Effectiveness of Telerehabilitation in Reducing Pain and Improving Quality of Life and Job Satisfaction Among Cardiac Sonographers with Work-Related Musculoskeletal Disorders: A Randomized Controlled Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample Size Calculation
2.3. Participants
2.4. Randomization
2.5. Procedure
2.6. Intervention
2.7. Outcome Measures
2.8. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Cardiac Sonographers
3.2. Primary Outcome (Pain Intensity [NPRS])
3.3. Secondary Outcomes (QOL and Job Satisfaction)
3.3.1. Job Satisfaction
3.3.2. QOL
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
WRMD | Work-related musculoskeletal disorders |
QOL | Quality of life |
TR | Telerehabilitation |
IRB | Institutional review board |
MCID | Minimal clinically important difference |
NPRS | Numerica Pain Rating Scale |
JSS | Job Satisfaction Survey |
PF | Physical functioning |
RP | Role physical |
RE | Role emotional |
VT | Vitality |
GH | General health |
MH | Mental health |
BP | Bodily pain |
SF | Social functioning |
RCT | Randomized controlled trial |
CI | Confidence interval |
References
- Suganthirababu, P.; Parveen, A.; Mohan Krishna, P.; Sivaram, B.; Kumaresan, A.; Srinivasan, V.; Vishnuram, S.; Alagesan, J.; Prathap, L. Prevalence of work-related musculoskeletal disorders among health care professionals: A systematic review. Work 2023, 74, 455–467. [Google Scholar] [CrossRef] [PubMed]
- Zangiabadi, Z.; Makki, F.; Marzban, H.; Salehinejad, F.; Sahebi, A.; Tahernejad, S. Musculoskeletal disorders among sonographers: A systematic review and meta-analysis. BMC Health Serv. Res. 2024, 24, 1233. [Google Scholar] [CrossRef] [PubMed]
- Al Saikhan, L.; Alshami, A.M. Prevalence and burden of musculoskeletal pain among cardiac sonographers in eastern province of Saudi Arabia: A cross-sectional study. J. Clin. Med. 2024, 13, 3184. [Google Scholar] [CrossRef] [PubMed]
- McDonald, M.; Salisbury, H. Physical activity, exercise, and musculoskeletal disorders in sonographers. J. Diagn. Med. Sonogr. 2019, 35, 305–315. [Google Scholar] [CrossRef]
- AlMubarek, N.A.; Al-Otaibi, S.T.; Herzallah, H.K. Musculoskeletal disorders among sonographers in secondary care hospitals in the city of Al-Ahsa, Saudi Arabia. Work 2022, 71, 1105–1111. [Google Scholar] [CrossRef]
- Bagley, J.E.; Barnett, J.; Baldwin, J.; DiGiacinto, D.; Anderson, M.P. On-the-job pain and injury as related to adaptive ergonomic equipment in the sonographer’s workplace and area. J. Diagn. Med. Sonogr. 2017, 33, 15–21. [Google Scholar] [CrossRef]
- Onwordi, E.; Harris, A.; Atkinson, C.; West, C.; Pearce, K.; Hancock, J.; Demetrescu, C.; Rakhit, D.; Shah, B.N.; Khattar, R.; et al. Prevalence, characteristics and clinical impact of work-related musculoskeletal pain in echocardiography. Echo Res. Pract. 2024, 11, 6. [Google Scholar] [CrossRef]
- Jacquier-Bret, J.; Gorce, P. Prevalence of body area work-related musculoskeletal disorders among healthcare professionals: A systematic review. Int. J. Environ. Res. Public Health 2023, 20, 841. [Google Scholar] [CrossRef]
- Harrison, G.; Harris, A. Work-related musculoskeletal disorders in ultrasound: Can. you reduce risk? Ultrasound 2015, 23, 224–230. [Google Scholar] [CrossRef]
- Al Saikhan, L. Prevalence, characteristics, consequences, and awareness of work-related musculoskeletal pain among cardiac sonographers compared with other healthcare workers in Saudi Arabia: A cross sectional study. PLoS ONE 2023, 18, e0285369. [Google Scholar] [CrossRef]
- Barros-Gomes, S.; Orme, N.; Nhola, L.F.; Scott, C.; Helfinstine, K.; Pislaru, S.V.; Kane, G.C.; Singh, M.; Pellikka, P.A. Characteristics and consequences of work-related musculoskeletal pain among cardiac sonographers compared with peer employees: A multisite cross-sectional study. J. Am. Soc. Echocardiogr. 2019, 32, 1138–1146. [Google Scholar] [CrossRef] [PubMed]
- Soares, C.O.; Pereira, B.F.; Pereira Gomes, M.V.; Marcondes, L.P.; de Campos Gomes, F.; de Melo-Neto, J.S. Preventive factors against work-related musculoskeletal disorders: Narrative review. Rev. Bras. Med. Trab. 2019, 17, 415–430. [Google Scholar] [CrossRef]
- Tator, C.F.; Truluck, C. Musculoskeletal pain relief in sonographers: A systematic review of the effects of therapeutic techniques. J. Diagn. Med. Sonogr. 2017, 33, 420–426. [Google Scholar] [CrossRef]
- Pike, I.; Russo, A.; Berkowitz, J.; Baker, J.P.; Lessoway, V.A. The prevalence of musculoskeleta disorders among diagnostic medical sonograhers. J. Diagn. Med. Sonogr. 1997, 13, 219–227. [Google Scholar] [CrossRef]
- Coffin, C.T. Work-related musculoskeletal disorders in sonographers: A review of causes and types of injury and best practices for reducing injury risk. Rep. Med. Imaging 2014, 7, 15–26. [Google Scholar] [CrossRef]
- Krishnan, G. Telerehabilitation: An overview. Telehealth Med. Today 2021, 6, 1–14. [Google Scholar] [CrossRef]
- Cottrell, M.A.; O’Leary, S.P.; Raymer, M.; Hill, A.J.; Comans, T.; Russell, T.G. Does telerehabilitation result in inferior clinical outcomes compared with in-person care for the management of chronic musculoskeletal spinal conditions in the tertiary hospital setting? A non-randomised pilot clinical trial. J. Telemed. Telecare 2021, 27, 444–452. [Google Scholar] [CrossRef]
- Cottrell, M.A.; Galea, O.A.; O’Leary, S.P.; Hill, A.J.; Russell, T.G. Real-time telerehabilitation for the treatment of musculoskeletal conditions is effective and comparable to standard practice: A systematic review and meta-analysis. Clin. Rehabil. 2017, 31, 625–638. [Google Scholar] [CrossRef]
- Peretti, A.; Amenta, F.; Tayebati, S.K.; Nittari, G.; Mahdi, S.S. Telerehabilitation: Review of the state-of-the-art and areas of application. JMIR Rehabil. Assist. Technol. 2017, 4, e7. [Google Scholar] [CrossRef] [PubMed]
- Toonders, S.A.J.; van der Meer, H.A.; van Bruxvoort, T.; Veenhof, C.; Speksnijder, C.M. Effectiveness of remote physiotherapeutic e-health interventions on pain in patients with musculoskeletal disorders: A systematic review. Disabil. Rehabil. 2023, 45, 3620–3638. [Google Scholar] [CrossRef] [PubMed]
- de Araújo Vieira, L.M.S.M.; de Andrade, M.A.; de Oliveira Sato, T. Telerehabilitation for musculoskeletal pain–An overview of systematic reviews. Digit. Health 2023, 9, 20552076231164242. [Google Scholar] [CrossRef]
- Pratama, A.D.; Farelin, A.D.; Karnadipa, T.; Pahlawi, R.; Noviana, M.; Abdullah, F. The application of telerehabilitation for pain reduction and improving quality of life in workers with work-related musculoskeletal disorders: Systematic review. In Proceedings of the 5th International Conference on Vocational Education Applied Science and Technology 2022, Teluk Betung, Indonesia, 26–28 October 2022. [Google Scholar]
- Amin, J.; Ahmad, B.; Amin, S.; Siddiqui, A.A.; Alam, M.K. Rehabilitation professional and patient satisfaction with telerehabilitation of musculoskeletal disorders: A systematic review. BioMed Res. Int. 2022, 2022, 7366063. [Google Scholar] [CrossRef]
- Baroni, M.P.; Jacob, M.F.A.; Rios, W.R.; Fandim, J.V.; Fernandes, L.G.; Chaves, P.I.; Fioratti, I.; Saragiotto, B.T. The state of the art in telerehabilitation for musculoskeletal conditions. Arch. Physiother. 2023, 13, 1. [Google Scholar] [CrossRef]
- Mintken, P.E.; Glynn, P.; Cleland, J.A. Psychometric properties of the shortened disabilities of the Arm, Shoulder, and Hand Questionnaire (QuickDASH) and Numeric Pain Rating Scale in patients with shoulder pain. J. Shoulder Elbow Surg. 2009, 18, 920–926. [Google Scholar] [CrossRef]
- Ferreira-Valente, M.A.; Pais-Ribeiro, J.L.; Jensen, M.P. Validity of four pain intensity rating scales. Pain 2011, 152, 2399–2404. [Google Scholar] [CrossRef]
- Brazier, J.E.; Harper, R.; Jones, N.M.; O’Cathain, A.; Thomas, K.J.; Usherwood, T.; Westlake, L. Validating the SF-36 health survey questionnaire: New outcome measure for primary care. BMJ 1992, 305, 160–164. [Google Scholar] [CrossRef]
- Kumar, P.; Khan, A.M. Development of job satisfaction scale for health care providers. Indian J. Public Health 2014, 58, 249–255. [Google Scholar] [CrossRef]
- Wooten, A. Work-related musculoskeletal disorders in sonography. Radiol. Technol. 2019, 90, 215–224. [Google Scholar]
- Vitacca, M.; Stickland, M.K. Telerehabilitation. In Pulmonary Rehabilitation; Donner, C.F., Ambrosino, N., Goldstein, R.S., Eds.; CRC Press: Boca Raton, FL, USA, 2020; pp. 271–279. [Google Scholar] [CrossRef]
- Gueorguieva, R.; Krystal, J.H. Move over ANOVA: Progress in analyzing repeated-measures data and its reflection in papers published in the Archives of General Psychiatry. Arch. Gen. Psychiatry 2004, 61, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Twisk, J.W.R. Applied Longitudinal Data Analysis for Epidemiology: A Practical Guide, 2nd ed.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Alahmri, F.; Nuhmani, S.; Muaidi, Q. Effectiveness of telerehabilitation on pain and function in musculoskeletal disorders: A systematic review of randomized controlled trials. Musculoskelet. Care 2024, 22, e1912. [Google Scholar] [CrossRef]
- Dario, A.B.; Moreti Cabral, A.M.; Almeida, L.; Ferreira, M.L.; Refshauge, K.; Simic, M.; Pappas, E.; Ferreira, P.H. Effectiveness of telehealth-based interventions in the management of non-specific low back pain: A systematic review with meta-analysis. Spine J. 2017, 17, 1342–1351. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Hunter, D.J.; Vesentini, G.; Pozzobon, D.; Ferreira, M.L. Technology-assisted rehabilitation following total knee or hip replacement for people with osteoarthritis: A systematic review and meta-analysis. BMC Musculoskelet. Disord. 2019, 20, 506. [Google Scholar] [CrossRef] [PubMed]
- Azma, K.; RezaSoltani, Z.; Rezaeimoghaddam, F.; Dadarkhah, A.; Mohsenolhosseini, S. Efficacy of tele-rehabilitation compared with office-based physical therapy in patients with knee osteoarthritis: A randomized clinical trial. J. Telemed. Telecare 2018, 24, 560–565. [Google Scholar] [CrossRef]
- Suso-Martí, L.; La Touche, R.; Herranz-Gómez, A.; Angulo-Díaz-Parreño, S.; Paris-Alemany, A.; Cuenca-Martínez, F. Effectiveness of telerehabilitation in physical therapist practice: An umbrella and mapping review with meta-meta-analysis. Phys. Ther. 2021, 101, pzab075. [Google Scholar] [CrossRef]
- Cottrell, M.A.; Russell, T.G. Telehealth for musculoskeletal physiotherapy. Musculoskelet. Sci. Pract. 2020, 48, 102193. [Google Scholar] [CrossRef]
- Costa, F.; Janela, D.; Molinos, M.; Lains, J.; Francisco, G.E.; Bento, V.; Dias Correia, F. Telerehabilitation of acute musculoskeletal multi-disorders: Prospective, single-arm, interventional study. BMC Musculoskelet. Disord. 2022, 23, 29. [Google Scholar] [CrossRef]
- Janela, D.; Areias, A.C.; Moulder, R.G.; Molinos, M.; Bento, V.; Yanamadala, V.; Correia, F.D.; Costa, F. Recovering Work Productivity in a Population With Chronic Musculoskeletal Pain: Unveiling the Value and Cost-Savings of a Digital Care Program. J. Occup. Environ. Med. 2024, 66, e493–e499. [Google Scholar] [CrossRef]
- Jacobsson, R.J.; Oikarinen, A.; Krogell, J.; Kankkunen, P. Group-based cardiac telerehabilitation interventions and health outcomes in coronary patients: A scoping review. Clin. Rehabil. 2024, 38, 184–201. [Google Scholar] [CrossRef] [PubMed]
- Imurtaş, E.; Hüzmeli, İ.; Demirbüken, İ.; Polat, M.G. Clinical outcomes of asynchronous telerehabilitation through a mobile app are equivalent to synchronous telerehabilitation in patients with fibromyalgia: A randomized control study. BMC Musculoskelet. Disord. 2025, 26, 118. [Google Scholar] [CrossRef]
Body Region | Exercise | Benefit | Number of Repetitions |
---|---|---|---|
Neck | Active stretching exercises for cervical flexors and lateral flexors | Improve cervical flexibility Increase length of tight cervical muscles Reduce neck pain | 30–60 s hold, 2–4 repetitions |
Isometric strengthening exercises for cervical muscles | Reduce neck pain Increase the strength of weak cervical muscles | 10 s hold, 10 repetitions 1 set | |
Shoulder | Shoulder flexion exercise from a standing position | Improve mobility Improve blood circulation Reduce pain Enhance shoulder joint flexibility | Isotonic: 15 repetitions, 3 sets Isometric: 6 sets, 30 s/set with 2 min rest |
Shoulder external rotation exercise from a supine position | Improve mobility Improve blood circulation Reduce pain Enhance shoulder joint flexibility | Isotonic: 15 repetitions, 3 sets Isometric: 6 sets, 30 s/set with 2 min rest | |
Wrist | Active stretching exercise for wrist flexors | Improve thumb mobility Reduce pain Enhance wrist flexibility | 30–60 s hold, 2–4 repetitions |
Active stretching exercise for the thenar muscle | Improve thumb mobility Reduce pain Enhance wrist flexibility | 30–60 s hold, 2–4 repetitions | |
Low back | McKenzie extension exercises from prone and standing positions | Improve lower back mobility Decrease LBP Increase lumbar flexibility | 10 repetitions, 10 s hold, 1 set |
Core stability exercise (Bridge exercise) | Decrease LBP Increase core muscle strength | 10 repetitions, 10 s hold, 1 set |
Variable | Control Group (n = 16) | Intervention Group (n = 16) | p-Value |
---|---|---|---|
Age, years | 26.88 [25.18–28.57] | 30.19 [27.66–32.71] | 0.027 |
Female, n (%) | 15 (93.75) | 15 (93.75) | 1.000 |
Height, cm | 160.25 [157.07–163.43] | 160.25 [157.05–163.45] | 1.000 |
Weight, kg | 60.69 [54.45–66.93] | 63.94 [56.10–71.77] | 0.494 |
Body mass index, kg/m2 | 23.30 [21.41–25.19] | 23.22 [19.47–26.98] | 0.968 |
Level of education, n (%) | 1.000 | ||
Bachelor | 14 (87.5) | 14 (87.5) | |
Masters | 0 (0) | 1 (6.25) | |
Diploma | 2 (12.5) | 1 (6.25) | |
Cardiac sonography, n (%) | 1.000 | ||
Adult | 15 (93.75) | 15 (93.75) | |
Pediatric | 1 (6.25) | 1 (6.25) | |
Place of employment, n (%) | 0.716 | ||
Government hospital | 9 (56.25) | 11 (68.75) | |
Private hospital | 6 (37.50) | 5 (31.25) | |
Private outpatient clinic | 1 (6.25) | 0 (0) |
Variable, n (%) | Control Group (n = 16) | Intervention Group (n = 16) | p-Value |
---|---|---|---|
Years of experience (years) | |||
<1 | 4 (25.00) | 3 (18.75) | 0.449 |
1–5 | 8 (50.00) | 5 (31.25) | |
>5–10 | 4 (25.00) | 6 (37.50) | |
>10–15 | 0 (0.00) | 2 (12.50) | |
Primary scanning hand | |||
Right | 13 (81.25) | 11 (68.75) | 0.394 |
Left | 1 (6.25) | 0 (0.00) | |
Both | 2 (12.50) | 5 (31.25) | |
Overnight calls | 6 (37.50) | 10 (62.50) | 0.157 |
Work weekends | 7 (43.75) | 7 (43.75) | 1.000 |
Hours spent scanning per day | |||
≤4 | 1 (6.25) | 2 (12.50) | 1.000 |
4–6 | 6 (37.50) | 6 (37.50) | |
6–8 | 8 (50.00) | 8 (50.00) | |
≥8 | 1 (6.25) | 0 (0.00) | |
Exam/task rotation | 14 (87.50) | 8 (50.00) | 0.054 |
Breaks between booked scans | |||
Yes | 1 (6.25) | 3 (18.75) | 0.702 |
No | 8 (50.00) | 6 (37.50) | |
Sometimes | 7 (43.75) | 7 (43.75) | |
Assigned scans per day | |||
≤5 | 1 (6.25) | 1 (6.25) | 0.894 |
5–7 | 7 (43.75) | 6 (37.50) | |
7–9 | 6 (37.50) | 5 (31.25) | |
≥10 | 2 (12.50) | 4 (25.00) | |
Average time per scan (min) | |||
≤30 | 5 (31.25) | 7 (43.75) | 0.560 |
30–45 | 8 (50.00) | 8 (50.00) | |
45–60 | 3 (9.38) | 1 (6.25) | |
Working hours per day | |||
7 | 0 (0.00) | 1 (6.25) | 0.685 |
8 | 13 (81.25) | 11 (68.75) | |
9 | 3 (18.75) | 4 (25.00) |
Outcome | Time Point | Control Group Adjusted Mean (95% CI) | Intervention Group Adjusted Mean (95% CI) | Group × Time Interaction (β, 95% CI) | p-Value |
---|---|---|---|---|---|
Pain (NPRS) | Baseline | 3.94 (2.89, 4.98) | 4.81 (3.77, 5.86) | - | - |
Post-intervention | 2.75 (1.70, 3.80) | 1.63 (0.58, 2.67) | −2.0 (−3.67, −0.33) | 0.019 | |
Job Satisfaction | Baseline | 132.33 (124.78, 139.89) | 120.4 (112.84, 127.96) | - | - |
Post-intervention | 128.07 (120.51, 135.62) | 132.07 (124.51, 139.62) | 15.93 (3.47, 28.40) | 0.012 | |
SF-36 Total | Baseline | 95.68 (91.16, 100.21) | 97.31 (92.79, 101.84) | - | - |
Post-intervention | 98.75 (94.23, 103.27) | 98.00 (93.48, 102.52) | −2.38 (−9.11, 4.36) | 0.490 |
Outcome | Time Point | Control Group Adjusted Mean (95% CI) | Intervention Group Adjusted Mean (95% CI) | Group × Time Interaction (β, 95% CI) | p-Value |
---|---|---|---|---|---|
PF | Baseline | 81.25 (71.11, 91.39) | 80.67 (70.19, 91.14) | - | - |
Post-intervention | 84.69 (74.54, 94.83) | 79.67 (69.19, 90.14) | −4.44 (−15.86, 6.98) | 0.446 | |
RP | Baseline | 65.63 (49.15, 82.10) | 68.75 (52.28, 85.22) | - | - |
Post-intervention | 75.0 (58.53, 91.47) | 81.25 (64.78, 97.72) | 3.13 (−24.90, 31.15) | 0.827 | |
RE | Baseline | 52.08 (33.29, 70.88) | 56.25 (37.45, 75.05) | - | - |
Post-intervention | 72.92 (54.12, 91.71) | 68.75 (49.95, 87.55) | −8.33 (−38.20, 21.53) | 0.584 | |
VT | Baseline | 46.56 (38.56, 54.57) | 40.31 (32.31, 48.32) | - | - |
Post-intervention | 51.25 (43.24, 59.26) | 52.81 (44.81, 60.82) | 7.81 (−4.33, 19.95) | 0.207 | |
BP | Baseline | 64.34 (56.17, 72.58) | 56.72 (48.51, 64.92) | - | - |
Post-intervention | 67.34 (59.14, 75.55) | 72.5 (64.29, 80.71) | 12.81 (1.50, 24.12) | 0.026 | |
GH | Baseline | 62.81 (53.43, 72.19) | 54.34 (45.0, 63.75) | - | - |
Post-intervention | 68.13 (58.75, 77.50) | 60.94 (51.56, 70.32) | 1.25 (−8.67, 11.17) | 0.805 | |
SF | Baseline | 52.34 (47.25, 57.44) | 57.03 (51.93, 62.13) | - | - |
Post-intervention | 57.03 (51.93, 62.13) | 50.0 (44.90, 55.10) | −11.72 (−20.61, −2.83) | 0.010 | |
MH | Baseline | 59.06 (50.35, 67.78) | 53.25 (44.53, 61.97) | - | - |
Post-intervention | 64.5 (55.78, 73.22) | 64.5 (55.78, 73.21) | 5.81 (−5.44, 17.07) | 0.311 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nuhmani, S.; AlBakheet, A.; AlQahtani, G.; AlDulaijan, R.; AlHomiyn, M.; Al Saikhan, L. Effectiveness of Telerehabilitation in Reducing Pain and Improving Quality of Life and Job Satisfaction Among Cardiac Sonographers with Work-Related Musculoskeletal Disorders: A Randomized Controlled Trial. J. Clin. Med. 2025, 14, 6576. https://doi.org/10.3390/jcm14186576
Nuhmani S, AlBakheet A, AlQahtani G, AlDulaijan R, AlHomiyn M, Al Saikhan L. Effectiveness of Telerehabilitation in Reducing Pain and Improving Quality of Life and Job Satisfaction Among Cardiac Sonographers with Work-Related Musculoskeletal Disorders: A Randomized Controlled Trial. Journal of Clinical Medicine. 2025; 14(18):6576. https://doi.org/10.3390/jcm14186576
Chicago/Turabian StyleNuhmani, Shibili, Abrar AlBakheet, Ghada AlQahtani, Rawan AlDulaijan, Madhawi AlHomiyn, and Lamia Al Saikhan. 2025. "Effectiveness of Telerehabilitation in Reducing Pain and Improving Quality of Life and Job Satisfaction Among Cardiac Sonographers with Work-Related Musculoskeletal Disorders: A Randomized Controlled Trial" Journal of Clinical Medicine 14, no. 18: 6576. https://doi.org/10.3390/jcm14186576
APA StyleNuhmani, S., AlBakheet, A., AlQahtani, G., AlDulaijan, R., AlHomiyn, M., & Al Saikhan, L. (2025). Effectiveness of Telerehabilitation in Reducing Pain and Improving Quality of Life and Job Satisfaction Among Cardiac Sonographers with Work-Related Musculoskeletal Disorders: A Randomized Controlled Trial. Journal of Clinical Medicine, 14(18), 6576. https://doi.org/10.3390/jcm14186576