Does the Vaginal Microbiota Influence the Incidence of the Preterm Premature Rupture of Membranes?
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Search Strategy
2.3. Inclusion and Exclusion Criteria
2.4. Data Extraction and Quality Assessment
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bennett, P.R.; Brown, R.G.; MacIntyre, D.A. Vaginal Microbiome in Preterm Rupture of Membranes. Obstet. Gynecol. Clin. N. Am. 2020, 47, 503–521. [Google Scholar] [CrossRef]
- Witkin, S.S.; Linhares, I.M. Why Do Lactobacilli Dominate the Human Vaginal Microbiota? BJOG Int. J. Obstet. Gynaecol. 2017, 124, 606–611. [Google Scholar] [CrossRef]
- Noyes, N.; Cho, K.C.; Ravel, J.; Forney, L.J.; Abdo, Z. Associations between Sexual Habits, Menstrual Hygiene Practices, Demographics and the Vaginal Microbiome as Revealed by Bayesian Network Analysis. PLoS ONE 2018, 13, e0191625. [Google Scholar] [CrossRef]
- Auriemma, R.S.; Scairati, R.; del Vecchio, G.; Liccardi, A.; Verde, N.; Pirchio, R.; Pivonello, R.; Ercolini, D.; Colao, A. The Vaginal Microbiome: A Long Urogenital Colonization Throughout Woman Life. Front. Cell. Infect. Microbiol. 2021, 11, 686167. [Google Scholar] [CrossRef]
- Chen, X.; Lu, Y.; Chen, T.; Li, R. The Female Vaginal Microbiome in Health and Bacterial Vaginosis. Front. Cell. Infect. Microbiol. 2021, 11, 631972. [Google Scholar] [CrossRef]
- Bernabeu, A.; Lledo, B.; Díaz, M.C.; Lozano, F.M.; Ruiz, V.; Fuentes, A.; Lopez-Pineda, A.; Moliner, B.; Castillo, J.C.; Ortiz, J.A.; et al. Effect of the Vaginal Microbiome on the Pregnancy Rate in Women Receiving Assisted Reproductive Treatment. J. Assist. Reprod. Genet. 2019, 36, 2111–2119. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Singh, M.P.; Goyal, K. Diversity of Vaginal Microbiome in Pregnancy: Deciphering the Obscurity. Front. Public. Health 2020, 8, 326. [Google Scholar] [CrossRef]
- Dayal, S.; Jenkins, S.M.; Hong, P.L. Preterm and Term Prelabor Rupture of Membranes (PPROM and PROM) [Updated 2024 Oct 31]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK532888/ (accessed on 1 August 2024).
- Gudnadottir, U.; Debelius, J.W.; Du, J.; Hugerth, L.W.; Danielsson, H.; Schuppe-Koistinen, I.; Fransson, E.; Brusselaers, N. The Vaginal Microbiome and the Risk of Preterm Birth: A Systematic Review and Network Meta-Analysis. Sci. Rep. 2022, 12, 7926. [Google Scholar] [CrossRef] [PubMed]
- Kacerovsky, M.; Stranik, J.; Matulova, J.; Chalupska, M.; Mls, J.; Faist, T.; Hornychova, H.; Kukla, R.; Bolehovska, R.; Bostik, P.; et al. Clinical Characteristics of Colonization of the Amniotic Cavity in Women with Preterm Prelabor Rupture of Membranes, a Retrospective Study. Sci. Rep. 2022, 12, 5062. [Google Scholar] [CrossRef]
- Lim, E.S.; Rodriguez, C.; Holtz, L.R. Amniotic Fluid from Healthy Term Pregnancies Does Not Harbor a Detectable Microbial Community. Microbiome 2018, 6, 87. [Google Scholar] [CrossRef]
- Noda-Nicolau, N.M.; Tantengco, O.A.G.; Polettini, J.; Silva, M.C.; Bento, G.F.C.; Cursino, G.C.; Marconi, C.; Lamont, R.F.; Taylor, B.D.; Silva, M.G.; et al. Genital Mycoplasmas and Biomarkers of Inflammation and Their Association With Spontaneous Preterm Birth and Preterm Prelabor Rupture of Membranes: A Systematic Review and Meta-Analysis. Front. Microbiol. 2022, 13, 859732. [Google Scholar] [CrossRef]
- Toson, B.; Simon, C.; Moreno, I. The Endometrial Microbiome and Its Impact on Human Conception. Int. J. Mol. Sci. 2022, 23, 485. [Google Scholar] [CrossRef]
- Zhao, F.; Hu, X.; Ying, C. Advances in Research on the Relationship between Vaginal Microbiota and Adverse Pregnancy Outcomes and Gynecological Diseases. Microorganisms 2023, 11, 991. [Google Scholar] [CrossRef]
- Parnell, L.A.; Briggs, C.M.; Mysorekar, I.U. Maternal Microbiomes in Preterm Birth: Recent Progress and Analytical Pipelines. Semin. Perinatol. 2017, 41, 392–400. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Stang, A. Critical Evaluation of the Newcastle-Ottawa Scale for the Assessment of the Quality of Nonrandomized Studies in Meta-Analyses. Eur. J. Epidemiol. 2010, 25, 603–605. [Google Scholar] [CrossRef]
- Mu, Y.; Hu, A.; Kan, H.; Li, Y.; He, Y.; Fan, W.; Liu, H.; Li, Q.; Zheng, Y. Preterm Prelabor Rupture of Membranes Linked to Vaginal Bacteriome of Pregnant Females in the Early Second Trimester: A Case-Cohort Design. Reprod. Sci. 2023, 30, 2324–2335. [Google Scholar] [CrossRef]
- Tevaearai, F.; Sachs, M.K.; El-Hadad, S.; Vonzun, L.; Moehrlen, U.; Mazzone, L.; Meuli, M.; Krähenmann, F.; Ochsenbein-Kölble, N. Stage 2: The Vaginal Flora in Women Undergoing Fetal Spina Bifida Repair and Its Potential Association with Preterm Rupture of Membranes and Preterm Birth. J. Clin. Med. 2022, 11, 7038. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Hong, F.; Xin, G.; Duan, S.; Deng, X.; Xu, Y. Alterations in the Vaginal Microbiota of Patients with Preterm Premature Rupture of Membranes. Front. Cell. Infect. Microbiol. 2022, 12, 858732. [Google Scholar] [CrossRef]
- Almaghrabi, S.; Hussein, K. Microbial Profile of Women with Preterm Premature Rupture of Membrane in Saudi Arabia: A Retrospective Study. World J. Environ. Biosci. 2022, 11, 43–47. [Google Scholar] [CrossRef]
- Elshabrawy, A.; Mohammed, H.A.; Ibrahim, Y.M.A.; Heraiz, A.I. Contribution of Vaginal Infection to Preterm Premature Rupture of Membrane and Adverse Pregnancy Outcome. Microbes Infect. Dis. 2022, 3, 101–111. [Google Scholar] [CrossRef]
- Kacerovsky, M.; Kukla, R.; Bolehovska, R.; Bostik, P.; Matulova, J.; Mls, J.; Stranik, J.; Jacobsson, B.; Musilova, I. Prevalence and Load of Cervical Ureaplasma Species With Respect to Intra-Amniotic Complications in Women With Preterm Prelabor Rupture of Membranes Before 34 Weeks. Front. Pharmacol. 2022, 13, 860498. [Google Scholar] [CrossRef]
- Kacerovsky, M.; Pliskova, L.; Bolehovska, R.; Lesko, D.; Gerychova, R.; Janku, P.; Matlak, P.; Simetka, O.; Stranik, J.; Faist, T.; et al. Cervical Gardnerella Vaginalis in Women with Preterm Prelabor Rupture of Membranes. PLoS ONE 2021, 16, e0245937. [Google Scholar] [CrossRef]
- Nguyen, Q.H.V.; Le, H.N.; Nu, V.A.T.; Nguyen, N.D.; Le, M.T. Lower Genital Tract Infections in Preterm Premature Rupture of Membranes and Preterm Labor: A Case-Control Study from Vietnam. J. Infect. Dev. Ctries. 2021, 15, 805–811. [Google Scholar] [CrossRef]
- Goodfellow, L.; Verwijs, M.C.; Care, A.; Sharp, A.; Ivandic, J.; Poljak, B.; Roberts, D.; Bronowski, C.; Gill, A.C.; Darby, A.C.; et al. Vaginal Bacterial Load in the Second Trimester Is Associated with Early Preterm Birth Recurrence: A Nested Case–Control Study. BJOG Int. J. Obstet. Gynaecol. 2021, 128, 2061–2072. [Google Scholar] [CrossRef]
- Kacerovsky, M.; Pliskova, L.; Bolehovska, R.; Gerychova, R.; Janku, P.; Matlak, P.; Simetka, O.; Faist, T.; Mls, J.; Vescicik, P.; et al. Lactobacilli-Dominated Cervical Microbiota in Women with Preterm Prelabor Rupture of Membranes. Pediatr. Res. 2020, 87, 952–960. [Google Scholar] [CrossRef]
- Hassan, M.F.; Rund, N.M.A.; El-Tohamy, O.; Moussa, M.; Ali, Y.Z.; Moussa, N.; Abdelrazik, A.A.; Abdallah, E.A.A. Does Aerobic Vaginitis Have Adverse Pregnancy Outcomes? Prospective Observational Study. Infect. Dis. Obstet. Gynecol. 2020, 2020, 5842150. [Google Scholar] [CrossRef]
- Malla, R.; Metgud, S.; Metgud, S.C. Bacteriological Profile of Premature Rupture of Membranes (PROM) in Preterm Pregnant Women: A Cross Sectional Study in Dr. Prabhakar Kore Charitable Hospital, Belagavi, India. Int. J. Clin. Obstet. Gynaecol. 2020, 4, 147–150. [Google Scholar] [CrossRef]
- You, Y.A.; Kwon, E.J.; Choi, S.J.S.K.; Hwang, H.S.; Choi, S.J.S.K.; Lee, S.M.; Kim, Y.J. Vaginal Microbiome Profiles of Pregnant Women in Korea Using a 16S Metagenomics Approach. Am. J. Reprod. Immunol. 2019, 82, e13124. [Google Scholar] [CrossRef]
- Brown, R.G.; Al-Memar, M.; Marchesi, J.R.; Lee, Y.S.; Smith, A.; Chan, D.; Lewis, H.; Kindinger, L.; Terzidou, V.; Bourne, T.; et al. Establishment of Vaginal Microbiota Composition in Early Pregnancy and Its Association with Subsequent Preterm Prelabor Rupture of the Fetal Membranes. Transl. Res. 2019, 207, 30–43. [Google Scholar] [CrossRef]
- Brown, R.G.; Marchesi, J.R.; Lee, Y.S.; Smith, A.; Lehne, B.; Kindinger, L.M.; Terzidou, V.; Holmes, E.; Nicholson, J.K.; Bennett, P.R.; et al. Vaginal Dysbiosis Increases Risk of Preterm Fetal Membrane Rupture, Neonatal Sepsis and Is Exacerbated by Erythromycin. BMC Med. 2018, 16, 9. [Google Scholar] [CrossRef]
- Zhang, L.X.; Sun, Y.; Zhao, H.; Zhu, N.; Sun, X.D.; Jin, X.; Zou, A.M.; Mi, Y.; Xu, J.R. A Bayesian Stepwise Discriminant Model for Predicting Risk Factors of Preterm Premature Rupture of Membranes: A Case-Control Study. Chin. Med. J. 2017, 130, 2416–2422. [Google Scholar] [CrossRef]
- Jayaprakash, T.P.; Wagner, E.C.; Van Schalkwyk, J.; Albert, A.Y.K.; Hill, J.E.; Money, D.M.; Hemmingsen, S.M.; Castillo, E.; Janssen, P.A. High Diversity and Variability in the Vaginal Microbiome in Women Following Preterm Premature Rupture of Membranes (PPROM): A Prospective Cohort Study. PLoS ONE 2016, 11, e0166794. [Google Scholar] [CrossRef]
- Genovese, C.; Corsello, S.; Nicolosi, D.; Aidala, V.; Falcidia, E.; Tempera, G. Alterations of the Vaginal Microbiota in the Third Trimester of Pregnancy and pPROM. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 3336–3343. [Google Scholar]
- Baldwin, E.A.; Walther-Antonio, M.; MacLean, A.M.; Gohl, D.M.; Beckman, K.B.; Chen, J.; White, B.; Creedon, D.J.; Chia, N. Persistent Microbial Dysbiosis in Preterm Premature Rupture of Membranes from Onset until Delivery. PeerJ 2015, 2015, e1398. [Google Scholar] [CrossRef]
- Kacerovsky, M.; Vrbacky, F.; Kutova, R.; Pliskova, L.; Andrys, C.; Musilova, I.; Menon, R.; Lamont, R.; Nekvindova, J. Cervical Microbiota in Women with Preterm Prelabor Rupture of Membranes. PLoS ONE 2015, 10, e0126884. [Google Scholar] [CrossRef]
- Ryan, M.P.; Pembroke, J.T. The Genus Ochrobactrum as Major Opportunistic Pathogens. Microorganisms 2020, 8, 1797. [Google Scholar] [CrossRef] [PubMed]
- Trêpa, J.; Mendes, P.; Gonçalves, R.; Chaves, C.; Brás, A.M.; Mesa, A.; Ramos, I.; Sá, R.; da Cunha, J.G.S. Brucella Vertebral Osteomyelitis Misidentified as an Ochrobactrum Anthropi Infection. IDCases 2018, 11, 74–76. [Google Scholar] [CrossRef] [PubMed]
- Segui-Perez, C.; de Jongh, R.; Jonkergouw, R.L.W.; Pelayo, P.; Balskus, E.P.; Zomer, A.; Strijbis, K. Prevotella Timonensis Degrades the Vaginal Epithelial Glycocalyx through High Fucosidase and Sialidase Activities. mBio 2024, 15, e0069124. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, N.M.; Lewis, W.G.; Li, G.; Sojka, D.K.; Lubin, J.B.; Lewis, A.L. Gardnerella Vaginalis and Prevotella Bivia Trigger Distinct and Overlapping Phenotypes in a Mouse Model of Bacterial Vaginosis. J. Infect. Dis. 2019, 220, 1099–1108. [Google Scholar] [CrossRef]
- Muzny, C.A.; Łaniewski, P.; Schwebke, J.R.; Herbst-Kralovetz, M.M. Host-Vaginal Microbiota Interactions in the Pathogenesis of Bacterial Vaginosis. Curr. Opin. Infect. Dis. 2020, 33, 59–65. [Google Scholar] [CrossRef]
- Ambalpady, P.A.; Samantroy, S.; Mishra, A.; Panda, J.; Pattnaik, D.; Jena, P. Microbiome Diversity in Vaginal Fluid and Sensitivity Patterns in Preterm Premature Rupture of Membrane Cases. Cureus 2022, 14, e20999. [Google Scholar] [CrossRef]
- Bond, D.M.; Middleton, P.; Levett, K.M.; van der Ham, D.P.; Crowther, C.A.; Buchanan, S.L.; Morris, J. Planned Early Birth versus Expectant Management for Women with Preterm Prelabour Rupture of Membranes Prior to 37 Weeks’ Gestation for Improving Pregnancy Outcome. Cochrane Database Syst. Rev. 2017, 2017, CD004735. [Google Scholar] [CrossRef]
- Feduniw, S.; Gaca, Z.; Malinowska, O.; Brunets, W.; Zgliczyńska, M.; Włodarczyk, M.; Wójcikiewicz, A.; Ciebiera, M. The Management of Pregnancy Complicated with the Previable Preterm and Preterm Premature Rupture of the Membranes: What about a Limit of Neonatal Viability?—A Review. Diagnostics 2022, 12, 2025. [Google Scholar] [CrossRef]
- Siegler, Y.; Weiner, Z.; Solt, I. ACOG Practice Bulletin No. 217: Prelabor Rupture of Membranes. Obstet. Gynecol. 2020, 136, 1061. [Google Scholar] [CrossRef]
- NICE Preterm Labour and Birth: NICE Guideline. Available online: https://www.nice.org.uk/guidance/ng25 (accessed on 26 September 2023).
- Yudin, M.H.; van Schalkwyk, J.; Van Eyk, N. No. 233-Antibiotic Therapy in Preterm Premature Rupture of the Membranes. J. Obstet. Gynaecol. Can. 2017, 39, e207–e212. [Google Scholar] [CrossRef]
- Thomson, A.J. Care of Women Presenting with Suspected Preterm Prelabour Rupture of Membranes from 24+0 Weeks of Gestation: Green-Top Guideline No. 73. BJOG Int. J. Obstet. Gynaecol. 2019, 126, e152–e166. [Google Scholar] [CrossRef]
- Sandeford, J.; Nippita, T.; Bhuta, T.; Patterson, J.; Morris, J.; Seeho, S. Protocol for Probiotic Therapy vs Placebo for Preterm Prelabour Rupture of Membranes to Prolong Pregnancy Duration (Pro-PPROM) Trial. Aust. N. Z. J. Obstet. Gynaecol. 2021, 61, E12–E17. [Google Scholar] [CrossRef] [PubMed]
- Daskalakis, G.J.; Karambelas, A.K. Vaginal Probiotic Administration in the Management of Preterm Premature Rupture of Membranes. Fetal Diagn. Ther. 2017, 42, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Velemínský, M.; Tošner, J. Relationship of Vaginal Microflora to PROM, pPROM and the Risk of Early-Onset Neonatal Sepsis. Neuroendocrinol. Lett. 2008, 29, 205–221. [Google Scholar] [PubMed]
- Lagenaur, L.A.; Hemmerling, A.; Chiu, C.; Miller, S.; Lee, P.P.; Cohen, C.R.; Parks, T.P. Connecting the Dots: Translating the Vaginal Microbiome Into a Drug. J. Infect. Dis. 2020, 223, S296–S306. [Google Scholar] [CrossRef]
- Han, Y.; Liu, Z.; Chen, T. Role of Vaginal Microbiota Dysbiosis in Gynecological Diseases and the Potential Interventions. Front. Microbiol. 2021, 12, 643422. [Google Scholar] [CrossRef]
- Bayar, E.; Bennett, P.R.; Chan, D.; Sykes, L.; MacIntyre, D.A. The Pregnancy Microbiome and Preterm Birth. Semin. Immunopathol. 2020, 42, 487–499. [Google Scholar] [CrossRef] [PubMed]
- Patki, A.; Kunjimoideen, K.; Sawankar, S.; Tyagi, R.; Hegde, V.; Budi, J. Expert Opinion on the Use of Probiotics in Recurrent Pregnancy Loss. Cureus 2025, 17, e81056. [Google Scholar] [CrossRef] [PubMed]
- Mendz, G.L. The Vaginal Microbiome during Pregnancy in Health and Disease. Appl. Microbiol. 2023, 3, 1302–1338. [Google Scholar] [CrossRef]
- Flores, G.E.; Caporaso, J.G.; Henley, J.B.; Rideout, J.R.; Domogala, D.; Chase, J.; Leff, J.W.; Vázquez-Baeza, Y.; Gonzalez, A.; Knight, R.; et al. Temporal Variability Is a Personalized Feature of the Human Microbiome. Genome Biol. 2014, 15, 531. [Google Scholar] [CrossRef]
- Feduniw, S.; Golik, D.; Kajdy, A.; Pruc, M.; Modzelewski, J.; Sys, D.; Kwiatkowski, S.; Makomaska-Szaroszyk, E.; Rabijewski, M. Application of Artificial Intelligence in Screening for Adverse Perinatal Outcomes—A Systematic Review. Healthcare 2022, 10, 2164. [Google Scholar] [CrossRef]
Study | Population and Tested Microbes | Study Design | Sample Collecting | Outcome | NOS |
---|---|---|---|---|---|
Mu et al., 2023 [18] | 310 pregnant women in the early II. trimester (6 PPROM cases, 46 PROM and 255 healthy pregnancies) Lactobacillus spp. Megasphaera spp. Faecalibacterium spp. Bifidobacterium spp. Xanthomonadales spp. Gammaproteobacteria spp. Alphaproteobacteria spp. | Case-cohort study from China | Vaginal swabs analyzed with V3–V4 region of 16S rRNA gene on an Ion S5TM XL instrument. | Reduced risk of PPROM associated with Lactobacillus mulieris (adjusted odds ratio [aOR] 0.35, 95% confidence interval [CI]: 0.17–0.72). PPROM risk associated with Megasphaera spp. (aOR 2.27, 95%CI: 1.09–4.70), Faecalibacterium spp. (aOR 3.29, 95%CI: 1.52–7.13), Bifidobacterium spp. (aOR 3.26, 95%CI: 1.47–7.24), Xanthomonadales spp. (aOR 2.76, 95%CI: 1.27–6.01), Gammaproteobacteria spp. (aOR 2.36, 95%CI: 1.09–5.14) and Alphaproteobacteria spp. (aOR 2.45, 95%CI: 1.14–5.26). | 7 |
Tevaearai et al., 2022 [19] | 99 women undergoing fetal spina bifida repair between 20 + 6 and 25 + 5 WG. (48 PPROM cases) Lactobacillus Desquamative inflammatory vaginitis: Gardnerella vaginalis, Escherichia coli group B Streptococcus Staphylococcus aureus Enterococcus faecalis | Prospective observational study from Switzerland | Vaginal swabs analyzed with wet mount microscopic test after antibiotic therapy. | Pre- (OR 1.57, 95%CI: 0.74–3.32) and post-surgical (OR 1.26, 95%CI: 0.62–2.55) abnormal vaginal flora is not associated with PPROM. | 8 |
Yan et al., 2022 [20] | 102 pregnant women (48 with PPROM between 24 + 0 and 36 + 6 WG and 54 healthy women delivered at term). Lactobacillus iners Gardnerella vaginalis Prevotella bivia, Ochrobactrum spp. Prevotella timonensis Ureaplasma parvum | Cross-sectional study from China | Vaginal swabs analyzed with V3–V4 region of t16S rRNA genes Illumina NovaSeq PE250 platform and with conventional microbiological analysis. | Lactobacillus crispatus, Lactobacillus iners, Lactobacillus gasseri, Gardnerella vaginal, Prevotella bivia, Ochrobactrum spp., Prevotella timonensis, and Ureaplasma parvum play role in PPROM prediction (AUC 0.913, 95%CI: 0.86–0.97). Ochrobactrum spp. (AUC 0.89, 95%CI: 0.81–0.96), Prevotella timonensis (AUC 0.76, 95%CI: 0.67–0.86), Gardnerella vaginal (AUC 0.75, 95%CI: 0.65–0.84). | 8 |
Almaghrabi and Hussein 2022 [21] | 1201 pregnant women (969 with PROM and 232 with PPROM delivered at ≥27 WG). Group B streptococcus (72.9%) Candida spp. (18.6%). | Retrospective observational study from Saudi Arabia | Vaginal and rectal swabs analyzed with latex agglutination test, CAMP test, or automated identification machine | Group B Streptococcus dominates in Saudi women with membranes rupture (PPROM and PROM). | 5 |
Elshabrawy et al., 2022 [22] | 640 pregnant women (320 PPROM cases and 320 healthy pregnant women) S. agalactiae (25.5% PPROM) E. coli (25.0% PPROM) Staphylococcus aureus (16.9% PPROM) | Case control study from Egypt | Vaginal swabs analyzed with latex agglutination test and Yeast growth test. | Bacterial vaginosis (OR 6.3, 95%CI: 4.2–9.6), aerobic vaginitis (OR 39.7, 95%CI: 14.4–109.3), and vaginal candidiasis (OR 13.5, 95%CI: 3.2–57.4) relate to PPROM occurrence. | 7 |
Kacerovsky et al., 2022 [23] | 217 pregnant women with PPROM between 24 + 0 and 33 + 6 WG. Ureaplasma spp. Mycoplasma hominis Chlamydia trachomatis | Retrospective observational study from Czech Republic | Cervical fluid swabs analyzed with AmpliSens® to detect bacterial DNA. | Ureaplasma spp. was present in 61% of PPROM cases and correlated with the presence of intra-amniotic infection and colonization. | 7 |
Kacerovsky et al., 2021 [24] | 405 pregnant women with PPROM between 24 + 0 and 33 + 6 WG. Gardnerella vaginalis (94%) | Prospective observational study from Czech Republic | Vaginal swabs analyzed with QIAamp DNA Mini Kit to detect G. vaginalis DNA and 16S rRNA region amplification technique. | G. vaginalis infection is associated with microbial invasion of the amniotic cavity. | 8 |
Nguyen et al., 2021 [25] | 79 pregnant women delivered preterm (34 with PPROM between 24 + 0–33 + 6 WG and 45 cases with preterm labor and intact membranes). Lactobacillus spp. Mobiluncuss spp. Candida spp. Gardnerella vaginalis Trichomonas vaginalis | Case control study from Vietnam | Vaginal swabs analyzed with Gram stain (bacteria) and wet mount (fungus). | Bacterial vaginosis was associated with preterm labor (OR 3.2, 95%CI: 1.2–8.2). Isolated aerobic bacteria were associated with premature rupture of membranes (OR 5.5, 95%CI = 2.1–14.1). | 6 |
Goodfellow et al., 2021 [26] | 254 pregnant women at 15 + 1–18 + 6 WG and 19 + 0–23 + 0 WG (109 with history of PPROM and 145 with low risk of PPROM). (22 women with PPROM). Lactobacillus spp.: Lactobacillus iners (33%) Lactobacillus crispatus (21.1%) Other (20.2%) | Case-control study from UK | Vaginal swabs analyzed with V3–V4 region of 16S rRNA gene on HiSeq 2500 Illumina platform | L. iners-domination is related to PPROM occurrence in II. trimester (aOR 3.44, 95%CI 1.06–11.15). sPTB/PPROM. Domination of Lactobacilli, but not L. iners may protect pregnant women from disbacteriosis and developing PPROM. | 5 |
Kacerovsky et al., 2020 [27] | 311 pregnant women with PPROM between 24 + 0 and 33 + 6 WG. Lactobacillus crispatus Lactobacillus iners. | Retrospective observational study from Czech Republic | Cervical swabs analyzed with 16S rRNA region amplification technique. | L. crispatus-domination in PPROM patients is related to decreased risk of intra-amniotic bacterial invasion. | 6 |
Hassan et al., 2020 [28] | 600 pregnant women (100 with aerobic vaginitis and 500 with normal flora), (28 PPROM cases, 51 PROM cases, 52 PTB cases). | Prospective observational study from Egypt | Vaginal swabs analyzed with Gram stain assessment. | Correlation between aerobic vaginitis and with: PTB (aOR 3.06, 95% CI 1.58–5.95), PROM (aOR 6.17, 95% CI 3.24–11.7), and PPROM (aOR 1.73, 95%CI: 0.68–4.4). | 6 |
Malla et al., 2020 [29] | 60 pregnant women with PPROM. Enterococcus faecalis (38.8%) Escherichia coli (27.7%) Staphylococcus aureus (11.1%) Klebsiella pneumoniae (12.9%) Pseudomonas ạeruginosa (3.7%) Proteus mirabilis (5.6%) | Cross-sectional study from India | Vaginal swabs analyzed with unknown test. | Imipenem (88.8%) and Amikacin (66.6%) are effective against Gram-negative bacteria. Linezolid (70.3%) and Vancomycin (55.5%) are effective against Gram-positive bacteria. | 2 |
You Y.-A. et al., 2019 [30] | 58 pregnant women (41 with PTB, 17 with PPROM 22 + 0 and 36 + 6 WG and 14 term deliveries). Lactobacillus spp. Bacteroides spp. Sphingomonas spp. Weissella spp. Rickettsiales spp. | Prospective observational study from Korea | Vaginal swabs analyzed with V3–V4 region of 16S rRNA gene on MiSeq Illumina platform. | Bacteroides spp. (22.8%) and Sphingomonas spp. (3.9%) are associated with PPROM (p < 0.01). Weissella spp. and Rickettsiales spp. associated with term deliveries. | 6 |
Brown et al., 2019 [31] | 1505 pregnant women between 6 + 0 and 10 + 0 WG. 502 high PTB risk (38 PPROM cases) and 1003 low PTB risk (22 PPROM cases) Total 60 PPROM cases. Lactobacillus spp. Prevotella spp. Peptoniphilus spp. Streptococcus spp. Dialister spp. | Prospective observational study from UK | Cervico-vaginal swabs from the posterior fornix taken at 12–17+6, 18–23+6, 24–29+6, 30–36+6 weeks+days analyzed with V1–V2 regions of 16S rRNA gene on MiSeq Illumina platform. | Lactobacillus spp. reduction and high vaginal bacterial diversity as an early risk factor for PPROM. High vaginal diversity and reduced Lactobacillus spp. abundance observed prior to PPROM in 20% and 26% of women at low and high risk of PTB respectively, and in only 3% of women delivered terminally. Higher vaginal diversity and instability of bacterial community during the second trimester associated with PPROM. Prevotella, Peptoniphilus, Streptococcus, and Dialister increased in PPROM vaginal microbiome. | 8 |
Brown et al., 2018 [32] | First cohort (2013–2014): 250 pregnant women between 8 + 0 and 12 + 0 WG (15 PPROM cases). Second cohort (2013–2015): 87 women with PPROM. Lactobacillus species: L. iners (>92%) L. crispatus (>93%) L. gasseri (>80%) L. jensenii (>92%) L. iners (33–68%) L. crispatus (51–78%) | Prospective observational study from UK | Cervico-vaginal swabs from the posterior fornix taken at 8–12, 19–25, 27–30 and 32–36 WG analyzed with V1–V2 regions of 16S rRNA gene on MiSeq Illumina platform. | Vaginal microbiota composition is a risk factor for PPROM. Lactobacillus spp. reduction and vaginal dysbiosis is observed prior to the PPROM and persisted following membrane rupture. Lactobacillus reduction and increased abundance of Sneathia spp. associated with fungal infections and neonatal sepsis. Erythromycin treatment eradicated vaginal dysbiosis in 47% of cases. | 8 |
Zhang et al., 2017 [33] | 220 pregnant women (112 with PPROM and 108 healthy pregnant women between 28 + 0 and 36 + 6 WG). Chlamydia trachomatis Ureaplasma urealyticum Candida albicans group B streptococci herpes simplex virus-1 (HSV-1) and HSV-2 | Case control study from China | Vaginal swabs analyzed with QIAamp MiniStool kit and RT-PCR. | Analysis of included bacteria could predict PPROM with 84.1–86.8% accuracy. U. urealyticum (11.6% vs. 3.7%), C. trachomatis (17.0% vs. 5.6%), and group B streptococci (22.3% vs. 6.5%) has most meaningful impact on PPROM prediction. | 7 |
Jayaprakash et al., 2016 [34] | 51 pregnant women with PPROM between 24 + 0 and 33 + 6 WG. Mycoplasma spp. Ureaplasma parvum U. urealyticum Group B Streptococcus (5.9%) Lactobacillus crispatus L. iners Prevotella timonensis Gardnerella vaginalis Corynebacterium spp. Escherichia coli | Prospective cohort study from Canada | Vaginal swabs analyzed with pyrosequencing of the cpn 60 on the 454 GS FLX Titanium and GS Junior sequencing platforms. | Vaginal microbiota in patients with PPROM did not correlate with pregnancy latency duration. Megasphaera type 1 and Prevotella spp. detected in all vaginal samples. Lactobacillus domination was in 18.6% of samples. | 8 |
Genovese et al., 2016 [35] | 600 pregnant women between 28 + 0 and 32 + 0 WG.:
Candida albicans (27.7%) Enterococcus spp. (28.6%) Escherichia coli (25.5%) Gardnerella vaginalis (22.8%) Peptococcus spp. (21.8%) Candida non albicans (11.7%) | Retrospective observational study from Italy | Vaginal swabs analyzed to evaluate the Lactobacillary grade on Schroder’s classification. | Bacterial vaginitis (E. coli, Enterococcus spp., Peptococcus spp., G. vaginalis) is related with PPROM occurrence. Bacterial eradication with metronidazole and clotrimazole was insignificant in PPROM risk reduction (RR 0.51, 95%CI: 0.12–2.11). | 6 |
Baldwin et al., 2015 [36] | 27 pregnant women at 23 + 1–34 + 5 WG (15 with PPROM and 12 healthy pregnant women). | Retrospective observational study from USA | Vaginal swabs analyzed with V3–V5 region of 16S rRNA on MiSeq 600 Illumina | Lactobacillus spp. decrease in PPROM women. Prevotella and Peptoniphilus became most dominant in cases without antibiotic treatment. Weeksella, Lachnospira, Achromobacter, and Pediococcus significantly reduced, Peptostreptococcus and Tissierella dominate during and after the antibiotic treatment. | 7 |
Kacerovsky et al., 2015 [37] | 61 pregnant women with PPROM between 24 + 0 and 36 + 6 WG. Lactobacillus dominated: Lactobacillus crispatus (n = 25) Lactobacillus gasseri (n = 13) Lactobacillus iners Lactobacillus jensenii non-Lactobacillus dominated: Ureaplasma spp., Propionibacterium acnes, Fusobacterium nucleatum, Veillonela spp., Streptococcus spp., Haemophilus influenzae (n = 11) Gardnerella vaginalis and Sneathia sanguinegens dominated (n = 12) | Prospective observational study from Czech Republic | Cervical and amniotic fluid swabs analyzed with 16S rRNA gene sequencing on GS FLX + sequencer. | Non-Lactobacillus CSTs associated with a strong cervical inflammatory response and higher rates of microbial invasion of the amniotic cavity. L. crispatus occurs more often in PPROM cases and is connected to a low rate of microbial invasion of the amniotic cavity. | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feduniw, S.; Zeber-Lubecka, N.; Pruc, M.; Gaca, Z.; Szarpak, Ł.; Ciebiera, M. Does the Vaginal Microbiota Influence the Incidence of the Preterm Premature Rupture of Membranes? J. Clin. Med. 2025, 14, 6577. https://doi.org/10.3390/jcm14186577
Feduniw S, Zeber-Lubecka N, Pruc M, Gaca Z, Szarpak Ł, Ciebiera M. Does the Vaginal Microbiota Influence the Incidence of the Preterm Premature Rupture of Membranes? Journal of Clinical Medicine. 2025; 14(18):6577. https://doi.org/10.3390/jcm14186577
Chicago/Turabian StyleFeduniw, Stepan, Natalia Zeber-Lubecka, Michal Pruc, Zuzanna Gaca, Łukasz Szarpak, and Michal Ciebiera. 2025. "Does the Vaginal Microbiota Influence the Incidence of the Preterm Premature Rupture of Membranes?" Journal of Clinical Medicine 14, no. 18: 6577. https://doi.org/10.3390/jcm14186577
APA StyleFeduniw, S., Zeber-Lubecka, N., Pruc, M., Gaca, Z., Szarpak, Ł., & Ciebiera, M. (2025). Does the Vaginal Microbiota Influence the Incidence of the Preterm Premature Rupture of Membranes? Journal of Clinical Medicine, 14(18), 6577. https://doi.org/10.3390/jcm14186577