Corneal Remodeling Using Laser Asymmetric Keratectomy in Patients with Keratoconus Suspect
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BFS | best-fit-sphere |
CP | central pachymetry |
FDA | Food and Drug Administration |
FFKC | forme fruste keratoconus |
IOP | intraocular pressure |
KC | keratoconus |
KCS | keratoconus suspect |
LASEK | laser epithelial keratomileusis |
L-LAK | laser asymmetric keratectomy |
PRK | photorefractive keratectomy |
SE | spherical equivalent |
References
- Klyce, S.D. Chasing the suspect: Keratoconus. Br. J. Ophthalmol. 2009, 93, 845–847. [Google Scholar] [CrossRef]
- De Sanctis, U.; Aragno, V.; Dalmasso, P.; Brusasco, L.; Grignolo, F. Diagnosis of subclinical keratoconus using posterior elevation measured with 2 different methods. Cornea 2013, 32, 911–915. [Google Scholar] [CrossRef]
- Waring, G.O. Nomenclature for keratoconus suspects. J. Refract. Surg. 1993, 9, 219–222. [Google Scholar] [CrossRef]
- Saad, A.; Gatinel, D. Evaluation of total and corneal wavefront high order aberrations for the detection of forme fruste keratoconus. Investig. Ophthalmol. Vis. Sci. 2012, 53, 2978–2992. [Google Scholar] [CrossRef]
- Shi, Y. Strategies for improving the early diagnosis of keratoconus. Clin. Optom. 2016, 8, 13–21. [Google Scholar] [CrossRef]
- Vazirani, J.; Basu, S. Keratoconus: Current perspectives. Clin. Ophthalmol. 2013, 7, 2019–2030. [Google Scholar] [CrossRef] [PubMed]
- Schlegel, Z.; Hoang-Xuan, T.; Gatinel, D. Comparison of and correlation between anterior and posterior corneal elevation maps in normal eyes and keratoconus-suspect eyes. J. Cataract. Refract. Surg. 2008, 34, 789–795. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.N.; Raviv, T.; Majmudar, P.A.; Epstein, R.J. Role of Orbscan II in screening keratoconus suspects before refractive corneal surgery. Ophthalmology 2002, 109, 1642–1646. [Google Scholar] [CrossRef] [PubMed]
- Castro-Luna, G.; Pérez-Rueda, A. A predictive model for early diagnosis of keratoconus. BMC Ophthalmol. 2020, 20, 263. [Google Scholar] [CrossRef]
- Feng, K.; Zhang, Y.; Chen, Y.G. The possible causes for tomography suspect keratoconus in a Chinese cohort. BMC Ophthalmol. 2021, 21, 47. [Google Scholar] [CrossRef]
- Levy, A.; Georgeon, C.; Knoeri, J.; Tourabaly, M.; Leveziel, L.; Bouheraoua, N.; Borderie, V.M. Corneal epithelial thickness mapping in the diagnosis of ocular surface disorders involving the corneal epithelium: A comparative study. Cornea 2022, 41, 1353–1361. [Google Scholar] [CrossRef] [PubMed]
- Agudo, J.A.R.; Park, J.; Park, J.; Lee, S.; Park, K. Laser asymmetric ablation method to improve corneal shape. Lasers Med. Sci. 2019, 34, 1763–1779. [Google Scholar] [CrossRef] [PubMed]
- Min, J.S.; Min, B.M. Comparison of outcomes of laser refractive surgery (LRS) alone and LRS with laser asymmetric keratectomy in patients with myopia: A retrospective study. Medicine 2021, 100, e25366. [Google Scholar] [CrossRef]
- Min, J.S.; Min, B.M. Comparison between surgical outcomes of LASIK with and without laser asymmetric keratectomy to avoid conventional laser refractive surgery adverse effects. Sci. Rep. 2020, 10, 10446. [Google Scholar] [CrossRef]
- Min, J.S.; Min, B.M. A novel approach to enhancement linked laser asymmetric keratectomy using semi-cylindrical ablation pattern in patients with myopic regression after laser refractive surgery. Clin. Ophthalmol. 2021, 15, 1751–1758. [Google Scholar] [CrossRef]
- Min, J.S.; Min, B.M. Clinical outcomes of laser asymmetric keratectomy to manage postoperative adverse effects-A retrospective clinical trial. Open Ophthalmol. J. 2021, 15, 171–177. [Google Scholar] [CrossRef]
- Min, J.S.; Min, B.M.; Lee, D.C. Laser asymmetric keratectomy using a semi-cylindrical ablation pattern to avoid adverse effects of laser refractive surgery. Austin J. Clin. Ophthalmol. 2021, 8, 1120. [Google Scholar] [CrossRef]
- Krueger, R.R.; Kanellopoulos, A.J. Stability of simultaneous Topography-guided photorefractive keratectomy and riboflavin/UVA cross-linking for progressive keratoconus: Case reports. J. Refract. Surg. 2010, 26, S827–S832. [Google Scholar] [CrossRef]
- Guedj, M.; Saad, A.; Audureau, E.; Gatinel, D. Photorefractive keratectomy in patients with suspected keratoconus: Five-year follow-up. J. Cataract. Refract. Surg. 2013, 39, 66–73. [Google Scholar] [CrossRef]
- Abdolahian, M.; Moalem, M.A.; Jahady Hoseiny, M.J.; Noorizadeh, F.; Zareei, A. Keratorefractive surgery outcomes in keratoconus suspect patients. J. Ophthalmol. 2020, 2020, 8823744. [Google Scholar] [CrossRef]
- Roberts, C. Biomechanical customization: The next generation of laser refractive surgery. J. Cataract. Refract. Surg. 2005, 31, 2–5. [Google Scholar] [CrossRef] [PubMed]
- Roberts, C.J.; Dupps, W.J., Jr. Biomechanics of corneal ectasia and biomechanical treatments. J. Cataract. Refract. Surg. 2014, 40, 991–998. [Google Scholar] [CrossRef]
- Ambrósio, R., Jr.; Nogueira, L.P.; Caldas, D.L.; Fontes, B.M.; Luz, A.; Cazal, J.O.; Alves, M.R.; Belin, M.W. Evaluation of corneal shape and biomechanics before LASIK. Int. Ophthalmol. Clin. 2011, 51, 11–38. [Google Scholar] [CrossRef]
- Lee, H.; Roberts, C.J.; Kim, T.I.; Ambrósio, R., Jr.; Elsheikh, A.; Yong Kang, D.S. Changes in biomechanically corrected intraocular pressure and dynamic corneal response parameters before and after transepithelial photorefractive keratectomy and femtosecond laser-assisted laser in situ keratomileusis. J. Cataract. Refract. Surg. 2017, 43, 1495–1503. [Google Scholar] [CrossRef]
- Liu, J.; Roberts, C.J. Influence of corneal biomechanical properties on intraocular pressure measurement: Quantitative analysis. J. Cataract. Refract. Surg. 2005, 31, 146–155. [Google Scholar] [CrossRef]
- Moshirfar, M.; Edmonds, J.N.; Behunin, N.L.; Christiansen, S.M. Corneal biomechanics in iatrogenic ectasia and keratoconus: A review of the literature. Oman J. Ophthalmol. 2013, 6, 12–17. [Google Scholar] [CrossRef]
- Wolffsohn, J.S.; Safeen, S.; Shah, S.; Laiquzzaman, M. Changes of corneal biomechanics with keratoconus. Cornea 2012, 31, 849–854. [Google Scholar] [CrossRef] [PubMed]
- Kerautret, J.; Colin, J.; Touboul, D.; Roberts, C. Biomechanical characteristics of the ectatic cornea. J. Cataract. Refract. Surg. 2008, 34, 510–513. [Google Scholar] [CrossRef] [PubMed]
- Carriazo, C.; Cosentino, M.J. A novel corneal remodeling technique for the management of keratoconus. J. Refract. Surg. 2017, 33, 854–856. [Google Scholar] [CrossRef]
- Carriazo, C.; Cosentino, M.J. Long-term outcomes of a new surgical technique for corneal remodeling in corneal ectasia. J. Refract. Surg. 2019, 35, 261–267. [Google Scholar] [CrossRef]
- Min, B.M. Corneal remodeling of laser asymmetric keratectomy combined with collagen cross linking in a patients with keratoconus suspect. J. Ophthalmol. Open Access 2023, 1, 1–10. [Google Scholar] [CrossRef]
- Min, J.S.; Lee, D.C.; Lee, S.S.; Min, P.M. A novel approach for corneal remodeling of laser asymmetric keratectomy with collagen cross linking in patients with keratoconus suspect. Open Ophthalmol. J. 2024, 18, e18743641282093. [Google Scholar] [CrossRef]
- Liu, Z.; Pflugfelder, S.C. Corneal surface regularity and the effect of Artificial Tears in aqueous tear deficiency. Ophthalmology 1999, 106, 939–943. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.C.; Tseng, S.H.; Shih, M.H.; Chen, F.K. Effect of Artificial Tears on corneal surface regularity, contrast sensitivity, and glare disability in dry eyes. Ophthalmology 2002, 109, 1934–1940. [Google Scholar] [CrossRef]
- Siyahkamari, M.; Asharlous, A.; Mirzajani, A.; Koohian, H.; Jafarzadepour, E.; Ostadimoghaddam, H.; Babaei, N.; Yekta, A.; Khabazkhoob, M. Effect of dry eye disease on central corneal thickness and corneal topometric indices measured by Scheimpflug tomography. Acta Med. Iran. 2022, 60, 777–781. [Google Scholar] [CrossRef]
- Hirasawa, K.; Nakakura, S.; Nakao, Y.; Fujino, Y.; Matsuura, M.; Murata, H.; Kiuchi, Y.; Asaoka, R. Changes in corneal biomechanics and intraocular pressure following cataract surgery. Am. J. Ophthalmol. 2018, 195, 26–35. [Google Scholar] [CrossRef]
Item | N = 20 pts (34 Eyes) |
---|---|
Age (year) | 41.0 ± 13.5 |
Males–Females | 7:13 |
Both–One Eye Operated On | 14:6 |
Item | N = 20 pts (34 Eyes) |
---|---|
Optic zone (mm) | 6.35 ± 0.09 |
Ablation depth (µm) | 64.53 ± 24.41 |
Myopic shift (diopters) due to LAK | −1.92 ± 0.48 |
Residual stromal depth (µm) | 444.26 ± 36.20 |
Findings | Preoperation | 1-Year Postoperation | p-Value |
---|---|---|---|
SE (D) | −2.57 ± 1.04 | −0.40 ± 0.43 | 0.001 |
Sphere (D) | −2.12 ± 4.31 | −0.21 ± 0.43 | 0.001 |
Cylinder (D) | −1.02 ± 2.27 | −0.45 ± 0.42 | 0.003 |
UDVA (LogMAR) | 0.81 ± 0.31 | 0.07 ± 0.16 | 0.001 |
IOP (mmHg) | 15.85 ± 2.24 | 14.94 ± 1.30 | 0.057 |
Pupil size (mm) | 4.09 ± 0.71 | 3.91 ± 0.64 | 0.059 |
Findings | Preoperation | 1-Year Postoperation | p-Value |
---|---|---|---|
Keratometry | |||
Kmean | 45.23 ± 0.93 | 42.67 ± 1.84 | 0.001 |
Kmax | 48.21 ± 0.89 | 44.47 ± 1.38 | 0.001 |
Pachymetry | |||
CP (µm) | 568.32 ± 32.33 | 521.68 ± 49.98 | 0.001 |
Corneal symmetry | |||
SUM (µm) | 141.88 ± 48.24 | 66.21 ± 15.22 | 0.001 |
DISTANCE (mm) | 1.11 ± 1.14 | 0.46 ± 0.40 | 0.001 |
Kappa angle (degree) | 4.56 ± 1.19 | 2.42 ± 1.74 | 0.02 |
Tear film | |||
TBUT (second) | 8.51 ± 2.97 | 19.39 ± 3.69 | 0.001 |
Tear osmolarity | 0.55 ± 0.15 | 0.23 ± 0.12 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, B.M.; Cheon, H.J. Corneal Remodeling Using Laser Asymmetric Keratectomy in Patients with Keratoconus Suspect. J. Clin. Med. 2025, 14, 6568. https://doi.org/10.3390/jcm14186568
Min BM, Cheon HJ. Corneal Remodeling Using Laser Asymmetric Keratectomy in Patients with Keratoconus Suspect. Journal of Clinical Medicine. 2025; 14(18):6568. https://doi.org/10.3390/jcm14186568
Chicago/Turabian StyleMin, Byung Moo, and Hee Jong Cheon. 2025. "Corneal Remodeling Using Laser Asymmetric Keratectomy in Patients with Keratoconus Suspect" Journal of Clinical Medicine 14, no. 18: 6568. https://doi.org/10.3390/jcm14186568
APA StyleMin, B. M., & Cheon, H. J. (2025). Corneal Remodeling Using Laser Asymmetric Keratectomy in Patients with Keratoconus Suspect. Journal of Clinical Medicine, 14(18), 6568. https://doi.org/10.3390/jcm14186568