study. Circulation 2014, 129, 338–345. [Google Scholar] [CrossRef]
- Phrommintikul, A.; Sukonthasarn, A.; Kanjanavanit, R.; Nawarawong, W. Splenectomy: A strong risk factor for pulmonary hypertension in patients with thalassaemia. Heart 2006, 92, 1467–1472. [Google Scholar] [CrossRef]
- Reeder, S.B.; Yokoo, T.; Franca, M.; Hernando, D.; Alberich-Bayarri, A.; Alustiza, J.M.; Gandon, Y.; Henninger, B.; Hillenbrand, C.; Jhaveri, K.; et al. Quantification of Liver Iron Overload with MRI: Review and Guidelines from the ESGAR and SAR. Radiology 2023, 307, e221856. [Google Scholar] [CrossRef]
- Dos Santos, L.; Bertoli, S.R.; Ávila, R.A.; Marques, V.B. Iron overload, oxidative stress and vascular dysfunction: Evidences from clinical studies and animal models. Biochim Biophys Acta Gen. Subj. 2022, 1866, 130172. [Google Scholar] [CrossRef]
- Yan, F.; Li, K.; Xing, W.; Dong, M.; Yi, M.; Zhang, H. Role of Iron-Related Oxidative Stress and Mitochondrial Dysfunction in Cardiovascular Diseases. Oxidative Med. Cell Longev. 2022, 2022, 5124553. [Google Scholar] [CrossRef] [PubMed]
- Porres-Aguilar, M.; Altamirano, J.T.; Torre-Delgadillo, A.; Charlton, M.R.; Duarte-Rojo, A. Portopulmonary hypertension and hepatopulmonary syndrome: A clinician-oriented overview. Eur. Respir. Rev. 2012, 21, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Gladwin, M.T.; Vichinsky, E. Pulmonary complications of sickle cell disease. N. Engl. J. Med. 2008, 359, 2254–2265. [Google Scholar] [CrossRef]
- Haddad, A.; Tyan, P.; Radwan, A.; Mallat, N.; Taher, A. β-Thalassemia Intermedia: A Bird’s-Eye View. Turk. J. Haematol. 2014, 31, 5–16. [Google Scholar] [CrossRef]
- Tam, D.H.; Farber, H.W. Pulmonary hypertension and β-thalassemia major: Report of a case, its treatment, and a review of the literature. Am. J. Hematol. 2006, 81, 443–447. [Google Scholar] [CrossRef]
- Morris, C.R.; Kim, H.Y.; Trachtenberg, F.; Wood, J.; Quinn, C.T.; Sweeters, N.; Kwiatkowski, J.L.; Thompson, A.A.; Giardina, P.J.; Boudreaux, J.; et al. Risk factors and mortality associated with an elevated tricuspid regurgitant jet velocity measured by Doppler-echocardiography in thalassemia: A Thalassemia Clinical Research Network report. Blood 2011, 118, 3794–3802. [Google Scholar] [CrossRef]
- Kirk, P.; Roughton, M.; Porter, J.B.; Walker, J.M.; Tanner, M.A.; Patel, J.; Wu, D.; Taylor, J.; Westwood, M.A.; Anderson, L.J.; et al. Cardiac T2* magnetic resonance for prediction of cardiac complications in thalassemia major. Circulation 2009, 120, 1961–1968. [Google Scholar] [CrossRef] [PubMed]
- Kremastinos, D.T.; Farmakis, D. Iron overload cardiomyopathy in clinical practice. Circulation 2011, 124, 2253–2263. [Google Scholar] [CrossRef] [PubMed]
- Pepe, A.; Meloni, A.; Rossi, G.; Midiri, M.; Missere, M.; Valeri, G.; Sorrentino, F.; D’Ascola, D.G.; Spasiano, A.; Filosa, A.; et al. Prediction of cardiac complications for thalassemia major in the widespread cardiac magnetic resonance era: A prospective multicentre study by a multi-parametric approach. Eur. Heart J. Cardiovasc. Imaging 2018, 19, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Meloni, A.; Pistoia, L.; Gamberini, M.R.; Cuccia, L.; Lisi, R.; Cecinati, V.; Ricchi, P.; Gerardi, C.; Restaino, G.; Righi, R.; et al. Multi-Parametric Cardiac Magnetic Resonance for Prediction of Heart Failure Death in Thalassemia Major. Diagnostics 2023, 13, 890. [Google Scholar] [CrossRef]
- Hatch, F.; Lancaster, M.K.; Jones, S.A. Aging is a primary risk factor for cardiac arrhythmias: Disruption of intracellular Ca2+ regulation as a key suspect. Expert Rev. Cardiovasc. Ther. 2011, 9, 1059–1067. [Google Scholar] [CrossRef]
- Chen, Q.; Yi, Z.; Cheng, J. Atrial fibrillation in aging population. Aging Med. 2018, 1, 67–74. [Google Scholar] [CrossRef]
- Burstein, B.; Nattel, S. Atrial fibrosis: Mechanisms and clinical relevance in atrial fibrillation. J. Am. Coll. Cardiol. 2008, 51, 802–809. [Google Scholar] [CrossRef]
- Zhao, S.; Johnston, A.M.; Yiu, C.H.K.; Moreira, L.M.; Reilly, S.; Wehrens, X.H.T. Aging-associated mechanisms of atrial fibrillation progression and their therapeutic potential. J. Cardiovasc. Aging 2024, 4, 22. [Google Scholar] [CrossRef]
- Lindsay, J., Jr.; Meshel, J.C.; Patterson, R.H. The cardiovascular manifestations of sickle cell disease. Arch. Intern. Med. 1974, 133, 643–651. [Google Scholar] [CrossRef]
- Kremastinos, D.T.; Tsiapras, D.P.; Tsetsos, G.A.; Rentoukas, E.I.; Vretou, H.P.; Toutouzas, P.K. Left ventricular diastolic Doppler characteristics in beta-thalassemia major. Circulation 1993, 88, 1127–1135. [Google Scholar] [CrossRef]
- Varat, M.A.; Adolph, R.J.; Fowler, N.O. Cardiovascular effects of anemia. Am. Heart J. 1972, 83, 415–426. [Google Scholar] [CrossRef]
- Dahiya, A.; Vollbon, W.; Jellis, C.; Prior, D.; Wahi, S.; Marwick, T. Echocardiographic assessment of raised pulmonary vascular resistance: Application to diagnosis and follow-up of pulmonary hypertension. Heart 2010, 96, 2005–2009. [Google Scholar] [CrossRef] [PubMed]
- Vichinsky, E.P. Changing patterns of thalassemia worldwide. Ann. N. Y. Acad. Sci. 2005, 1054, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Ansari-Moghaddam, A.; Adineh, H.A.; Zareban, I.; Mohammadi, M.; Maghsoodlu, M. The survival rate of patients with beta-thalassemia major and intermedia and its trends in recent years in Iran. Epidemiol. Health 2018, 40, e2018048. [Google Scholar] [CrossRef] [PubMed]
- Farmakis, D.; Giakoumis, A.; Angastiniotis, M.; Eleftheriou, A. The changing epidemiology of the ageing thalassaemia populations: A position statement of the Thalassaemia International Federation. Eur. J. Haematol. 2020, 105, 16–23. [Google Scholar] [CrossRef]
- Noetzli, L.J.; Mittelman, S.D.; Watanabe, R.M.; Coates, T.D.; Wood, J.C. Pancreatic iron and glucose dysregulation in thalassemia major. Am. J. Hematol. 2012, 87, 155–160. [Google Scholar] [CrossRef]
- Pepe, A.; Pistoia, L.; Gamberini, M.R.; Cuccia, L.; Peluso, A.; Messina, G.; Spasiano, A.; Allo, M.; Bisconte, M.G.; Putti, M.C.; et al. The Close Link of Pancreatic Iron With Glucose Metabolism and With Cardiac Complications in Thalassemia Major: A Large, Multicenter Observational Study. Diabetes Care 2020, 43, 2830–2839. [Google Scholar] [CrossRef]
- Cooksey, R.C.; Jouihan, H.A.; Ajioka, R.S.; Hazel, M.W.; Jones, D.L.; Kushner, J.P.; McClain, D.A. Oxidative stress, β-cell apoptosis, and decreased insulin secretory capacity in mouse models of hemochromatosis. Endocrinology 2004, 145, 5305–5312. [Google Scholar] [CrossRef]
- Chatterjee, R.; Bajoria, R. New concept in natural history and management of diabetes mellitus in thalassemia major. Hemoglobin 2009, 33 (Suppl. S1), S127–S130. [Google Scholar] [CrossRef]
- Venou, T.M.; Kyriakidis, F.; Barmpageorgopoulou, F.; Theodoridou, S.; Vyzantiadis, A.; Klonizakis, P.; Gavriilaki, E.; Vlachaki, E. Risk Factors for Impaired Glucose Metabolism in Transfusion-Dependent Patients with β-Thalassemia: A Single-Center Retrospective Observational Study. Hematol. Rep. 2025, 17, 6. [Google Scholar] [CrossRef]
- Palumbo, G.A.; Galimberti, S.; Barcellini, W.; Cilloni, D.; Di Renzo, N.; Elli, E.M.; Finelli, C.; Maurillo, L.; Ricco, A.; Musto, P.; et al. From Biology to Clinical Practice: Iron Chelation Therapy With Deferasirox. Front. Oncol. 2021, 11, 752192. [Google Scholar] [CrossRef] [PubMed]
- Entezari, S.; Haghi, S.M.; Norouzkhani, N.; Sahebnazar, B.; Vosoughian, F.; Akbarzadeh, D.; Islampanah, M.; Naghsh, N.; Abbasalizadeh, M.; Deravi, N. Iron Chelators in Treatment of Iron Overload. J. Toxicol. 2022, 2022, 4911205. [Google Scholar] [CrossRef]
- Musallam, K.M.; Sheth, S.; Cappellini, M.D.; Kuo, K.H.M.; Kattamis, A.; Aydinok, Y.; Viprakasit, V.; Taher, A.T. Luspatercept versus mitapivat for non-transfusion-dependent β-thalassemia: Dare to compare? Hemasphere 2025, 9, e70165. [Google Scholar] [CrossRef]
- Taher, A.T.; Al-Samkari, H.; Aydinok, Y.; Besser, M.; Boscoe, A.N.; Dahlin, J.L.; De Luna, G.; Estepp, J.H.; Gheuens, S.; Gilroy, K.S.; et al. Mitapivat in adults with non-transfusion-dependent α-thalassaemia or β-thalassaemia (ENERGIZE): A phase 3, international, randomised, double-blind, placebo-controlled trial. Lancet 2025, 406, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Taher, A.T.; Cappellini, M.D.; Kattamis, A.; Voskaridou, E.; Perrotta, S.; Piga, A.G.; Filosa, A.; Porter, J.B.; Coates, T.D.; Forni, G.L.; et al. Luspatercept for the treatment of anaemia in non-transfusion-dependent β-thalassaemia (BEYOND): A phase 2, randomised, double-blind, multicentre, placebo-controlled trial. Lancet Haematol. 2022, 9, e733–e744. [Google Scholar] [CrossRef] [PubMed]
Neo-TDT Patients (N = 140) | |
---|---|
Age (years) | 44.30 ± 12.13 |
Females, N (%) | 79 (56.4) |
Age at start of regular transfusions (years) | 18.37 ± 19.09 |
Splenectomy, N (%) | 113 (80.7) |
Chelated, N (%) | 135 (96.4) |
Mean hemoglobin (g/dL) | 9.55 ± 0.58 |
Mean serum ferritin (ng/mL) | 849.30 ± 908.51 |
Active/past HCV infection, N (%) | 58 (41.4) |
MRI LIC (mg/g dw) | 6.08 ± 10.66 |
Hepatic IO, N (%) | 54 (38.6) |
Global heart R2* (Hz) | 26.07 ± 6.49 |
Cardiac IO, N (%) | 12 (8.6) |
Global pancreas R2* (Hz) | 98.61 ± 100.95 |
Pancreatic IO, N (%) | 98 (70.0) |
Extramedullary hematopoiesis, N (%) | 27 (19.3) |
Leg ulcers, N (%) | 5 (3.6) |
Cirrhosis, N (%) | 4 (2.9) |
Thromboembolic complications a, N (%) | 6 (4.3) |
Superficial venous thrombosis, N (%) | 3 (2.1) |
Deep vein thrombosis, N (%) | 3 (2.1) |
Pulmonary hypertension, N (%) | 10 (7.1) |
Cardiac complications b, N (%) | 18 (12.9) |
Heart failure, N (%) | 1 (0.7) |
Arrhythmias, N (%) | 17 (12.1) |
Endocrine complications c, N (%) | 52 (37.1) |
Altered glucose metabolism, N (%) | 22 (15.7) |
Delayed puberty and hypogonadism, N (%) | 16 (11.4) |
Hypothyroidism, N (%) | 21 (15.0) |
Hypoparathyroidism, N (%) | 1 (0.7) |
Bone metabolism disorders, N (%) | 96 (68.6) |
No EMH (N = 113) | EMH (N = 27) | p-Value | |
---|---|---|---|
Age (years) | 43.94 ± 12.42 | 45.82 ± 10.89 | 0.455 |
Females, N (%) | 69 (61.1) | 10 (37.0) | 0.024 |
Splenectomy, N (%) | 90 (79.6) | 23 (85.2) | 0.599 |
Chelated, N (%) | 110 (97.3) | 25 (92.6) | 0.246 |
Mean hemoglobin (g/dL) | 9.54 ± 0.58 | 9.57 ± 0.58 | 0.888 |
Mean serum ferritin (ng/mL) | 826.67 ± 863.59 | 938.08 ± 1081.55 | 0.927 |
MRI LIC (mg/g dw) | 6.07 ± 11.49 | 6.13 ± 6.26 | 0.112 |
Hepatic IO, N (%) | 42 (37.2) | 12 (44.4) | 0.485 |
Global pancreas R2* (Hz) | 101.58 ± 107.77 | 86.18 ± 65.24 | 0.549 |
Pancreatic IO, N (%) | 77 (68.1) | 21 (77.8) | 0.326 |
Global heart R2* (Hz) | 26.00 ± 6.74 | 26.39 ± 5.45 | 0.130 |
Cardiac IO (32), N (%) | 10 (8.8) | 2 (7.4) | 0.810 |
No PH (N = 130) | PH (N = 10) | p-Value | |
---|---|---|---|
Age (years) | 44.04 ± 12.39 | 47.72 ± 7.65 | 0.198 |
Females, N (%) | 74 (56.9) | 5 (50.0) | 0.747 |
Splenectomy, N (%) | 103 (79.2) | 10 (100.0) | 0.209 |
Chelated, N (%) | 126 (96.9) | 9 (90.0) | 0.256 |
Mean hemoglobin (g/dL) | 9.56 ± 0.59 | 9.38 ± 0.28 | 0.203 |
Mean serum ferritin (ng/mL) | 833.28 ± 907.82 | 1061.17 ± 944.87 | 0.404 |
MRI LIC (mg/g dw) | 5.98 ± 10.94 | 7.41 ± 5.99 | 0.085 |
Hepatic IO, N (%) | 47 (36.2) | 7 (70.0) | 0.045 |
Global pancreas R2* (Hz) | 99.36 ± 102.32 | 88.91 ± 84.93 | 0.955 |
Pancreatic IO, N (%) | 90 (69.2) | 8 (80.0) | 0.723 |
Global heart R2* (Hz) | 26.19 ± 6.69 | 24.62 ± 2.38 | 0.808 |
Cardiac IO (32), N (%) | 12 (9.2) | 0 (0.0) | 0.601 |
No Arrhythmias (N = 123) | Arrhythmias (N = 17) | p-Value | |
---|---|---|---|
Age (years) | 42.48 ± 11.31 | 57.51 ± 9.55 | <0.0001 |
Females, N (%) | 73 (59.3) | 6 (35.3) | 0.061 |
Splenectomy, N (%) | 97 (78.9) | 16 (94.1) | 0.194 |
Chelated, N (%) | 118 (95.9) | 17 (100) | 0.397 |
Mean hemoglobin (g/dL) | 9.55 ± 0.56 | 9.57 ± 0.71 | 0.970 |
Mean serum ferritin (ng/mL) | 849.19 ± 925.54 | 850.18 ± 785.72 | 0.703 |
MRI LIC (mg/g dw) | 6.44 ± 11.27 | 3.53 ± 3.32 | 0.304 |
Hepatic IO, N (%) | 48 (39.0) | 6 (35.3) | 0.767 |
Global pancreas R2* (Hz) | 97.76 ± 98.25 | 104.76 ± 121.99 | 0.735 |
Pancreatic IO, N (%) | 87 (70.7) | 11 (64.7) | 0.585 |
Global heart R2* (Hz) | 26.27 ± 6.82 | 24.66 ± 3.02 | 0.572 |
Cardiac IO (32), N (%) | 11 (8.9) | 1 (5.9) | 0.673 |
(A) Alterations of Glucose Metabolism | |||
---|---|---|---|
No Altered Glucose Metabolism (N = 118) | Altered Glucose Metabolism (N = 22) | p-Value | |
Age (years) | 42.93 ± 11.85 | 51.66 ± 11.15 | 0.002 |
Females, N (%) | 68 (57.6) | 11 (50.0) | 0.508 |
Splenectomy, N (%) | 95 (80.5) | 18 (81.8) | 0.886 |
Chelated, N (%) | 114 (96.6) | 21 (95.5) | 0.789 |
Mean hemoglobin (g/dL) | 9.54 ± 0.56 | 9.61 ± 0.65 | 0.415 |
Mean serum ferritin (ng/mL) | 857.69 ± 939.16 | 806.56 ± 751.15 | 0.587 |
MRI LIC (mg/g dw) | 6.47 ± 11.48 | 3.99 ± 3.61 | 0.925 |
Hepatic IO, N (%) | 46 (39.0) | 8 (36.4) | 0.817 |
Global pancreas R2* (Hz) | 92.17 ± 96.08 | 133.15 ± 120.59 | 0.033 |
Pancreatic IO, N (%) | 78 (66.1) | 20 (90.9) | 0.022 |
Global heart R2* (Hz) | 25.89 ± 6.63 | 27.06 ± 5.72 | 0.273 |
Cardiac IO (32), N (%) | 7 (5.9) | 5 (22.7) | 0.023 |
(B) Hypogonadism | |||
No Hypogonadism (N = 124) | Hypogonadism (N = 16) | p-Value | |
Age (years) | 44.45 ± 12.79 | 43.14 ± 4.28 | 0.714 |
Females, N (%) | 64 (54.8) | 11 (68.8) | 0.423 |
Splenectomy, N (%) | 99 (79.8) | 14 (87.5) | 0.737 |
Chelated, N (%) | 119 (96.0) | 16 (100) | 0.413 |
Mean hemoglobin (g/dL) | 9.52 ± 0.59 | 9.72 ± 0.41 | 0.308 |
Mean serum ferritin (ng/mL) | 862.18 ± 871.72 | 759.19 ± 1164.11 | 0.150 |
MRI LIC (mg/g dw) | 6.27 ± 11.11 | 4.68 ± 6.22 | 0.612 |
Hepatic IO, N (%) | 49 (39.5) | 5 (31.3) | 0.595 |
Global pancreas R2* (Hz) | 95.19 ± 102.92 | 125.09 ± 82.08 | 0.010 |
Pancreatic IO, N (%) | 82 (66.1) | 16 (100.0) | 0.003 |
Global heart R2* (Hz) | 25.92 ± 6.19 | 27.29 ± 8.61 | 0.640 |
Cardiac IO (32), N (%) | 9 (7.3) | 3 (18.8) | 0.142 |
(C) Hypothyroidism | |||
No Hypothyroidism (N = 119) | Hypothyroidism (N = 21) | p-Value | |
Age (years) | 44.23 ± 12.69 | 44.74 ± 8.48 | 0.660 |
Females, N (%) | 65 (54.6) | 14 (66.7) | 0.305 |
Splenectomy, N (%) | 96 (80.7) | 17 (81.0) | 0.976 |
Chelated, N (%) | 114 (95.8) | 21 (100) | 0.339 |
Mean hemoglobin (g/dL) | 9.56 ± 0.55 | 9.45 ± 0.70 | 0.924 |
Mean serum ferritin (ng/mL) | 789.46 ± 780.35 | 1240.01 ± 1475.83 | 0.883 |
MRI LIC (mg/g dw) | 5.88 ± 10.43 | 7.25 ± 12.07 | 0.471 |
Hepatic IO, N (%) | 46 (38.7) | 8 (38.1) | 0.961 |
Global pancreas R2* (Hz) | 97.89 ± 100.65 | 102.72 ± 105.03 | 0.643 |
Pancreatic IO, N (%) | 82 (68.9) | 16 (76.2) | 0.611 |
Global heart R2* (Hz) | 26.14 ± 6.51 | 25.68 ± 6.51 | 0.589 |
Cardiac IO (32), N (%) | 11 (9.2) | 1 (4.8) | 0.693 |
No Bone Metabolism Disorders (N = 44) | Bone Metabolism Disorders (N = 96) | p-Value | |
---|---|---|---|
Age (years) | 44.85 ± 13.65 | 44.06 ± 11.43 | 0.914 |
Females, N (%) | 21 (47.7) | 58 (60.4) | 0.160 |
Splenectomy, N (%) | 32 (72.7) | 81 (84.4) | 0.105 |
Chelated, N (%) | 42 (95.5) | 93 (96.9) | 0.649 |
Mean hemoglobin (g/dL) | 9.39 ± 0.59 | 9.62 ± 0.55 | 0.094 |
Mean serum ferritin (ng/mL) | 777.33 ± 891.36 | 882.02 ± 919.38 | 0.616 |
MRI LIC (mg/g dw) | 5.88 ± 9.32 | 6.18 ± 11.26 | 0.383 |
Hepatic IO, N (%) | 14 (31.8) | 40 (41.7) | 0.266 |
Global pancreas R2* (Hz) | 95.01 ± 111.18 | 100.27 ± 96.48 | 0.183 |
Pancreatic IO, N (%) | 29 (65.9) | 69 (71.9) | 0.475 |
Global heart R2* (Hz) | 25.74 ± 6.42 | 26.23 ± 6.55 | 0.146 |
Cardiac IO (32), N (%) | 5 (11.4) | 7 (7.3) | 0.517 |
Univariate Regression Analysis | Multivariate Regression Analysis | |||
---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
EMH | ||||
Age > 75th percentile | 1.67 (0.67–4.18) | 0.269 | ||
Male sex | 2.67 (1.12–6.35) | 0.027 | 2.67 (1.12–6.35) | 0.027 |
Splenectomy | 1.47 (0.46–4.67) | 0.514 | ||
Chelation therapy | 0.34 (0.05–2.15) | 0.252 | ||
Hemoglobin < 9 g/dL | 0.84 (0.22–3.17) | 0.795 | ||
Ferritin ≥ 1000 ng/mL | 0.88 (0.32–2.42) | 0.800 | ||
Hepatic IO | 1.35 (0.58–3.16) | 0.486 | ||
Pancreatic IO | 1.64 (0.61–4.40) | 0.329 | ||
Cardiac IO | 0.82 (0.17–4.00) | 0.810 | ||
PH | ||||
Age > 75th percentile | 1.31 (0.32–5.38) | 0.705 | ||
Male sex | 1.32 (0.37–4.79) | 0.671 | ||
Splenectomy | - | |||
Chelation therapy | 0.29 (0.03–2.83) | 0.284 | ||
Hemoglobin < 9 g/dL | 0.72 (0.08–6.09) | 0.765 | ||
Ferritin ≥ 1000 ng/mL | 2.60 (0.65–10.35) | 0.175 | ||
Hepatic IO | 4.12 (1.02–16.69) | 0.047 | 4.12 (1.02–16.69) | 0.047 |
Pancreatic IO | 1. 79 (0.36–8.75) | 0.479 | ||
Cardiac IO | - | |||
Arrhythmias | ||||
Age > 75th percentile | 22.67 (5.98–85.92) | <0.0001 | 22.67 (5.98–85.92) | <0.0001 |
Male sex | 2.68 (0.93–7.71) | 0.068 | ||
Splenectomy | 4.29 (0.54–33.86) | 0.167 | ||
Chelation therapy | - | |||
Hemoglobin < 9 g/dL | 0.48 (0.06–3.93) | 0.495 | ||
Ferritin ≥ 1000 ng/mL | 1.24 (0.36–4.28) | 0.730 | ||
Hepatic IO | 0.85 (0.29–2.46) | 0.767 | ||
Pancreatic IO | 0.76 (0.26–2.21) | 0.612 | ||
Cardiac IO | 0.64 (0.08–5.27) | 0.675 | ||
Alterations of glucose metabolism | ||||
Age > 75th percentile | 3.10 (1.21–8.00) | 0.019 | 4.42 (1.59–12.31) | 0.004 |
Male sex | 1.36 (0.55–3.39) | 0.509 | ||
Splenectomy | 1.09 (0.34–3.53) | 0.886 | ||
Chelation therapy | 0.74 (0.08–6.92) | 0.789 | ||
Hemoglobin < 9 g/dL | 0.66 (0.14–3.13) | 0.600 | ||
Ferritin ≥ 1000 ng/mL | 1.66 (0.60–4.56) | 0.326 | ||
Hepatic IO | 0.89 (0.35–2.29) | 0.817 | ||
Pancreatic IO | 5.13 (1.14–23.05) | 0.033 | 7.40 (1.55–35.46) | 0.012 |
Cardiac IO | 4.66 (1.33–16.38) | 0.016 | ||
Hypogonadism | ||||
Age > 75th percentile | 0.18 (0.02–1.39) | 0.099 | ||
Male sex | 0.55 (0.18–1.68) | 0.296 | ||
Splenectomy | 1.77 (0.38–8.29) | 0.470 | ||
Chelation therapy | - | |||
Hemoglobin < 9 g/dL | - | |||
Ferritin ≥ 1000 ng/mL | 0.67 (0.18–2.51) | 0.551 | ||
Hepatic IO | 0.69 (0.23–2.12) | 0.524 | ||
Pancreatic IO | - | 0.997 | ||
Cardiac IO | 2.95 (0.71–12.28) | 0.137 | ||
Hypothyroidism | ||||
Age > 75th percentile | 0.93 (0.31–2.75) | 0.891 | ||
Male sex | 0.60 (0.23–1.59) | 0.308 | ||
Splenectomy | 1.02 (0.31–3.32) | 0.976 | ||
Chelation therapy | - | |||
Hemoglobin < 9 g/dL | 2.01 (0.58–6.99) | 0.272 | ||
Ferritin ≥ 1000 ng/mL | 1.19 (0.39–3.66) | 0.753 | ||
Hepatic IO | 0.98 (0.38–2.54) | 0.961 | ||
Pancreatic IO | 1.44 (0.49–4.24) | 0.504 | ||
Cardiac IO | 0.49 (0.06–4.02) | 0.507 | ||
Bone metabolism disorders | ||||
Age > 75th percentile | 1.00 (0.44–2.28) | 1.000 | ||
Male sex | 0.59 (0.29–1.23) | 0.161 | ||
Splenectomy | 2.03 (0.86–4.79) | 0.109 | ||
Chelation therapy | 1.48 (0.24–9.17) | 0.676 | ||
Hemoglobin < 9 g/dL | 0.62 (0.22–1.75) | 0.362 | ||
Ferritin ≥ 1000 ng/mL | 1.48 (0.59–3.65) | 0.398 | ||
Hepatic IO | 1.53 (0.72–3.25) | 0.268 | ||
Pancreatic IO | 1.32 (0.62–2.84) | 0.475 | ||
Cardiac IO | 0.61 (0.18–2.05) | 0.428 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meloni, A.; Ricchi, P.; Pistoia, L.; Longo, F.; Cecinati, V.; Borsellino, Z.; Sorrentino, F.; Corigliano, E.; Zerbini, M.; Fina, P.; et al. Determinants of Multi-Organ Morbidity in Neo-Transfusion-Dependent Thalassemia: A Cross-Sectional Analysis. J. Clin. Med. 2025, 14, 6602. https://doi.org/10.3390/jcm14186602
Meloni A, Ricchi P, Pistoia L, Longo F, Cecinati V, Borsellino Z, Sorrentino F, Corigliano E, Zerbini M, Fina P, et al. Determinants of Multi-Organ Morbidity in Neo-Transfusion-Dependent Thalassemia: A Cross-Sectional Analysis. Journal of Clinical Medicine. 2025; 14(18):6602. https://doi.org/10.3390/jcm14186602
Chicago/Turabian StyleMeloni, Antonella, Paolo Ricchi, Laura Pistoia, Filomena Longo, Valerio Cecinati, Zelia Borsellino, Francesco Sorrentino, Elisabetta Corigliano, Michela Zerbini, Priscilla Fina, and et al. 2025. "Determinants of Multi-Organ Morbidity in Neo-Transfusion-Dependent Thalassemia: A Cross-Sectional Analysis" Journal of Clinical Medicine 14, no. 18: 6602. https://doi.org/10.3390/jcm14186602
APA StyleMeloni, A., Ricchi, P., Pistoia, L., Longo, F., Cecinati, V., Borsellino, Z., Sorrentino, F., Corigliano, E., Zerbini, M., Fina, P., Riva, A., Peritore, G., Positano, V., & Clemente, A. (2025). Determinants of Multi-Organ Morbidity in Neo-Transfusion-Dependent Thalassemia: A Cross-Sectional Analysis. Journal of Clinical Medicine, 14(18), 6602. https://doi.org/10.3390/jcm14186602