Expiratory Flow Bias and Physiological Effects of Rapid Chest Compression in Mechanically Ventilated Neurocritical Patients: A Secondary Analysis of a Randomized Controlled Trial
Abstract
1. Introduction
2. Methods
3. Results
3.1. Expiratory Flow Bias Across Groups
3.2. Association with PaCO2
3.3. Influence of Sex and Age
3.4. Lesion Type and Subarachnoid Hemorrhage
3.5. Hemodynamic Variables
3.6. Intracranial Pressure
3.7. Multivariable Analysis
3.8. Survival Analysis
3.9. Ventilatory Standardization
3.10. Exploratory Analyses with Additional Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Trial Registration
List of Abbreviations
ABI | Acute Brain Injury |
ACTs | Airway Clearance Techniques |
AIS | Acute Ischemic Stroke |
CPP | Cerebral Perfusion Pressure |
EFB | Expiratory Flow Bias |
ERCC | Expiratory Rib Cage Compression |
FiO2 | Fraction of Inspired Oxygen |
GCS | Glasgow Coma Scale |
HR | Heart Rate |
ICP | Intracranial Pressure |
ICH | Intracerebral Hemorrhage |
ICU | Intensive Care Unit |
MAP | Mean Arterial Pressure |
MCC | Manual Chest Compression |
MI-E | Mechanical Insufflation–Exsufflation |
MV | Mechanical Ventilation |
PaCO2 | Partial Pressure of Carbon Dioxide in Arterial Blood |
PaO2 | Partial Pressure of Oxygen in Arterial Blood |
PEEP | Positive End-Expiratory Pressure |
PEF | Peak Expiratory Flow |
PIF | Peak Inspiratory Flow |
RCCT | Rapid Chest Compression Technique |
RASS | Richmond Agitation and Sedation Scale |
RP | Respiratory Physiotherapy |
SAH | Subarachnoid Hemorrhage |
SD | Standard Deviation |
TBI | Traumatic Brain Injury |
VAP | Ventilator-Associated Pneumonia |
References
- Battaglini, D.; Gieroba, D.S.; Brunetti, I.; Patroniti, N.; Bonatti, G.; Rocco, P.R.M.; Pelosi, P.; Robba, C. Mechanical ventilation in neurocritical care setting: A clinical approach. Best Pract. Res. Clin. Anaesthesiol. 2021, 35, 207–220. [Google Scholar] [CrossRef]
- Giosa, L.; Collins, P.D.; Shetty, S.; Lubian, M.; Del Signore, R.; Chioccola, M.; Pugliese, F.; Camporota, L. Bedside Assessment of the Respiratory System During Invasive Mechanical Ventilation. J. Clin. Med. 2024, 13, 7456. [Google Scholar] [CrossRef]
- Tronstad, O.; Martí, J.D.; Ntoumenopoulos, G.; Gosselink, R. An Update on Cardiorespiratory Physiotherapy during Mechanical Ventilation. Semin. Respir. Crit. Care Med. 2022, 43, 390–404. [Google Scholar] [CrossRef]
- Martí, J.D.; Bassi, G.L.; Rigol, M.; Saucedo, L.; Ranzani, O.T.; Esperatti, M.; Luque, N.; Ferrer, M.; Vilaro, J.; Kolobow, T.; et al. Effects of manual rib cage compressions on expiratory flow and mucus clearance during mechanical ventilation. Crit. Care Med. 2013, 41, 850–856. [Google Scholar] [CrossRef] [PubMed]
- Martí, J.D.; Martínez-Alejos, R.; Pilar-Diaz, X.; Yang, H.; Pagliara, F.; Battaglini, D.; Meli, A.; Yang, M.; Bobi, J.; Rigol, M.; et al. Effects of Mechanical Insufflation-Exsufflation with Different Pressure Settings on Respiratory Mucus Displacement During Invasive Ventilation. Respir. Care 2022, 67, 1508–1516. [Google Scholar] [CrossRef] [PubMed]
- Lippi, L.; de Sire, A.; D’aBrosca, F.; Polla, B.; Marotta, N.; Castello, L.M.; Ammendolia, A.; Molinari, C.; Invernizzi, M. Efficacy of Physiotherapy Interventions on Weaning in Mechanically Ventilated Critically Ill Patients: A Systematic Review and Meta-Analysis. Front. Med. 2022, 9, 889218. [Google Scholar] [CrossRef] [PubMed]
- Ntoumenopoulos, G. Are Short-Term Changes in Physiological Variables in ICU Patients as a Result of Physiotherapy of Any Clinical Relevance? Respir. Care 2023, 68, 549–552. [Google Scholar] [CrossRef]
- Battle, C.; Pelo, C.; Hsu, J.; Driscoll, T.; Whitbeck, S.; White, T.; Webb, M. Expert consensus guidance on respiratory physiotherapy and rehabilitation of patients with rib fractures: An international, multidisciplinary e-Delphi study. J. Trauma Acute Care Surg. 2023, 94, 578–583. [Google Scholar] [CrossRef]
- Volpe, M.S.; Guimarães, F.S.; Morais, C.C. Airway clearance techniques for mechanically ventilated patients: Insights for optimization. Respir. Care 2020, 65, 1174–1188. [Google Scholar] [CrossRef]
- Herrero-Cortina, B.; Lee, A.L.; Oliveira, A.; O’NEill, B.; Jácome, C.; Corso, S.D.; Poncin, W.; Muñoz, G.; Inal-Ince, D.; Alcaraz-Serrano, V.; et al. European Respiratory Society statement on airway clearance techniques in adults with bronchiectasis. Eur. Respir. J. 2023, 62, 2202053. [Google Scholar] [CrossRef]
- Magnante, J.; Borges, D.L.; Baptistella, A.R. Ventilator Hyperinflation Versus Manual Chest Compression and Airway Clearance in Mechanically Ventilated Patients. Respir. Care 2025. [Google Scholar] [CrossRef]
- Rodrigues-Gomes, R.; Rolán, R.M.; Gelabert-González, M. Effects of rapid chest compression on intracranial pressure in a patient with subarachnoid hemorrhage: Case report. Fisioterapia 2024, 46, 158–161. [Google Scholar] [CrossRef]
- Rodrigues-Gomes, R.M.; Martí, J.-D.; Rolán, R.M.; Gelabert-González, M. Rapid chest compression effects on intracranial pressure in patients with acute cerebral injury. Trials 2022, 23, 312. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues-Gomes, R.M.; Campo, Á.P.; Rolán, R.M.; Gelabert-González, M. Effects of rapid chest compression technique on intracranial and cerebral perfusion pressures in acute neurocritical patients: A randomized controlled trial. Crit. Care 2025, 29, 159. [Google Scholar] [CrossRef]
- Singh, S.; Chouhan, R.S.; Bindra, A.; Radhakrishna, N. Comparison of effect of dexmedetomidine and lidocaine on intracranial and systemic hemodynamic response to chest physiotherapy and tracheal suctioning in patients with severe traumatic brain injury. J. Anesth. 2018, 32, 518–523. [Google Scholar] [CrossRef]
- Bassi, T.; Taran, S.; Girard, T.D.; Robba, C.; Goligher, E.C. Ventilator-associated Brain Injury A New Priority for Research in Mechanical Ventilation. Am. J. Respir. Crit. Care Med. 2024, 209, 1186–1188. [Google Scholar] [CrossRef]
- Robba, C.; Battaglini, D.; Abbas, A.; Sarrió, E.; Cinotti, R.; Asehnoune, K.; Taccone, F.S.; Rocco, P.R.; Schultz, M.J.; Citerio, G.; et al. Clinical practice and effect of carbon dioxide on outcomes in mechanically ventilated acute brain-injured patients: A secondary analysis of the ENIO study. Intensive Care Med. 2024, 50, 234–246. [Google Scholar] [CrossRef]
- Meyfroidt, G.; Bouzat, P.; Casaer, M.P.; Chesnut, R.; Hamada, S.R.; Helbok, R.; Hutchinson, P.; Maas, A.I.R.; Manley, G.; Menon, D.K.; et al. Management of moderate to severe traumatic brain injury: An update for the intensivist. Intensive Care Med. 2022, 48, 649–666. [Google Scholar] [CrossRef]
- Ferreira, L.L.; Valenti, V.E.; Vanderlei, L.C.M. Fisioterapia respiratória na pressão intracraniana de pacientes graves internados em unidade de terapia intensiva: Revisão sistemática. Rev. Bras. Ter. Intensiv. 2013, 25, 327–333. [Google Scholar] [CrossRef]
- Zink, E.K.; Kumble, S.; Beier, M.; George, P.; Stevens, R.D.; Bahouth, M.N. Physiological Responses to In-Bed Cycle Ergometry Treatment in Intensive Care Unit Patients with External Ventricular Drainage. Neurocrit. Care 2021, 35, 707–713. [Google Scholar] [CrossRef]
- Quanjer, P.H.; Stanojevic, S.; Cole, T.J.; Baur, X.; Hall, G.L.; Culver, B.H.; Enright, P.L.; Hankinson, J.L.; Ip, M.S.M.; Zheng, J.; et al. Multi-ethnic reference values for spirometry for the 3-95-yr age range: The global lung function 2012 equations. Eur. Respir. J. 2012, 40, 1324–1343. [Google Scholar] [CrossRef]
- Ntoumenopoulos, G.; Presneill, J.; McElholum, M.; Cade, J. Chest physiotherapy for the prevention of ventilator-associated pneumonia. Intensive Care Med. 2002, 28, 850–856. [Google Scholar] [CrossRef]
- Janssens, J.P.; Pache, J.C.; Nicod, L.P. Physiological changes in respiratory function associated with ageing. Eur. Respir. J. 1999, 13, 197–205. [Google Scholar] [CrossRef]
- Silva, P.L.; Ball, L.; Rocco, P.R.; Pelosi, P. Physiological and Pathophysiological Consequences of Mechanical Ventilation. Semin. Respir. Crit. Care Med. 2022, 43, 321–334. [Google Scholar] [CrossRef]
- Clini, E.; Ambrosino, N. Early physiotherapy in the respiratory intensive care unit. Respir. Med. 2005, 99, 1096–1104. [Google Scholar] [CrossRef]
All Patients | Control Group | Intervention Group | p Values | ||||
---|---|---|---|---|---|---|---|
Age | 56 | 55 | 57 | 0.519 | |||
Time since ABI (mean days) | 3.3 | 3.3 | 3.3 | - | |||
Sex (% females) | 33 | 66% | 14 | 56% | 19 | 76% | 0.232 |
Traumatic brain injury (TBI) | 12 | 24% | 7 | 28% | 5 | 20% | 0.434 |
Acute ischemic stroke (AIS) | 2 | 4% | 1 | 4% | 1 | 4% | 0.992 |
Subarachnoid hemorrhage (SAH) | 20 | 40% | 8 | 32% | 12 | 48% | 0.798 |
Intracerebral hemorrhage (ICH) | 16 | 32% | 9 | 36% | 7 | 28% | 0.434 |
Ventricular drainage | 22 | 44% | 9 | 36% | 13 | 52% | 0.396 |
Norepinephrine | 32 | 64% | 17 | 68% | 15 | 60% | 1.000 |
Decompressive surgery | 19 | 38% | 9 | 36% | 10 | 40% | 0.769 |
Relaxation | 14 | 28% | 8 | 32% | 6 | 24% | 0.754 |
Variable | β Coefficient (95% CI) | p-Value |
---|---|---|
Group (Intervention vs. Control) | +40.1 (32.5 to 47.7) | <0.001 |
Age (per year) | −0.27 (−0.60 to +0.07) | 0.113 |
Heart rate (per bpm) | −0.39 (−0.69 to −0.10) | 0.010 |
Mean arterial pressure (per mmHg) | −0.01 (−0.30 to +0.29) | 0.971 |
Sex (Male vs. Female) | −9.9 (−19.2 to −0.5) | 0.039 |
Lesion type: Ischemic stroke | +0.07 (−14.9 to +15.0) | 0.992 |
Lesion type: TBI | −4.1 (−14.7 to +6.4) | 0.434 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues-Gomes, R.M.; Martinez Rolán, R.; Botana-Rial, M.; Del Río González, A.; Arán-Echabe, E. Expiratory Flow Bias and Physiological Effects of Rapid Chest Compression in Mechanically Ventilated Neurocritical Patients: A Secondary Analysis of a Randomized Controlled Trial. J. Clin. Med. 2025, 14, 6516. https://doi.org/10.3390/jcm14186516
Rodrigues-Gomes RM, Martinez Rolán R, Botana-Rial M, Del Río González A, Arán-Echabe E. Expiratory Flow Bias and Physiological Effects of Rapid Chest Compression in Mechanically Ventilated Neurocritical Patients: A Secondary Analysis of a Randomized Controlled Trial. Journal of Clinical Medicine. 2025; 14(18):6516. https://doi.org/10.3390/jcm14186516
Chicago/Turabian StyleRodrigues-Gomes, Ricardo Miguel, Rosa Martinez Rolán, Maribel Botana-Rial, Alejandra Del Río González, and Eduardo Arán-Echabe. 2025. "Expiratory Flow Bias and Physiological Effects of Rapid Chest Compression in Mechanically Ventilated Neurocritical Patients: A Secondary Analysis of a Randomized Controlled Trial" Journal of Clinical Medicine 14, no. 18: 6516. https://doi.org/10.3390/jcm14186516
APA StyleRodrigues-Gomes, R. M., Martinez Rolán, R., Botana-Rial, M., Del Río González, A., & Arán-Echabe, E. (2025). Expiratory Flow Bias and Physiological Effects of Rapid Chest Compression in Mechanically Ventilated Neurocritical Patients: A Secondary Analysis of a Randomized Controlled Trial. Journal of Clinical Medicine, 14(18), 6516. https://doi.org/10.3390/jcm14186516