Assessment of Cervicocephalic–Peripheral Atherosclerotic Burden Improves Prognostic Stratification in Patients with Ischemic Cerebrovascular Disease
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population and Data Collection
2.2. Assessment of Atherosclerotic Characteristics
2.3. Follow-Up and Prognosis
2.4. Statistical Methods
3. Results
3.1. Baseline Data and Outcomes
3.2. Single-Territory AB and Its Relationship with Vascular Risk
3.3. ABs for Vascular Risk Stratification
3.4. Sensitivity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AS | Atherosclerosis |
ICVD | Ischemic cerebrovascular disease |
PAD | Peripheral atherosclerotic diseases |
LEAD | Lower extremity arterial disease |
RAS | Renal artery stenosis |
IS | Ischemic stroke |
MI | Myocardial infarction |
AB | Atherosclerotic burden |
DSA | Digital subtraction angiography |
CTA | Computed tomography angiography |
CPAB | Cervicocephalic–peripheral atherosclerotic burden |
BMI | Body mass index |
RR | Relative risk |
RAAS | Renin–Angiotensin–Aldosterone system |
References
- Katan, M.; Luft, A. Global Burden of Stroke. Semin. Neurol. 2018, 38, 208–211. [Google Scholar] [CrossRef]
- Imori, Y.; Akasaka, T.; Ochiai, T.; Oyama, K.; Tobita, K.; Shishido, K.; Nomura, Y.; Yamanaka, F.; Sugitatsu, K.; Okamura, N.; et al. Co-Existence of carotid artery disease, renal artery stenosis, and lower extremity peripheral arterial disease in patients with coronary artery disease. Am. J. Cardiol. 2014, 113, 30–35. [Google Scholar] [CrossRef]
- Mazzolai, L.; Teixido-Tura, G.; Lanzi, S.; Boc, V.; Bossone, E.; Brodmann, M.; Bura-Rivière, A.; De Backer, J.; Deglise, S.; Della Corte, A.; et al. 2024 ESC Guidelines for the management of peripheral arterial and aortic diseases. Eur. Heart J. 2024, 45, 3538–3700. [Google Scholar] [CrossRef]
- Li, L.G.; Ma, X.; Zhao, X.; Du, X.; Ling, C. Correlation and risk factors of peripheral and cervicocephalic arterial atherosclerosis in patients with ischemic cerebrovascular disease. Sci. Rep. 2024, 14, 11773. [Google Scholar] [CrossRef] [PubMed]
- Grenon, S.M.; Vittinghoff, E.; Owens, C.D.; Conte, M.S.; Whooley, M.; Cohen, B.E. Peripheral artery disease and risk of cardiovascular events in patients with coronary artery disease: Insights from the Heart and Soul Study. Vasc. Med. 2013, 18, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Alberts, M.J.; Bhatt, D.L.; Mas, J.L.; Ohman, E.M.; Hirsch, A.T.; Röther, J.; Salette, G.; Goto, S.; Smith, S.C., Jr.; Liau, C.-S.; et al. Three-year follow-up and event rates in the international REduction of Atherothrombosis for Continued Health Registry. Eur. Heart J. 2009, 30, 2318–2326. [Google Scholar] [CrossRef] [PubMed]
- Kleindorfer, D.O.; Towfighi, A.; Chaturvedi, S.; Cockroft, K.M.; Gutierrez, J.; Lombardi-Hill, D.; Kamel, H.; Kernan, W.N.; Kittner, S.J.; Leira, E.C.; et al. 2021 Guideline for the Prevention of Stroke in Patients with Stroke and Transient Ischemic Attack: A Guideline from the American Heart Association/American Stroke Association. Stroke 2021, 52, e364–e467. [Google Scholar] [CrossRef]
- Kawarada, O.; Yokoi, Y.; Morioka, N.; Takemoto, K. Renal artery stenosis in cardio-and cerebrovascular disease: Renal duplex ultrasonography as an initial screening examination. Circ. J. 2007, 71, 1942–1947. [Google Scholar] [CrossRef]
- Wang, K.; Zhao, J.W.; Jiang, G.M.; Yun, W.W.; Chen, Z.Y. Correlation of atherosclerotic renal artery stenosis with extracranial carotid and intracranial cerebral artery atherosclerosis in patients with ischemic stroke. Blood Press. 2013, 22, 312–316. [Google Scholar] [CrossRef]
- Kong, Q.; Ma, X.; Wang, C.; Du, X.; Ren, Y.; Wan, Y. Total Atherosclerosis Burden of Baroreceptor-Resident Arteries Independently Predicts Blood Pressure Dipping in Patients with Ischemic Stroke. Hypertension 2020, 75, 1505–1512. [Google Scholar] [CrossRef]
- Yang, Y.; Kong, Q.; Ma, X.; Wang, C.; Xue, S.; Du, X. A Whole-Scope Evaluation of Cervicocephalic Atherosclerotic Burden is Essential to Predict 90-Day Functional Outcome in Large-Artery Atherosclerotic Stroke. J. Atheroscler. Thromb. 2022, 29, 1522–1533. [Google Scholar] [CrossRef] [PubMed]
- Kong, Q.; Ma, X.; Li, L.; Wang, C.; Du, X.; Wan, Y. Atherosclerosis Burden of Brain- and Heart-Supplying Arteries and the Relationship with Vascular Risk in Patients with Ischemic Stroke. J. Am. Heart Assoc. 2023, 12, e029505. [Google Scholar] [CrossRef] [PubMed]
- Esin, F.İ.H.; Kırış, T.; Çelik, A.; Karaca, M. Impact of Atherosclerotic Burden on Long-term Major Adverse Cardiovascular and Cerebrovascular Events. Int. J. Cardiovasc. Acad. 2024, 10, 123–131. [Google Scholar] [CrossRef]
- Adams, H.P.; Bendixen, B.H., Jr.; Kappelle, L.J.; Biller, J.; Love, B.B.; Gordon, D.L.; Marsh, E.E. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 1993, 24, 35–41. [Google Scholar] [CrossRef]
- Kong, Q.; Ma, X.; Wang, C.; Feng, W.; Ovbiagele, B.; Zhang, Y.; Du, X. Patients with Acute Ischemic Cerebrovascular Disease with Coronary Artery Stenosis Have More Diffused Cervicocephalic Atherosclerosis. J. Atheroscler. Thromb. 2019, 26, 792–804. [Google Scholar] [CrossRef]
- Shabani Varaki, E.; Gargiulo, G.D.; Penkala, S.; Breen, P.P. Peripheral vascular disease assessment in the lower limb: A review of current and emerging non-invasive diagnostic methods. Biomed. Eng. Online 2018, 17, 61. [Google Scholar] [CrossRef]
- Kuroda, S.; Nishida, N.; Uzu, T.; Takeji, M.; Nishimura, M.; Fujii, T.; Nakamura, S.; Inenaga, T.; Yutani, C.; Kimura, G. Prevalence of renal artery stenosis in autopsy patients with stroke. Stroke 2000, 31, 61–65. [Google Scholar] [CrossRef]
- Gerhard-Herman, M.D.; Gornik, H.L.; Barrett, C.; Barshes, N.R.; Corriere, M.A.; Drachman, D.E.; Fleisher, L.A.; Fowkes, F.G.R.; Hamburg, N.M.; Kinlay, S.; et al. 2016 AHA/ACC Guideline on the Management of Patients with Lower Extremity Peripheral Artery Disease: Executive Summary. Vasc. Med. 2017, 22, Np1–Np43. [Google Scholar] [CrossRef]
- Dzaye, O.; Razavi, A.C.; Blaha, M.J.; Mortensen, M.B. Evaluation of coronary stenosis versus plaque burden for atherosclerotic cardiovascular disease risk assessment and management. Curr. Opin. Cardiol. 2021, 36, 769–775. [Google Scholar] [CrossRef]
- Arbab-Zadeh, A.; Fuster, V. The myth of the “vulnerable plaque”: Transitioning from a focus on individual lesions to atherosclerotic disease burden for coronary artery disease risk assessment. J. Am. Coll. Cardiol. 2015, 65, 846–855. [Google Scholar] [CrossRef]
- Li, L.G.; Ma, X. Early identification and treatment for peripheral arterial disease in patients with ischemic cerebrovascular disease. Eur. J. Med. Res. 2023, 28, 93. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.H.; Sun, X.F.; Zhang, X.D.; Wang, J.; Ren, J.H.; Wang, X.; Wang, Y.H.; Hou, W.H.; Li, J.C. Expert Consensus on Ultrasound Diagnosis of Renal Artery Stenosis. Chin. J. Med. Ultrasound 2021, 18, 543–553. [Google Scholar] [CrossRef]
- Collins, R.; Cranny, G.; Burch, J.; Aguiar-Ibáñez, R.; Craig, D.; Wright, K.; Berry, E.; Gough, M.; Kleijnen, J.; Westwood, M. A systematic review of duplex ultrasound, magnetic resonance angiography and computed tomography angiography for the diagnosis and assessment of symptomatic, lower limb peripheral arterial disease. Health Technol. Assess. 2007, 11, iii-184. [Google Scholar] [CrossRef]
- Criqui, M.H.; Matsushita, K.; Aboyans, V.; Hess, C.N.; Hicks, C.W.; Kwan, T.W.; McDermott, M.M.; Misra, S.; Ujueta, F. Lower Extremity Peripheral Artery Disease: Contemporary Epidemiology, Management Gaps, and Future Directions: A Scientific Statement from the American Heart Association. Circulation 2021, 144, e171–e191. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.B.; Leonards, C.O.; Endres, M.; Siegerink, B.; Liman, T.G. Ankle-Brachial Index and Recurrent Stroke Risk: Meta-Analysis. Stroke 2016, 47, 317–322. [Google Scholar] [CrossRef]
- Barreto-Neto, N.; Barros, A.D.; Jesus, P.A.; Reis, C.C.; Jesus, M.L.; Ferreira, I.L.; Fernandes, R.D.; Resende, L.L.; Andrade, A.L.; Gonçalves, B.M.; et al. Low Ankle-Brachial Index is a Simple Physical Exam Sign Predicting Intracranial Atherosclerotic Stenosis in Ischemic Stroke Patients. J. Stroke Cerebrovasc. Dis. 2016, 25, 1417–1420. [Google Scholar] [CrossRef]
- Kolls, B.J.; Sapp, S.; Rockhold, F.W.; Jordan, J.D.; Dombrowski, K.E.; Fowkes, F.G.R.; Mahaffey, K.W.; Berger, J.S.; Katona, B.G.; Blomster, J.I.; et al. Stroke in Patients with Peripheral Artery Disease. Stroke 2019, 50, 1356–1363. [Google Scholar] [CrossRef]
- Golledge, J. Update on the pathophysiology and medical treatment of peripheral artery disease. Nat. Rev. Cardiol. 2022, 19, 456–474. [Google Scholar] [CrossRef]
- Aboyans, V.; Ricco, J.B.; Bartelink, M.E.L.; Björck, M.; Brodmann, M.; Cohnert, T.; Collet, J.-P.; Czerny, M.; De Carlo, M.; Debus, S.; et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS): Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries Endorsed by: The European Stroke Organization (ESO) The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur. Heart J. 2018, 39, 763–816. [Google Scholar] [CrossRef]
- van Thiel, B.S.; van der Pluijm, I.; te Riet, L.; Essers, J.; Danser, A.H. The renin-angiotensin system and its involvement in vascular disease. Eur. J. Pharmacol. 2015, 763 Pt A, 3–14. [Google Scholar] [CrossRef]
- Aono, J.; Suzuki, J.; Iwai, M.; Horiuchi, M.; Nagai, T.; Nishimura, K.; Inoue, K.; Ogimoto, A.; Okayama, H.; Higaki, J. Deletion of the angiotensin II type 1a receptor prevents atherosclerotic plaque rupture in apolipoprotein E-/- mice. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 1453–1459. [Google Scholar] [CrossRef]
Characteristics | Total (n = 382) | Primary Endpoint | Stroke Recurrence | ||
---|---|---|---|---|---|
p | HR (95%CI) | p | HR (95%CI) | ||
Male | 266 (69.6) | 0.84 | 0.94 (0.49–1.81) | 0.46 | 0.74 (0.34–1.63) |
Age, y | 63.0 (55–69) | 0.081 2 | 1.03 (1.00–1.06) | 0.022 1 | 1.05 (1.01–1.09) |
Etiology | |||||
IS | 334 (87.4) | 0.32 | 1.83 (0.56–5.92) | 0.19 | 3.83 (0.52–28.28) |
TIA | 48 (12.6) | 0.32 | 0.55 (0.17–1.78) | 0.19 | 0.26 (0.04–1.92) |
NHISS | 1 (0–3) | 0.44 | 1.04 (0.94–1.15) | 0.24 | 1.07 (0.96–1.20) |
History of HTN | 259 (67.8) | 0.81 | 1.08 (0.56–2.09) | 0.41 | 1.44 (0.61–3.41) |
History of DM | 133 (34.8) | 0.16 | 1.56 (0.85–2.89) | 0.35 | 1.44 (0.67–3.08) |
History of IS | 93 (24.3) | 0.38 | 1.35 (0.69–2.65) | 0.44 | 1.39 (0.61–3.17) |
History of CAD | 56 (14.7) | 0.91 | 1.05 (0.44–2.50) | 0.90 | 1.07 (0.37–3.10) |
Smoking | 165 (43.2) | 0.81 | 0.93 (0.50–1.72) | 0.52 | 0.77 (0.35–1.69) |
Drinking | 139 (36.4) | 0.99 | 1.00 (0.53–1.88) | 0.45 | 0.72 (0.37–1.66) |
SBP, mmHg | 145.7 ± 18.9 | 0.66 | 1.00 (0.98–1.01) | 0.54 | 0.99 (0.97–1.01) |
BMI, kg/m2 | 25.6 ± 3.4 | 0.55 | 0.97 (0.89–1.07) | 0.20 | 0.93 (0.83–1.04) |
HbA1C, % | 6.6 ± 1.6 | 0.16 | 1.12 (0.96–1.32) | 0.34 | 1.10 (0.90–1.35) |
CK, IU/L | 99.4 ± 206.1 | 0.042 1 | 1.00 (1.00–1.00) | 0.011 1 | 1.00 (1.00–1.00) |
Creatinine, umol/L | 63.2 ± 15.0 | 0.90 | 1.00 (0.98–1.02) | 0.21 | 0.98 (0.96–1.01) |
Homocysteine, umol/L | 17.4 ± 11.7 | 0.77 | 1.00 (0.96–1.03) | 0.40 | 0.98 (0.93–1.03) |
FBG, mmol/L | 6.2 ± 2.4 | 0.70 | 1.03 (0.91–1.16) | 0.79 | 1.02 (0.88–1.19) |
Total cholesterol, mmol/L | 4.0 ± 1.1 | 0.55 | 0.91 (0.68–1.23) | 0.52 | 0.89 (0.61–1.29) |
HDL-C, mmol/L | 1.1 ± 0.3 | 0.046 1 | 0.27 (0.07–0.98) | 0.21 | 0.37 (0.08–1.73) |
LDL-C, mmol/L | 2.4 ± 0.9 | 0.53 | 0.89 (0.61–1.29) | 0.28 | 0.77 (0.47–1.24) |
Apolipoprotein A1, g/L | 1.2 ± 0.2 | 0.73 | 0.75 (0.15–3.70) | 0.77 | 1.34 (0.19–9.52) |
Apolipoprotein B, g/L | 0.9 ± 0.2 | 0.56 | 0.67 (0.18–2.52) | 0.38 | 0.47 (0.09–2.55) |
CRP, mg/L | 5.1 ± 9.6 | 0.43 | 0.98 (0.92–1.03) | 0.43 | 0.97 (0.89–1.05) |
Fibrinogen, g/L | 3.3 ± 0.9 | 0.95 | 1.01 (0.72–1.42) | 0.90 | 0.97 (0.63–1.49) |
D-dimer, ug/L | 1.7 ± 4.5 | 0.99 | 1.00 (0.93–1.08) | 0.50 | 1.03 (0.95–1.11) |
Neutrophils, 109/L | 4.2 ± 2.1 | 0.13 | 0.85 (0.68–1.05) | 0.26 | 0.86 (0.66–1.12) |
Total (n = 382) | Affected Vascular Bed | Number of Affected Vascular Beds | ||||||
---|---|---|---|---|---|---|---|---|
CAS (n = 264) | LEAD (n = 98) | RAS (n = 37) | 0 (n = 104) | 1 (n = 123) | 2 (n = 101) | ≥3 (n = 54) | ||
Primary endpoint | 10.7% | 13.6% | 18.4% | 24.3% | 4.8% | 7.3% | 9.9% | 31.5% |
IS recurrence | 7.1% | 8.3% | 10.2% | 13.5% | 4.8% | 4.9% | 5.9% | 18.5% |
ABs | Primary Endpoint | IS Recurrence | ||||
---|---|---|---|---|---|---|
p | HR (95%CI) | Harrell’s C /Somers’ D | p | HR (95%CI) | Harrell’s C /Somers’ D | |
CPAB | <0.001 | 2.22 (1.46–3.37) | 0.678/0.357 | 0.013 | 1.90 (1.14–3.17) | 0.646/0.292 |
Cervicocephalic AB | 0.002 | 2.05 (1.29–3.24) | 0.653/0.307 | 0.002 | 1.93 (1.09–3.41) | 0.634/0.268 |
Cervical AB | 0.002 | 1.79 (1.24–2.89) | 0.645/0.290 | 0.021 | 1.73 (1.09–2.74) | 0.634/0.268 |
Intracranial AB | 0.011 | 1.66 (1.12–2.46) | 0.637/0.273 | 0.046 | 1.63 (1.01–2.63) | 0.633/0.266 |
Lower extremity AB | 0.010 | 1.60 (1.12–2.29) | 0.580/0.158 | 0.102 | 1.48 (0.92–2.37) | 0.570/0.140 |
Renal AB | 0.003 | 2.41 (1.36–4.28) | 0.661/0.321 | 0.047 | 2.15 (1.01–4.59) | 0.585/0.170 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.-G.; Ma, X.; Zhao, X.; Du, X.; Ling, C. Assessment of Cervicocephalic–Peripheral Atherosclerotic Burden Improves Prognostic Stratification in Patients with Ischemic Cerebrovascular Disease. J. Clin. Med. 2025, 14, 6593. https://doi.org/10.3390/jcm14186593
Li L-G, Ma X, Zhao X, Du X, Ling C. Assessment of Cervicocephalic–Peripheral Atherosclerotic Burden Improves Prognostic Stratification in Patients with Ischemic Cerebrovascular Disease. Journal of Clinical Medicine. 2025; 14(18):6593. https://doi.org/10.3390/jcm14186593
Chicago/Turabian StyleLi, Lu-Guang, Xin Ma, Xiaoxi Zhao, Xiangying Du, and Chen Ling. 2025. "Assessment of Cervicocephalic–Peripheral Atherosclerotic Burden Improves Prognostic Stratification in Patients with Ischemic Cerebrovascular Disease" Journal of Clinical Medicine 14, no. 18: 6593. https://doi.org/10.3390/jcm14186593
APA StyleLi, L.-G., Ma, X., Zhao, X., Du, X., & Ling, C. (2025). Assessment of Cervicocephalic–Peripheral Atherosclerotic Burden Improves Prognostic Stratification in Patients with Ischemic Cerebrovascular Disease. Journal of Clinical Medicine, 14(18), 6593. https://doi.org/10.3390/jcm14186593