Bridging Muscle and Bone Health: Rectus Femoris Ultrasound Parameters Predict Osteoporosis and Identify Low Muscle Mass in Romanian Postmenopausal Women
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
- Age
- Height and weight
- History of parental hip fracture
- Personal fracture history
- Smoking status
- Corticosteroid use
- Presence of rheumatoid arthritis
- Presence of secondary osteoporosis
- Alcohol consumption
2.2. Measurement of Muscle Strength
2.3. Evaluation of Body Composition and Muscle Mass
2.3.1. Bioimpedance Analysis
2.3.2. Rectus Femoris Ultrasonography
- Muscle thickness (MT) was measured in the transverse plane, from the superficial to the deep aponeurosis, at the center of the muscle.
- Cross-sectional area (CSA) was assessed in the transverse plane by tracing the muscle border as close as possible to the muscle fascia, without including it.
- Pennation angle (PA) was measured in the longitudinal plane, defined as the angle between a visible muscle fascicle and the deep aponeurosis, taken at the midportion of the muscle.
- Echo intensity (EI) was evaluated from transverse images captured at a fixed gain setting of 55%, using the ImageJ software (version 1.54g; National Institute of Health, Bethesda, MD, USA) as illustrated in Figure 1. Echo intensity values were expressed in grayscale units (0–255 scale). Echo intensity was evaluated in a subset of patients (n = 56).
2.3.3. Statistical Analysis
- Weak: |r| = 0.10–0.29
- Moderate: |r| = 0.30–0.49
- Strong: |r| = 0.50–0.69
- Very strong: |r| ≥ 0.70
3. Results
3.1. Patient Characteristics
3.2. Correlations Between Rectus Femoris Ultrasound Parameters, Bioimpedance, and Functional Parameters
3.3. Diagnostic Utility of Rectus Femoris Ultrasonography in Detecting Low Muscle Mass and Proposed Cut-Off Values
3.4. Rectus Femoris Ultrasound Parameters as Predictors of Osteoporosis
4. Discussion
4.1. Rectus Femoris Ultrasound Differences Based on Osteoporosis Status
4.2. Associations Between Rectus Femoris Ultrasonography and BIA Parameters
4.3. Rectus Femoris MT and CSA Cut-Off Values for Detecting Low Muscle Mass
4.4. Rectus Femoris Ultrasound Parameters as Predictors of Osteoporosis
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DXA | Dual-energy X-ray absorptiometry |
CT | Computed tomography |
MRI | Magnetic resonance imaging |
BIA | Bioimpedance analysis |
MT | Muscle thickness |
CSA | Cross-sectional area |
PA | Pennation angle |
EI | Echo-intensity |
ASM | Appendicular skeletal muscle mass |
SI | Sarcopenic index |
PhA | Phase angle |
HGS | Handgrip strength |
GS | Gait speed |
EWGSOP2 | European Working Group on Sarcopenia in Older People 2 |
SARCUS | SARCopenia through UltraSound |
FRAX | Fracture risk assessment tool |
BMD | Bone mineral density |
References
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31, Erratum in Age Ageing 2019, 48, 601. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dhillon, R.J.; Hasni, S. Pathogenesis and Management of Sarcopenia. Clin. Geriatr. Med. 2017, 33, 17–26. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cruz-Jentoft, A.J.; Sayer, A.A. Sarcopenia. Lancet 2019, 393, 2636–2646, Erratum in Lancet 2019, 393, 2590. [Google Scholar] [CrossRef] [PubMed]
- Geraci, A.; Calvani, R.; Ferri, E.; Marzetti, E.; Arosio, B.; Cesari, M. Sarcopenia and Menopause: The Role of Estradiol. Front. Endocrinol. 2021, 12, 682012. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Larson, A.A.; Shams, A.S.; McMillin, S.L.; Sullivan, B.P.; Vue, C.; Roloff, Z.A.; Batchelor, E.; Kyba, M.; Lowe, D.A. Estradiol deficiency reduces the satellite cell pool by impairing cell cycle progression. Am. J. Physiol. Cell Physiol. 2022, 322, C1123–C1137. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lu, L.; Tian, L. Postmenopausal osteoporosis coexisting with sarcopenia: The role and mechanisms of estrogen. J. Endocrinol. 2023, 259, e230116. [Google Scholar] [CrossRef] [PubMed]
- Binkley, N.; Buehring, B. Beyond FRAX: It’s time to consider “sarco-osteopenia”. J. Clin. Densitom. 2009, 12, 413–416. [Google Scholar] [CrossRef] [PubMed]
- Hirschfeld, H.P.; Kinsella, R.; Duque, G. Osteosarcopenia: Where bone, muscle, and fat collide. Osteoporos. Int. 2017, 28, 2781–2790. [Google Scholar] [CrossRef] [PubMed]
- Kirk, B.; Zanker, J.; Duque, G. Osteosarcopenia: Epidemiology, diagnosis, and treatment-facts and numbers. J. Cachexia Sarcopenia Muscle 2020, 11, 609–618. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yoo, J.I.; Kim, H.; Ha, Y.C.; Kwon, H.B.; Koo, K.H. Osteosarcopenia in Patients with Hip Fracture Is Related with High Mortality. J. Korean Med. Sci. 2018, 33, e27. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Boshnjaku, A.; Krasniqi, E. Diagnosing sarcopenia in clinical practice: International guidelines vs. population-specific cutoff criteria. Front. Med. 2024, 11, 1405438. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Voulgaridou, G.; Tyrovolas, S.; Detopoulou, P.; Tsoumana, D.; Drakaki, M.; Apostolou, T.; Chatziprodromidou, I.P.; Papandreou, D.; Giaginis, C.; Papadopoulou, S.K. Diagnostic Criteria and Measurement Techniques of Sarcopenia: A Critical Evaluation of the Up-to-Date Evidence. Nutrients 2024, 16, 436. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Perkisas, S.; Baudry, S.; Bauer, J.; Beckwée, D.; De Cock, A.M.; Hobbelen, H.; Jager-Wittenaar, H.; Kasiukiewicz, A.; Landi, F.; Marco, E.; et al. The SARCUS project: Evidence-based muscle assessment through ultrasound. Eur. Geriatr. Med. 2019, 10, 157–158. [Google Scholar] [CrossRef] [PubMed]
- Perkisas, S.; Bastijns, S.; Baudry, S.; Bauer, J.; Beaudart, C.; Beckwée, D.; Cruz-Jentoft, A.; Gasowski, J.; Hobbelen, H.; Jager-Wittenaar, H.; et al. Application of ultrasound for muscle assessment in sarcopenia: 2020 SARCUS update. Eur. Geriatr. Med. 2021, 12, 45–59. [Google Scholar] [CrossRef] [PubMed]
- MacDermid, J.; Solomon, G.; Fedorczyk, J.; Valdes, K. Clinical Assessment Recommendations: Impairment-Based Conditions, 3rd ed.; American Society of Hand Therapists: Mount Laurel, NJ, USA, 2015. [Google Scholar]
- Sergi, G.; De Rui, M.; Veronese, N.; Bolzetta, F.; Berton, L.; Carraro, S.; Bano, G.; Coin, A.; Manzato, E.; Perissinotto, E. Assessing appendicular skeletal muscle mass with bioelectrical impedance analysis in free-living Caucasian older adults. Clin. Nutr. 2015, 34, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Correa-de-Araujo, R.; Addison, O.; Miljkovic, I.; Goodpaster, B.H.; Bergman, B.C.; Clark, R.V.; Elena, J.W.; Esser, K.A.; Ferrucci, L.; Harris-Love, M.O.; et al. Myosteatosis in the Context of Skeletal Muscle Function Deficit: An Interdisciplinary Workshop at the National Institute on Aging. Front. Physiol. 2020, 11, 963. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kirk, B.; Miller, S.; Zanker, J.; Duque, G. A clinical guide to the pathophysiology, diagnosis and treatment of osteosarcopenia. Maturitas 2020, 140, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Nilwik, R.; Snijders, T.; Leenders, M.; Groen, B.B.; van Kranenburg, J.; Verdijk, L.B.; van Loon, L.J. The decline in skeletal muscle mass with aging is mainly attributed to a reduction in type II muscle fiber size. Exp. Gerontol. 2013, 48, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Terracciano, C.; Celi, M.; Lecce, D.; Baldi, J.; Rastelli, E.; Lena, E.; Massa, R.; Tarantino, U. Differential features of muscle fiber atrophy in osteoporosis and osteoarthritis. Osteoporos. Int. 2013, 24, 1095–1100. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yekta, E.B.; Torkaman, G.; Aghaghazvini, L. Comparative study on muscle-tendon stiffness and balance impairment in postmenopausal women: A focus on osteosarcopenia and osteoporosis. Aging Clin. Exp. Res. 2024, 36, 232. [Google Scholar] [CrossRef]
- Luo, Y.; Yue, W.; Li, Z.; Chen, L.; Wang, P.; Sun, K. An initial study of core muscles using ultrasound in postmenopausal women with osteoporosis. Ann. Palliat. Med. 2022, 11, 1482–1490. [Google Scholar] [CrossRef] [PubMed]
- Neto Müller, J.; Lanferdini, F.J.; Passos Karam, J.Y.; de Brito Fontana, H. Examination of the confounding effect of subcutaneous fat on muscle echo intensity utilizing exogenous fat. Appl. Physiol. Nutr. Metab. 2021, 46, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Yoshiko, A.; Natsume, Y.; Makino, T.; Hayashi, T.; Umegaki, H.; Yoshida, Y.; Cheng, X.W.; Kuzuya, M.; Ishida, K.; Koike, T.; et al. Higher and Lower Muscle Echo Intensity in Elderly Individuals Is Distinguished by Muscle Size, Physical Performance and Daily Physical Activity. Ultrasound Med. Biol. 2019, 45, 2372–2380. [Google Scholar] [CrossRef] [PubMed]
- Akima, H.; Yoshiko, A.; Ogawa, M.; Maeda, H.; Tomita, A.; Ando, R.; Tanaka, N.I. Quadriceps echo intensity can be an index of muscle size regardless of age in 65 or more years old. Exp. Gerontol. 2020, 138, 111015. [Google Scholar] [CrossRef] [PubMed]
- Fukumoto, Y.; Ikezoe, T.; Yamada, Y.; Tsukagoshi, R.; Nakamura, M.; Mori, N.; Kimura, M.; Ichihashi, N. Skeletal muscle quality assessed from echo intensity is associated with muscle strength of middle-aged and elderly persons. Eur. J. Appl. Physiol. 2012, 112, 1519–1525. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, L.P.; do Espírito Santo, R.C.; Pena, É.; Dória, L.D.; Hax, V.; Brenol, C.V.; Monticielo, O.A.; Chakr, R.M.D.S.; Xavier, R.M. Morphological Parameters in Quadriceps Muscle Were Associated with Clinical Features and Muscle Strength of Women with Rheumatoid Arthritis: A Cross-Sectional Study. Diagnostics 2021, 11, 2014. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fukumoto, Y.; Ikezoe, T.; Taniguchi, M.; Yamada, Y.; Sawano, S.; Minani, S.; Asai, T.; Kimura, M.; Ichihashi, N. Cut-off Values for Lower Limb Muscle Thickness to Detect Low Muscle Mass for Sarcopenia in Older Adults. Clin. Interv. Aging 2021, 16, 1215–1222. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Eşme, M.; Karcıoğlu, O.; Öncel, A.; Ayçiçek, G.Ş.; Deniz, O.; Ulaşlı, S.S.; Köksal, D.; Doğu, B.B.; Cankurtaran, M.; Halil, M. Ultrasound Assessment of Sarcopenia in Patients with Sarcoidosis. J. Ultrasound Med. 2022, 41, 951–959. [Google Scholar] [CrossRef] [PubMed]
- Nies, I.; Ackermans, L.L.G.C.; Poeze, M.; Blokhuis, T.J.; Ten Bosch, J.A. The Diagnostic Value of Ultrasound of the Rectus Femoris for the diagnosis of Sarcopenia in adults: A systematic review. Injury 2022, 53 (Suppl. S3), S23–S29. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Han, S.; Hwang, Y.; Choi, W.; Hong, Y.A.; Chang, Y.K. Skeletal Muscle Measurements Based on Abdominal Computerized Tomography (CT) Predict Risk of Osteoporosis in Incident Hemodialysis Patients. J. Clin. Med. 2024, 13, 7696. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Harvey, N.C.; Orwoll, E.; Cauley, J.A.; Kwok, T.; Karlsson, M.K.; Rosengren, B.E.; Ribom, E.; Cawthon, P.M.; Ensrud, K.; Liu, E.; et al. Greater pQCT Calf Muscle Density Is Associated with Lower Fracture Risk, Independent of FRAX, Falls and BMD: A Meta-Analysis in the Osteoporotic Fractures in Men (MrOS) Study. JBMR Plus 2022, 6, e10696. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Parameter | Control Group (Mean ± SD or Median [IQR]) | Osteoporosis Group (Mean ± SD or Median [IQR]) | p-Value (Unadjusted) | p-Value (Age and BMI Adjusted) |
---|---|---|---|---|
Age (years) | 63.7 ± 6.9 | 67.0 ± 7.9 | 0.040 | — |
BMI (kg/m2) | 29.24 ± 4.56 | 26.69 ± 4.67 | 0.013 | — |
Fat Percentage (%) | 37.5 (7.0) | 36.35 (10.1) | 0.200 | — |
ASM/height2 (kg/m2) | 6.29 ± 0.74 | 5.84 ± 0.67 | 0.004 | 0.143 |
Phase Angle (°) | 5.3 ± 0.76 | 4.9 ± 0.77 | 0.010 | 0.139 |
Handgrip Strength (kg) | 22.58 ± 5.8 | 21.19 ± 5.1 | 0.237 | — |
Gait Speed (m/s) | 1.44 ± 0.38 | 1.37 ± 0.41 | 0.428 | — |
Muscle Thickness (cm) | 1.54 ± 0.17 | 1.39 ± 0.19 | <0.001 | 0.016 |
Cross-sectional area (cm2) | 5.26 ± 0.95 | 4.63 ± 1.02 | 0.004 | 0.090 |
Pennation Angle (°) | 11.6 ± 1.7 | 10.9 ± 1.68 | 0.075 | — |
Echo Intensity (g.u.) | 73.88 ± 27.5 | 92.03 ± 25.0 | 0.013 | 0.1 |
BMD Femur (g/cm2) | 0.880 ± 0.1 | 0.726 ± 0.95 | <0.001 | — |
BMD L1–L4 (g/cm2) | 1.115 ± 0.16 | 0.912 ± 0.14 | <0.001 | — |
Parameter | Control Group, n (%) | Osteoporosis Group, n (%) |
---|---|---|
Parental Fracture History | 3 (8.3%) | 6 (11.5%) |
Smoking | 5 (13.9%) | 10 (19.2%) |
Hypertension | 21 (58.3%) | 36 (69.2%) |
Type 2 Diabetes | 2 (5.6%) | 6 (11.5%) |
Obesity | 13 (36.1%) | 11 (21.2%) |
Treated Hypothyroidism | 16 (44.4%) | 18 (34.6%) |
Vitamin D Supplementation | 28 (77.8%) | 48 (92.3%) |
Osteoporosis Treatment | ||
Bisphosphonates | 16 (30.8%) | |
Denosumab | 9 (17.3%) | |
Teriparatide | 19 (36.5%) | |
Treatment Holiday | 5 (9.6%) | |
Newly Diagnosed, No Treatment | 3 (5.8%) |
MT | CSA | PA | EI | ASM | SI | PhA | HGS | GS | |
---|---|---|---|---|---|---|---|---|---|
MT | 1 | 0.794 **† | 0.589 **† | −0.278 * | 0.428 **† | 0.393 **† | 0.233 * | 0.321 ** | 0.239 * |
CSA | 0.794 **† | 1 | 0.717 **† | −0.490 **† | 0.462 **† | 0.513 **† | 0.298 ** | 0.305 ** | 0.175 |
PA | 0.589 **† | 0.717 **† | 1 | −0.323 * | 0.280 ** | 0.296 ** | 0.027 | 0.315 ** | 0.236 * |
EI | −0.278 * | −0.490 **† | −0.323 * | 1 | −0.507 **† | −0.515 **† | −0.316 * | −0.164 | 0.154 |
ASM | 0.428 **† | 0.462 **† | 0.280 ** | −0.507 **† | 1 | 0.839 **† | 0.425 **† | 0.214 * | −0.045 |
SI | 0.393 **† | 0.513 **† | 0.296 ** | −0.515 **† | 0.839 **† | 1 | 0.533 **† | 0.063 | −0.088 |
PhA | 0.233 * | 0.298 ** | 0.027 | −0.316 * | 0.425 **† | 0.533 **† | 1 | 0.193 | 0.107 |
HGS | 0.321 ** | 0.305 ** | 0.315 ** | −0.164 | 0.214 * | 0.063 | 0.193 | 1 | 0.413 **† |
GS | 0.239 * | 0.175 | 0.236 * | 0.154 | −0.045 | −0.088 | 0.107 | 0.413 **† | 1 |
Parameter * | OR (95% CI) | p-Value |
---|---|---|
Muscle Thickness (cm) | 0.025 (0.001–0.773) | 0.035 |
Cross-sectional Area (cm2) | 0.466 (0.242–0.897) | 0.022 |
Pennation Angle (°) | 0.644 (0.426–0.975) | 0.037 |
Echo Intensity (g.u.) | 1.034 (0.998–1.072) | 0.065 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soare, M.M.; Gasparik, A.I.; Popoviciu, H.V.; Pascanu, I.M. Bridging Muscle and Bone Health: Rectus Femoris Ultrasound Parameters Predict Osteoporosis and Identify Low Muscle Mass in Romanian Postmenopausal Women. J. Clin. Med. 2025, 14, 6531. https://doi.org/10.3390/jcm14186531
Soare MM, Gasparik AI, Popoviciu HV, Pascanu IM. Bridging Muscle and Bone Health: Rectus Femoris Ultrasound Parameters Predict Osteoporosis and Identify Low Muscle Mass in Romanian Postmenopausal Women. Journal of Clinical Medicine. 2025; 14(18):6531. https://doi.org/10.3390/jcm14186531
Chicago/Turabian StyleSoare, Miruna M., Andrea I. Gasparik, Horatiu V. Popoviciu, and Ionela M. Pascanu. 2025. "Bridging Muscle and Bone Health: Rectus Femoris Ultrasound Parameters Predict Osteoporosis and Identify Low Muscle Mass in Romanian Postmenopausal Women" Journal of Clinical Medicine 14, no. 18: 6531. https://doi.org/10.3390/jcm14186531
APA StyleSoare, M. M., Gasparik, A. I., Popoviciu, H. V., & Pascanu, I. M. (2025). Bridging Muscle and Bone Health: Rectus Femoris Ultrasound Parameters Predict Osteoporosis and Identify Low Muscle Mass in Romanian Postmenopausal Women. Journal of Clinical Medicine, 14(18), 6531. https://doi.org/10.3390/jcm14186531