Comparative Dermoscopic Analysis of Melanoma In Situ Versus Thin Invasive Melanoma Considering BRAF Mutational Status
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patients
2.2. DNA Extraction from Formalin-Fixed Paraffin-Embedded Tissues and BRAF Testing
2.3. Dermoscopic Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BRAF WT | BRAF wild-type |
BMI | Body mass index |
FFPE | Formalin-fixed paraffin-embedded |
RT-PCR | Real-time polymerase chain reaction |
SSM | Superficial spreading melanoma |
ALM | Acral lentiginous melanoma |
THIMUMP | Thin Invasive Melanoma of Uncertain Metastatic Potential |
MAPK | Mitogen-activated protein kinase |
AJCC | American Joint Committee on Cancer’s |
Appendix A
Dermoscopic Feature | Definition |
---|---|
Atypical pigment network [58] | Network with an increased variability in the colour, thickness and spacing of the lines that are asymmetrically distributed; |
Negative network [58] | Broadened interconnecting hypopigmented lines that surround elongated and curvilinear globules; |
Irregular dots/globules [58] | Dots and/or globules with variable colour, size, shape, or spacing distributed in an asymmetric pattern; |
Irregular peripheral streaks [58] | Comprise radial streaming (radial linear extension at the periphery of the lesion) and pseudopods (bulbous and often curved projections seen at the periphery of the lesion, either directly associated with a network or solid tumour border); |
White scar-like areas [58] | Area of white that is whiter than surrounding normal -appearing skin (true scarring); |
Blue grey peppering [58] | Consists of blue or grey dots; |
Blue-white veil [58] | An irregular blue blotch with a whitish, ground-glass haze overlay; |
Milky red areas [58] | Milky-white appearance or pinkish, structureless areas (strawberry and ice cream-like), containing a red vascular blush, with no specific distinguishable vessels; |
Irregular hyperpigmented areas [34] | Multiple, small, irregularly shaped and bizarrely outlined dark areas; |
Hypopigmented structureless areas [42] | Areas with a lighter pigment compared to the surrounding lesion, but with the same or slightly lighter pigment compared to the surrounding normal skin; |
Polygons/angulated lines [58] | Grey-brown lines that are connected at an angle and form polygons; |
Ulceration [59,60] | A large structureless area with orange, dark red to brown colouration, with a serous crust |
Shiny white structures [58] | Compound of shiny white streaks (former chrysalis, chrysalids, crystalline; short discrete white lines oriented parallel and perpendicular to each other, seen only under polarised dermoscopy) and shiny white blotches and strands (white structures in the form of circles, oval structures, or large structureless areas longer and less well-defined lines oriented parallel or distributed unorganized, or forming blotches -shiny white clods, seen only under polarised dermoscopy); |
Dotted vessels [44,58] | Dots; tiny pinpoint vessels; |
Corkscrew vessels [58] | Tightly coiled and tortuous vessels with bends twisted along a central axis; |
Linear irregular vessels [44,58] | Linear, irregularly shaped, sized, and distributed vessels; |
Polymorphous vessels [58] | Multiple types of vessels are present. |
References
- Bruno, W.; Martinuzzi, C.; Andreotti, V.; Pastorino, L.; Spagnolo, F.; Dalmasso, B.; Cabiddu, F.; Gualco, M.; Ballestrero, A.; Bianchi-Scarrà, G.; et al. Heterogeneity and Frequency of BRAF Mutations in Primary Melanoma: Comparison between Molecular Methods and Immunohistochemistry. Oncotarget 2016, 8, 8069–8082. [Google Scholar] [CrossRef]
- Gutiérrez-Castañeda, L.D.; Nova, J.A.; Tovar-Parra, J.D. Frequency of Mutations in BRAF, NRAS, and KIT in Different Populations and Histological Subtypes of Melanoma: A Systemic Review. Melanoma Res. 2020, 30, 62. [Google Scholar] [CrossRef]
- Prkačin, I.; Šamija, I.; Filipović, N.; Vucić, M.; Vučić, M.; Ferara, N.; Šitum, M. Frequency of BRAF Mutations in Dysplastic Nevi, Lentigo Maligna, and Melanoma In Situ. J. Clin. Med. 2024, 13, 4799. [Google Scholar] [CrossRef] [PubMed]
- Avădănei, E.-R.; Căruntu, I.-D.; Nucă, I.; Balan, R.; Lozneanu, L.; Giusca, S.-E.; Amalinei, C. BRAF V600E Mutation in Malignant Melanoma—A Romanian Research Experience. Medicina 2024, 60, 351. [Google Scholar] [CrossRef] [PubMed]
- Menzies, A.M.; Visintin, L.; Chatfield, M.D.; Carlino, M.S.; Howle, J.R.; Scolyer, R.A.; Thompson, J.F.; Kefford, R.F.; Long, G.V. BRAF Mutation by Age-Decade and Body Mass Index in Metastatic Melanoma. JCO 2011, 29, 8507. [Google Scholar] [CrossRef]
- Bauer, J.; Büttner, P.; Murali, R.; Okamoto, I.; Kolaitis, N.A.; Landi, M.T.; Scolyer, R.A.; Bastian, B.C. BRAF Mutations in Cutaneous Melanoma Are Independently Associated with Age, Anatomic Site of the Primary Tumor and the Degree of Solar Elastosis at the Primary Tumor Site. Pigment Cell Melanoma Res. 2011, 24, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, N.; Tanaka, R.; Tsutsumida, A.; Namikawa, K.; Eguchi, H.; Omata, W.; Oashi, K.; Ogawa, T.; Hayashi, A.; Nakamura, N.; et al. BRAF V600 Mutations and Pathological Features in Japanese Melanoma Patients. Melanoma Res. 2015, 25, 9–14. [Google Scholar] [CrossRef]
- Thomas, N.E.; Edmiston, S.N.; Alexander, A.; Millikan, R.C.; Groben, P.A.; Hao, H.; Tolbert, D.; Berwick, M.; Busam, K.; Begg, C.B.; et al. Number of Nevi and Early-Life Ambient UV Exposure Are Associated with BRAF-Mutant Melanoma. Cancer Epidemiol. Biomarkers Prev. 2007, 16, 991–997. [Google Scholar] [CrossRef]
- Kiuru, M.; Tartar, D.M.; Qi, L.; Chen, D.; Yu, L.; Konia, T.; McPherson, J.D.; Murphy, W.J.; Fung, M.A. Improving Classification of Melanocytic Nevi: BRAF V600E Expression Associated with Distinct Histomorphologic Features. J. Am. Acad. Dermatol. 2018, 79, 221–229. [Google Scholar] [CrossRef]
- Castellani, G.; Buccarelli, M.; Arasi, M.B.; Rossi, S.; Pisanu, M.E.; Bellenghi, M.; Lintas, C.; Tabolacci, C. BRAF Mutations in Melanoma: Biological Aspects, Therapeutic Implications, and Circulating Biomarkers. Cancers 2023, 15, 4026. [Google Scholar] [CrossRef]
- Martin-Liberal, J.; Márquez-Rodas, I.; Cerezuela-Fuentes, P.; Soria, A.; Garicano, F.; Medina, J.; García Galindo, R.; Oramas, J.; Luis Manzano, J.; Delgado, M.; et al. Challenges and Perspectives in the Management of BRAF-Mutated Metastatic Melanoma: Systemic Treatment Sequencing and Brain Metastases. Cancer Treat. Rev. 2025, 133, 102886. [Google Scholar] [CrossRef]
- Seth, R.; Agarwala, S.S.; Messersmith, H.; Alluri, K.C.; Ascierto, P.A.; Atkins, M.B.; Bollin, K.; Chacon, M.; Davis, N.; Faries, M.B.; et al. Systemic Therapy for Melanoma: ASCO Guideline Update. J. Clin. Oncol. 2023, 41, 4794–4820. [Google Scholar] [CrossRef]
- Ugurel, S.; Röhmel, J.; Ascierto, P.A.; Flaherty, K.T.; Grob, J.J.; Hauschild, A.; Larkin, J.; Long, G.V.; Lorigan, P.; McArthur, G.A.; et al. Survival of Patients with Advanced Metastatic Melanoma: The Impact of Novel Therapies-Update 2017. Eur. J. Cancer 2017, 83, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Shebrain, A.; Idris, O.A.; Jawad, A.; Zhang, T.; Xing, Y. Advancements and Challenges in Personalized Therapy for BRAF-Mutant Melanoma: A Comprehensive Review. J. Clin. Med. 2024, 13, 5409. [Google Scholar] [CrossRef]
- Pelosi, E.; Castelli, G.; Testa, U. Braf-Mutant Melanomas: Biology and Therapy. Curr. Oncol. 2024, 31, 7711–7737. [Google Scholar] [CrossRef] [PubMed]
- Braden, J.; Conway, J.W.; Wilmott, J.S.; Scolyer, R.A.; Long, G.V.; da Silva, I.P. Do BRAF-Targeted Therapies Have a Role in the Era of Immunotherapy? ESMO Open 2025, 10, 105314. [Google Scholar] [CrossRef]
- Trojaniello, C.; Sparano, F.; Cioli, E.; Ascierto, P.A. Sequencing Targeted and Immune Therapy in BRAF-Mutant Melanoma: Lessons Learned. Curr. Oncol. Rep. 2023, 25, 623–634. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Ramírez, D.; Fernández-Orland, A.; Ferrándiz, L. Immunotherapy and Targeted Therapy in Patients with Advanced Melanoma and the V600 BRAF Mutation: Which One First? Actas Dermosifiliogr. 2024, 115, T48–T55. [Google Scholar] [CrossRef]
- Placke, J.-M.; Rajcsanyi, L.S.; Herbst, R.; Terheyden, P.; Utikal, J.; Pföhler, C.; Kreuter, A.; Mohr, P.; Gutzmer, R.; Weichenthal, M.; et al. Presence of Brain Metastasis Differentially Impacts Long-Term Survival after First-Line Therapy in Melanoma Depending on BRAF Mutation Status. Front. Immunol. 2025, 16, 1536642. [Google Scholar] [CrossRef]
- Javaid, A.; Peres, T.; Pozas, J.; Thomas, J.; Larkin, J. Current and Emerging Treatment Options for BRAFV600-Mutant Melanoma. Expert. Rev. Anticancer Ther. 2025, 25, 55–69. [Google Scholar] [CrossRef]
- Pozzobon, F.C.; Puig-Butillé, J.A.; González-Alvarez, T.; Carrera, C.; Aguilera, P.; Alos, L.; Badenas, C.; Grichnik, J.M.; Malvehy, J.; Puig, S. Dermoscopic Criteria Associated with BRAF and NRAS Mutation Status in Primary Cutaneous Melanoma. Br. J. Dermatol. 2014, 171, 754–759. [Google Scholar] [CrossRef]
- Bombonato, C.; Ribero, S.; Pozzobon, F.C.; Puig-Butille, J.A.; Badenas, C.; Carrera, C.; Malvehy, J.; Moscarella, E.; Lallas, A.; Piana, S.; et al. Association between Dermoscopic and Reflectance Confocal Microscopy Features of Cutaneous Melanoma with BRAF Mutational Status. J. Eur. Acad. Dermatol. Venereol. 2017, 31, 643–649. [Google Scholar] [CrossRef]
- Armengot-Carbó, M.; Nagore, E.; García-Casado, Z.; Botella-Estrada, R. The Association between Dermoscopic Features and BRAF Mutational Status in Cutaneous Melanoma: Significance of the Blue-White Veil. J. Am. Acad. Dermatol. 2018, 78, 920–926.e4. [Google Scholar] [CrossRef]
- Gouillon, L.; Perier-Muzet, M.; Amini-Adle, M.; Poulalhon, N.; Debarbieux, S.; Boespflug, A.; Balme, B.; Depaepe, L.; Harou, O.; Lopez, J.; et al. Dermoscopic Features in BRAF and NRAS Primary Cutaneous Melanoma: Association with Peppering and Blue-White Veil. J. Eur. Acad. Dermatol. Venereol. 2020, 34, e57–e59. [Google Scholar] [CrossRef]
- Fargnoli, M.C.; Sera, F.; Suppa, M.; Piccolo, D.; Landi, M.T.; Chiarugi, A.; Pellegrini, C.; Seidenari, S.; Peris, K. Dermoscopic features of cutaneous melanoma are associated with clinical characteristics of patients and tumors and with MC1R genotype. J. Eur. Acad. Dermatol. Venereol. 2014, 28, 1768–1775. [Google Scholar] [CrossRef]
- Polesie, S.; Jergéus, E.; Gillstedt, M.; Ceder, H.; Dahlén Gyllencreutz, J.; Fougelberg, J.; Johansson Backman, E.; Pakka, J.; Zaar, O.; Paoli, J. Can Dermoscopy Be Used to Predict If a Melanoma Is In Situ or Invasive? Dermatol. Pract. Concept. 2021, 11, e2021079. [Google Scholar] [CrossRef]
- Polesie, S.; Sundback, L.; Gillstedt, M.; Ceder, H.; Dahlén Gyllencreutz, J.; Fougelberg, J.; Johansson Backman, E.; Pakka, J.; Zaar, O.; Paoli, J. Interobserver Agreement on Dermoscopic Features and Their Associations with In Situ and Invasive Cutaneous Melanomas. Acta Derm. Venereol. 2021, 101, adv00570. [Google Scholar] [CrossRef] [PubMed]
- Polesie, S.; Gillstedt, M.; Kittler, H.; Rinner, C.; Tschandl, P.; Paoli, J. Assessment of Melanoma Thickness Based on Dermoscopy Images: An Open, Web-Based, International, Diagnostic Study. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 2002–2007. [Google Scholar] [CrossRef]
- Nazzaro, G.; Maronese, C.A.; Casazza, G.; Giacalone, S.; Spigariolo, C.B.; Roccuzzo, G.; Avallone, G.; Guida, S.; Brancaccio, G.; Broganelli, P.; et al. Dermoscopic Predictors of Melanoma in Small Diameter Melanocytic Lesions (Mini-Melanoma): A Retrospective Multicentric Study of 269 Cases. Int. J. Dermatol. 2023, 62, 1040–1049. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Mora, P.; González-Cuevas, R.; Peruilh-Bagolini, L.; Valenzuela, F. Small-Diameter Melanomas (Micromelanomas): Clinical, Dermoscopic and Histopathological Findings. An. Bras. Dermatol. 2022, 97, 110–112. [Google Scholar] [CrossRef] [PubMed]
- Tognetti, L.; Cartocci, A.; Bertello, M.; Giordani, M.; Cinotti, E.; Cevenini, G.; Rubegni, P. An Updated Algorithm Integrated With Patient Data for the Differentiation of Atypical Nevi From Early Melanomas: The idScore 2021. Dermatol. Pract. Concept. 2022, 12, e2022134. [Google Scholar] [CrossRef] [PubMed]
- Amaral, T.; Ottaviano, M.; Arance, A.; Blank, C.; Chiarion-Sileni, V.; Donia, M.; Dummer, R.; Garbe, C.; Gershenwald, J.E.; Gogas, H.; et al. Cutaneous Melanoma: ESMO Clinical Practice Guideline for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2025, 36, 10–30. [Google Scholar] [CrossRef]
- Da Silva, V.P.M.; Ikino, J.K.; Sens, M.M.; Nunes, D.H.; Di Giunta, G. Dermoscopic Features of Thin Melanomas: A Comparative Study of Melanoma in Situ and Invasive Melanomas Smaller than or Equal to 1 mm. An. Bras. Dermatol. 2013, 88, 712–717. [Google Scholar] [CrossRef]
- Lallas, A.; Longo, C.; Manfredini, M.; Benati, E.; Babino, G.; Chinazzo, C.; Apalla, Z.; Papageorgiou, C.; Moscarella, E.; Kyrgidis, A.; et al. Accuracy of Dermoscopic Criteria for the Diagnosis of Melanoma In Situ. JAMA Dermatol. 2018, 154, 414–419. [Google Scholar] [CrossRef]
- Rodríguez-Lomba, E.; Lozano-Masdemont, B.; Nieto-Benito, L.M.; Hernández de la Torre, E.; Suárez-Fernández, R.; Avilés-Izquierdo, J.A. Dermoscopic Predictors of Tumor Thickness in Cutaneous Melanoma: A Retrospective Analysis of 245 Melanomas. Dermatol. Pract. Concept. 2021, 11, e2021059. [Google Scholar] [CrossRef]
- Ávila, A.C.A.; Avancini, J.; Abed, N.M.; Pincelli, M.S.; Neto, C.F. Analysis of the Dermoscopic Features of Excised Melanomas and Their Relation with Tumor Thickness in a Tertiary Hospital in Brazil. Int. J. Dermatol. 2024, 63, 1064–1070. [Google Scholar] [CrossRef]
- Podolec, K.; Bronikowska, A.; Pirowska, M.; Wojas-Pelc, A. Dermoscopic Features in Different Dermatopathological Stages of Cutaneous Melanomas. Postepy Dermatol. Alergol. 2020, 37, 677–684. [Google Scholar] [CrossRef]
- Martínez-Piva, M.M.; Vacas, A.S.; Rodríguez Kowalczuk, M.V.; Gallo, F.; Rodrígues Vasconcelos, M.; Mazzuoccolo, L.D. Dermoscopy as a Tool for Estimating Breslow Thickness in Melanoma. Actas Dermosifiliogr. (Eng. Ed.) 2021, 112, 434–440. [Google Scholar] [CrossRef]
- De Giorgi, V.; Silvestri, F.; Cecchi, G.; Venturi, F.; Zuccaro, B.; Perillo, G.; Cosso, F.; Maio, V.; Simi, S.; Antonini, P.; et al. Dermoscopy as a Tool for Identifying Potentially Metastatic Thin Melanoma: A Clinical–Dermoscopic and Histopathological Case–Control Study. Cancers 2024, 16, 1394. [Google Scholar] [CrossRef] [PubMed]
- Deinlein, T.; Arzberger, E.; Zalaudek, I.; Massone, C.; Garcias-Ladaria, J.; Oliveira, A.; Schulter, G.; Hofmann-Wellenhof, R. Dermoscopic Characteristics of Melanoma According to the Criteria „ulceration“ and „mitotic Rate“ of the AJCC 2009 Staging System for Melanoma. PLoS ONE 2017, 12, e0174871. [Google Scholar] [CrossRef] [PubMed]
- Yélamos, O.; Braun, R.P.; Liopyris, K.; Wolner, Z.J.; Kerl, K.; Gerami, P.; Marghoob, A.A. Dermoscopy and Dermatopathology Correlates of Cutaneous Neoplasms. J. Am. Acad. Dermatol. 2019, 80, 341–363. [Google Scholar] [CrossRef]
- Massone, C.; Hofman-Wellenhof, R.; Chiodi, S.; Sola, S. Dermoscopic Criteria, Histopathological Correlates and Genetic Findings of Thin Melanoma on Non-Volar Skin. Genes 2021, 12, 1288. [Google Scholar] [CrossRef]
- Milky Red Globules/Areas—Dermoscopedia. Available online: https://dermoscopedia.org/Milky_red_globules_/_areas (accessed on 22 July 2025).
- Zalaudek, I.; Kreusch, J.; Giacomel, J.; Ferrara, G.; Catricalà, C.; Argenziano, G. How to Diagnose Nonpigmented Skin Tumors: A Review of Vascular Structures Seen with Dermoscopy: Part I. Melanocytic Skin Tumors. J. Am. Acad. Dermatol. 2010, 63, 361–374. [Google Scholar] [CrossRef] [PubMed]
- Balagula, Y.; Braun, R.P.; Rabinovitz, H.S.; Dusza, S.W.; Scope, A.; Liebman, T.N.; Mordente, I.; Siamas, K.; Marghoob, A.A. The Significance of Crystalline/Chrysalis Structures in the Diagnosis of Melanocytic and Nonmelanocytic Lesions. J. Am. Acad. Dermatol. 2012, 67, 194.e1–194.e8. [Google Scholar] [CrossRef] [PubMed]
- Pizzichetta, M.A.; Canzonieri, V.; Soyer, P.H.; Rubegni, P.; Talamini, R.; Massone, C. Negative Pigment Network and Shiny White Streaks: A Dermoscopic-Pathological Correlation Study. Am. J. Dermatopathol. 2014, 36, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Varga, N.N.; Boostani, M.; Farkas, K.; Bánvölgyi, A.; Lőrincz, K.; Posta, M.; Lihacova, I.; Lihachev, A.; Medvecz, M.; Holló, P.; et al. Optically Guided High-Frequency Ultrasound Shows Superior Efficacy for Preoperative Estimation of Breslow Thickness in Comparison with Multispectral Imaging: A Single-Center Prospective Validation Study. Cancers 2024, 16, 157. [Google Scholar] [CrossRef]
- Barragán-Estudillo, Z.F.; Brito, J.; Chavez-Bourgeois, M.; Alejo, B.; Alos, L.; García, A.P.; Puig, S.; Malvehy, J.; Carrera, C. Dermoscopy and Reflectance Confocal Microscopy to Estimate Breslow Index and Mitotic Rate in Primary Melanoma. Dermatol. Pract. Concept. 2022, 12, e2022174. [Google Scholar] [CrossRef]
- Negrutiu, M.; Danescu, S.; Popa, T.; Rogojan, L.; Vesa, S.C.; Baican, A. Preoperative Bimodal Imaging Evaluation in Finding Histological Correlations of in Situ, Superficial Spreading and Nodular Melanoma. Front. Med. 2024, 11, 1436078. [Google Scholar] [CrossRef]
- Ny, L.; Hernberg, M.; Nyakas, M.; Koivunen, J.; Oddershede, L.; Yoon, M.; Wang, X.; Guyot, P.; Geisler, J. BRAF Mutational Status as a Prognostic Marker for Survival in Malignant Melanoma: A Systematic Review and Meta-Analysis. Acta Oncol. 2020, 59, 833–844. [Google Scholar] [CrossRef]
- Marchetti, M.A.; Codella, N.C.F.; Dusza, S.W.; Gutman, D.A.; Helba, B.; Kalloo, A.; Mishra, N.; Carrera, C.; Celebi, M.E.; DeFazio, J.L.; et al. Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging Challenge: Comparison of the Accuracy of Computer Algorithms to Dermatologists for the Diagnosis of Melanoma from Dermoscopic Images. J. Am. Acad. Dermatol. 2018, 78, 270–277.e1. [Google Scholar] [CrossRef]
- Tschandl, P.; Codella, N.; Akay, B.N.; Argenziano, G.; Braun, R.P.; Cabo, H.; Gutman, D.; Halpern, A.; Helba, B.; Hofmann-Wellenhof, R.; et al. Comparison of the Accuracy of Human Readers versus Machine-Learning Algorithms for Pigmented Skin Lesion Classification: An Open, Web-Based, International, Diagnostic Study. Lancet Oncol. 2019, 20, 938–947. [Google Scholar] [CrossRef] [PubMed]
- İsmail Mendi, B.; Kose, K.; Fleshner, L.; Adam, R.; Safai, B.; Farabi, B.; Atak, M.F. Artificial Intelligence in the Non-Invasive Detection of Melanoma. Life 2024, 14, 1602. [Google Scholar] [CrossRef] [PubMed]
- Witkowski, A.M.; Burshtein, J.; Christopher, M.; Cockerell, C.; Correa, L.; Cotter, D.; Ellis, D.L.; Farberg, A.S.; Grant-Kels, J.M.; Greiling, T.M.; et al. Clinical Utility of a Digital Dermoscopy Image-Based Artificial Intelligence Device in the Diagnosis and Management of Skin Cancer by Dermatologists. Cancers 2024, 16, 3592. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Rodríguez, J.-C.; Durán-López, L.; Domínguez-Morales, J.P.; Ortiz-Álvarez, J.; Conejo-Mir, J.; Pereyra-Rodriguez, J.-J. Prediction of Melanoma Breslow Thickness Using Deep Transfer Learning Algorithms. Clin. Exp. Dermatol. 2023, 48, 752–758. [Google Scholar] [CrossRef]
- Polesie, S.; Gillstedt, M.; Ahlgren, G.; Ceder, H.; Dahlén Gyllencreutz, J.; Fougelberg, J.; Johansson Backman, E.; Pakka, J.; Zaar, O.; Paoli, J. Discrimination Between Invasive and In Situ Melanomas Using Clinical Close-Up Images and a De Novo Convolutional Neural Network. Front. Med. 2021, 8, 723914. [Google Scholar] [CrossRef]
- Verdelho, M.R.; Gonçalves, S.; Gonçalves, L.; Costa, C.; Lopes, J.M.; Coelho, M.M.V.; João, A.; Soares, P.; Pópulo, H.; Barata, C. Predictive Biomarkers in Melanoma: Detection of BRAF Mutation Using Dermoscopy. In Artificial Intelligence over Infrared Images for Medical Applications and Medical Image Assisted Biomarker Discovery, Proceedings of the First MICCAI Workshop, AIIIMA 2022, and First MICCAI Workshop, MIABID 2022, Held in Conjunction with MICCAI 2022, Singapore, 18 and 22 September 2022; Kakileti, S.T., Gabrani, M., Manjunath, G., Rosen-Zvi, M., Braman, N., Schwartz, R.G., Frangi, A.F., Chung, P.-C., Weight, C., Jagadish, V., Eds.; Springer Nature: Cham, Switzerland, 2022; pp. 176–186. [Google Scholar]
- Kittler, H.; Marghoob, A.A.; Argenziano, G.; Carrera, C.; Curiel-Lewandrowski, C.; Hofmann-Wellenhof, R.; Malvehy, J.; Menzies, S.; Puig, S.; Rabinovitz, H.; et al. Standardization of Terminology in Dermoscopy/Dermatoscopy: Results of the Third Consensus Conference of the International Society of Dermoscopy. J. Am. Acad. Dermatol. 2016, 74, 1093–1106. [Google Scholar] [CrossRef]
- Wolner, Z.J.; Yelamos, O.; Liopyris, K.; Rogers, T.; Marchetti, M.A.; Marghoob, A.A. Enhancing Skin Cancer Diagnosis with Dermoscopy. Dermatol. Clin. 2017, 35, 417–437. [Google Scholar] [CrossRef]
- Álvarez-Salafranca, M.; Ara, M.; Zaballos, P. Dermoscopy in Basal Cell Carcinoma: An Updated Review. Actas Dermo-Sifiliogr. (Engl. Ed.) 2021, 112, 330–338. [Google Scholar] [CrossRef]
Characteristics | Category | BRAFWT, n (%)– 40 (76.9%) | BRAF Mutated (V600E or V600M), n (%)– 12 (23.1%) | Total, n (%)– 52 (100%) | p-Value |
---|---|---|---|---|---|
Gender | F | 14 (35%) | 4 (33.3%) | 18 (34.6%) | 1.000 |
M | 26 (65%) | 8 (66.7%) | 34 (65.4%) | ||
Age median | 63 (52; 68) | 51 (41.7; 63) | 62 (45.5; 68) | 0.087 | |
Family history of melanoma | No | 38 (95%) | 12 (100.0%) | 50 (96.2%) | 1.000 |
Yes | 2 (5%) | 0 (0.0%) | 2 (3.8%) | ||
Personal history of melanoma | No | 33 (82.5%) | 11 (91.7%) | 44 (84.6%) | 0.663 |
Yes | 7 (17.5%) | 1 (8.3%) | 8 (15.4%) | ||
Localisation | Trunk | 24 (60%) | 8 (66.6%) | 32 (61.5%) | 0.892 |
Lower limb | 11 (27.5%) | 3 (25%) | 14 (27%) | ||
Upper limb | 5 (12.5%) | 1 (8.3%) | 6 (11.5%) | ||
Breslow index median | 0.3 (0; 0.6) | 0.55 (0; 0.85) | 0.375 (0; 0.62) | 0.206 | |
pT AJCC 8th edition | Tis | 18 (45%) | 4 (33.3%) | 22 (42.3%) | 0.690 |
pT1a | 16 (40%) | 5 (41.7%) | 21 (40.4%) | ||
pT1b | 6 (15%) | 3 (25%) | 9 (17.3%) | ||
Clinical TNM staging AJCC 8th edition | 0 | 18 (45%) | 4 (33.3%) | 22 (42.3%) | 0.690 |
IA | 16 (40%) | 5 (41.7%) | 21 (40.4%) | ||
IB | 6 (15%) | 3 (25%) | 9 (17.3%) | ||
Pathological TNM staging AJCC 8th edition | 0 | 18 (45%) | 4 (33.3%) | 22 (42.3%) | 0.526 |
IA | 22 (55%) | 8 (66.7%) | 30 (57.7%) | ||
Ulceration | No | 37 (92.5%) | 12 (100.0%) | 49 (94.2%) | 1.000 |
Yes | 3 (7.5%) | 0 (0.0%) | 3 (5.8%) | ||
Regression | No | 27 (67.5%) | 9 (75.0%) | 36 (69.2%) | 0.733 |
Yes | 13 (32.5%) | 3 (25.0%) | 16 (30.8%) | ||
Mitotic rate median | 0 (0;1) | 0.5 (0; 2.75) | 0 (0;1) | 0.414 | |
Vertical growth phase | No | 31 (77.5%) | 9 (75.0%) | 40 (76.9%) | 1.000 |
Yes | 9 (22.5%) | 3 (25.0%) | 12 (23.1%) | ||
Pre-existent nevus | No | 23 (57.5%) | 9 (75.0%) | 32 (61.5%) | 0.330 |
Yes | 17 (42.5%) | 3 (25.0%) | 20 (38.5%) |
Characteristics | Category | BRAFWT n (%)–40 (77.4%) | BRAF Mutant n (%)–12 (22.6%) | Total n (%)–52 (100%) | Kappa (k) | p-Value |
---|---|---|---|---|---|---|
Atypical pigment network | Present | 29 (72.5%) | 7 (58.3%) | 36 (69.2%) | 0.911 | 0.478 |
Absent | 11 (27.5%) | 5 (41.7%) | 16 (30.8%) | |||
Negative network | Present | 5 (12.5%) | 2 (16.7%) | 7 (13.5%) | 1 | 0.656 |
Absent | 35 (87.5%) | 10 (83.3%) | 45 (86.5%) | |||
Irregular dots/globules | Present | 31 (77.5%) | 8 (66.7%) | 39 (75%) | 0.898 | 0.466 |
Absent | 9 (22.5%) | 4 (33.3%) | 13 (25%) | |||
Irregular peripheral streaks | Present | 24 (60%) | 7 (58.3%) | 31 (59.6%) | 0.921 | 1.000 |
Absent | 16 (40%) | 5 (41.7%) | 21 (40.4%) | |||
White, scar-like areas | Present | 15 (37.5%) | 5 (41.7%) | 20 (38.5%) | 1 | 1.000 |
Absent | 25 (62.5%) | 7 (58.3%) | 32 (61.5%) | |||
Blue grey peppering | Present | 10 (25%) | 3 (25.0%) | 13 (25%) | 1 | 1.000 |
Absent | 30 (75%) | 9 (75.0%) | 39 (75%) | |||
Blue-white veil | Present | 24 (60%) | 8 (66.7%) | 32 (61.5%) | 0.960 | 0.747 |
Absent | 16 (40%) | 4 (33.3%) | 20 (38.5%) | |||
Milky red areas | Present | 15 (37.5%) | 3 (25.0%) | 18 (34.6%) | 0.958 | 0.507 |
Absent | 25 (62.5%) | 9 (75.0%) | 34 (65.4%) | |||
Irregular hyperpigmented areas | Present | 37 (92.5%) | 11 (91.7%) | 48 (92.3%) | 0.649 | 1.000 |
Absent | 3 (7.5%) | 1 (8.3%) | 4 (7.7%) | |||
Hypopigmented structureless areas | Present | 20 (50%) | 3 (25.0%) | 23 (44.2%) | 0.961 | 0.188 |
Absent | 20 (50%) | 9 (75.0%) | 29 (55.8%) | |||
Polygons/angulated lines | Present | 9 (22.5%) | 2 (16.7%) | 11 (21.2%) | 0.892 | 1.000 |
Absent | 31 (77.5%) | 10 (83.3%) | 41 (78.8%) | |||
Ulceration | Present | 1 (2.5%) | 1 (8.3%) | 2 (3.8%) | 1 | 0.412 |
Absent | 39 (97.5%) | 11 (91.7%) | 50 (96.2%) | |||
Shiny white structures | Present | 14 (35%) | 4 (33.3%) | 18 (34.6%) | 0.959 | 1.000 |
Absent | 26 (65%) | 8 (66.7%) | 34 (65.4%) | |||
Dotted vessels | Present | 12 (30%) | 3 (25.0%) | 15 (28.8%) | 0.911 | 1.000 |
Absent | 28 (70%) | 9 (75.0%) | 37 (71.2%) | |||
Corkscrew vessels | Present | 1 (2.5%) | 0 (0.0%) | 1 (1.9%) | 1 | 1.000 |
Absent | 39 (97.5%) | 12 (100.0%) | 51 (98.1%) | |||
Linear irregular vessels | Present | 6 (15%) | 1 (8.3%) | 7 (13.5%) | 0.791 | 1.000 |
Absent | 34 (85%) | 11 (91.7%) | 45 (86.5%) | |||
Polymorphous vessels | Present | 1 (2.5%) | 0 (0.0%) | 1 (1.9%) | 0.381 | 1.000 |
Absent | 39 (97.5%) | 12 (100.0%) | 51 (98.1%) |
Characteristics | Category | In situ (Stage 0) n (%)–22 (42.3%) | Stage IA/IB n (%)–30 (57.7%) | Total n (%)–52 (100%) | Kappa (k) | p-Value |
---|---|---|---|---|---|---|
Atypical pigment network | Present | 15 (68.2%) | 21 (70.0%) | 36 (69.2%) | 0.911 | 1.000 |
Absent | 7 (31.8%) | 9 (30.0%) | 16 (30.8%) | |||
Negative network | Present | 4 (18.2%) | 3 (10.0%) | 7 (13.5%) | 1 | 0.438 |
Absent | 18 (81.8%) | 27 (90.0%) | 45 (86.5%) | |||
Irregular dots/globules | Present | 12 (54.5%) | 27 (90.0%) | 39 (75%) | 0.898 | 0.008 |
Absent | 10 (45.5%) | 3 (10.0%) | 13 (25%) | |||
Irregular peripheral streaks | Present | 11 (50%) | 20 (66.7%) | 31 (59.6%) | 0.921 | 0.263 |
Absent | 11 (50%) | 10 (33.3%) | 21 (40.4%) | |||
White, scar-like areas | Present | 8 (36.4%) | 12 (40.0%) | 20 (38.5%) | 1 | 1.000 |
Absent | 14 (63.6%) | 18 (60.0%) | 32 (61.5%) | |||
Blue grey peppering | Present | 6 (27.3%) | 7 (23.3%) | 13 (25%) | 1 | 0.757 |
Absent | 16 (72.7%) | 23 (76.7%) | 39 (75%) | |||
Blue-white veil | Present | 9 (40.9%) | 23 (76.7%) | 32 (61.5%) | 0.960 | 0.011 |
Absent | 13 (59.1%) | 7 (23.3%) | 20 (38.5%) | |||
Milky red areas | Present | 3 (13.6%) | 15 (50.0%) | 18 (34.6%) | 0.958 | 0.008 |
Absent | 19 (86.4%) | 15 (50.0%) | 34 (65.4%) | |||
Irregular hyperpigmented areas | Present | 19 (86.4%) | 29 (96.7%) | 48 (92.3%) | 0.649 | 0.299 |
Absent | 3 (13.6%) | 1 (3.3%) | 4 (7.7%) | |||
Hypopigmented structureless areas | Present | 11 (50%) | 12 (40.0%) | 23 (44.2%) | 0.961 | 0.576 |
Absent | 11 (50%) | 18 (60.0%) | 29 (55.8%) | |||
Polygons/angulated lines | Present | 6 (27.3%) | 5 (16.7%) | 11 (21.2%) | 0.892 | 0.495 |
Absent | 16 (72.7%) | 25 (83.3%) | 41 (78.8%) | |||
Ulceration | Present | 0 (0%) | 2 (6.7%) | 2 (3.8%) | 1 | 0.502 |
Absent | 22 (100%) | 28 (93.3%) | 50 (96.2%) | |||
Shiny white structures | Present | 8 (36.4%) | 10 (33.3%) | 18 (34.6%) | 0.959 | 1.000 |
Absent | 14 (63.6%) | 20 (66.7%) | 34 (65.4%) | |||
Dotted vessels | Present | 3 (13.6%) | 12 (40.0%) | 15 (28.8%) | 0.911 | 0.040 |
Absent | 19 (86.4%) | 18 (60.0%) | 37 (71.2%) | |||
Corkscrew vessels | Present | 0 (0.0%) | 1 (3.3%) | 1 (1.9%) | 1 | 1.000 |
Absent | 22 (100.0%) | 29 (96.7%) | 51 (98.1%) | |||
Linear irregular vessels | Present | 0 (0.0%) | 7 (23.3%) | 7 (13.5%) | 0.791 | 0.016 |
Absent | 22 (100.0%) | 23 (76.7%) | 45 (86.5%) | |||
Polymorphous vessels | Present | 0 (0.0%) | 1 (3.3%) | 1 (1.9%) | 0.381 | 1.000 |
Absent | 22 (100.0%) | 29 (96.7%) | 51 (98.1%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zboraș, I.; Ungureanu, L.; Șenilă, S.C.; Gaál, O.I.; Gligor-Popa, Ș.-A.; Crișan, D.; Șușman, S.; Vesa, Ș.C.; Cosgarea, R. Comparative Dermoscopic Analysis of Melanoma In Situ Versus Thin Invasive Melanoma Considering BRAF Mutational Status. J. Clin. Med. 2025, 14, 6554. https://doi.org/10.3390/jcm14186554
Zboraș I, Ungureanu L, Șenilă SC, Gaál OI, Gligor-Popa Ș-A, Crișan D, Șușman S, Vesa ȘC, Cosgarea R. Comparative Dermoscopic Analysis of Melanoma In Situ Versus Thin Invasive Melanoma Considering BRAF Mutational Status. Journal of Clinical Medicine. 2025; 14(18):6554. https://doi.org/10.3390/jcm14186554
Chicago/Turabian StyleZboraș, Iulia, Loredana Ungureanu, Simona Corina Șenilă, Orsolya Ildikó Gaál, Ștefana-Anamaria Gligor-Popa, Doinița Crișan, Sergiu Șușman, Ștefan Cristian Vesa, and Rodica Cosgarea. 2025. "Comparative Dermoscopic Analysis of Melanoma In Situ Versus Thin Invasive Melanoma Considering BRAF Mutational Status" Journal of Clinical Medicine 14, no. 18: 6554. https://doi.org/10.3390/jcm14186554
APA StyleZboraș, I., Ungureanu, L., Șenilă, S. C., Gaál, O. I., Gligor-Popa, Ș.-A., Crișan, D., Șușman, S., Vesa, Ș. C., & Cosgarea, R. (2025). Comparative Dermoscopic Analysis of Melanoma In Situ Versus Thin Invasive Melanoma Considering BRAF Mutational Status. Journal of Clinical Medicine, 14(18), 6554. https://doi.org/10.3390/jcm14186554