Exploring Applications of Transcranial Magnetic Stimulation in Child and Adolescent Psychiatry: A Narrative Review
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Overview of Types of TMS
3.1.1. Single-Pulse Transcranial Magnetic Stimulation (sTMS)
TMS Modality | Stimulation Frequency | Intensity (% of Motor Threshold) | Typical Session Duration | Number of Sessions | Total Treatment Duration | Primary Clinical Applications |
---|---|---|---|---|---|---|
Repetitive TMS (rTMS)-a [18] | High-Frequency rTMS (Left DLPFC): 10 Hz | 80–120% RMT | ~20–37.5 min | 10–30 sessions | 2–6 weeks | Major Depressive Disorder (treatment-resistant), Anxiety, ASD (modest evidence), ADHD |
Repetitive TMS (rTMS)-b [18] | Low-Frequency rTMS (Right DLPFC/SMA/LTPC): 1 Hz | 90–110% RMT | ~15–30 min | 10–30 sessions | 2–6 weeks | OCD, Tourette Syndrome, Schizophrenia (auditory hallucinations), Depression with irritability |
Theta Burst Stimulation (TBS) [18] | Bursts at 50 Hz, repeated at 5 Hz | ~80% of Active Motor Threshold | iTBS: ~3 min cTBS: 20–40 s | Typically 8–30 sessions | 4 days to 6 weeks | Depression, ASD, Tourette Syndrome (limited studies; ongoing trials) |
Deep TMS (H1 Coil) [19] | 18 Hz | Up to 120% of MT | 55 trains × 2 s, 20-s intertrain interval (1980 pulses) | ~20–30 sessions planned | ~4–6 weeks | Treatment-Resistant Depression (adolescent trial phase) |
Low-Intensity TMS (LI-TMS) [20] | 10 Hz | Subthreshold | 10 min/session | Standard: 1×/day for 10 days Accelerated: 3×/day for 5 days | 1–2 weeks | Preclinical model of adolescent depression; informs future clinical use |
Magnetic Seizure Therapy (MST) [21] | 100 Hz | 100% (train duration titrated) | 2–10 s train duration (seizure induced) | Acute: 18 sessions Continuation: 9 sessions | Acute: 6 weeks Continuation: 6 months | Refractory Bipolar Depression (Adolescent case study) |
Single pulse TMS (sTMS) [22] | 1 pulse per stimulus (not repeated) | Variable (usually suprathreshold, e.g., 120%) | Milliseconds (used for motor evoked potentials or silent periods) | 1 | N/A (Research use only) | Neurophysiological assessment: cortical excitability, inhibition (e.g., CSP, MEP), biomarker research |
Paired Pulse TMS (ppTMS) [22] | Two pulses: Conditioning + Test (1–200 ms ISI) | Conditioning: subthreshold; Test: suprathreshold (e.g., 80–120%) | ~30–60 min (research session) | 1 (research setting) | N/A (used as assessment) | Assessment of cortical excitability and inhibition (e.g., SICI, ICF, LICI); research in ADHD, ASD, depression |
Title | Authors | Type of Study | Sample Size | Psychiatric Disorder | Stimulation Target/Site | Protocols | Key Findings (Effect Size ± p) | Scales (p-Value) | Evidence Level |
---|---|---|---|---|---|---|---|---|---|
Repetitive transcranial magnetic stimulation (rTMS) in the treatment of obsessive–compulsive disorder (OCD) and Tourette syndrome (TS) | Mantovani et al., 2006 [23] | Open-label pilot study | 10 | OCD and TS | Supplementary Motor Area | Four daily trains at 1 Hz, 100% RMT, 5 min duration, 2 min inter-train interval (1200 stimuli/day) | OCD group (n = 7): Significant reduction in OCD symptoms (YBOCS ↓ 36.4 → 26, p = 0.007). TS group (n = 5): Significant reduction in tic severity (YGTSS ↓ 71.2 → 23.4, p = 0.024). Overall sample (N = 10): Marked improvement in CGI (p < 0.001, sustained at 3 months), anxiety (HARS ↓ 24.1 → 12, p < 0.001), and depression (HDRS ↓ 20.7 → 10.8, p = 0.001; BDI ↓ 10 → 6.4, p = 0.022). Right motor threshold increased significantly. | YBOCSYGTSS, HDRS-24, HARS-1, BDI SASS | Level IV (Open-label pilot study with no control group) |
An 11-year-old boy with drug-resistant schizophrenia treated with temporo-parietal rTMS | Jardri et al., 2007 [24] | Case report | 1 | Schizophrenia | Left temporo-parietal cortex | Low-frequency (1 Hz) fMRI-guided rTMS over the left temporo-parietal cortex, 10 sessions, repeated every 5 weeks | 47% reduction in auditory verbal hallucinations (p-value not reported) 40% improvement in adaptive functioning (p-value not reported) | Auditory Hallucinations Rating Scale, Children’s Global Assessment Scale | Level V (5): Case report or expert opinion |
Repetitive transcranial magnetic stimulation for the treatment of obsessive–compulsive disorder: a double-blind controlled investigation | Sachdev et al., 2007 [25] | RCT, double-blind placebo-controlled study | 18 | OCD | Not specified | 30 trains of 5 s each, at 10 Hz and 110% motor threshold, with 25 s inter-train intervals (1500 stimuli per session) | No significant difference between rTMS and sham after 2 weeks. Within-subject improvement in OCD symptoms after 4 weeks, but not significant after adjusting for depression. rTMS improved depressive symptoms (MADRS). Well tolerated, only mild transient side effects. | YBOCS obsession, YBOCS compulsion Maudsley Obsessive-Compulsive Inventory scores | Level II (Evidence from at least one well-designed randomized controlled trial) |
Effectiveness of the repetitive Transcranial Magnetic Stimulation (rTMS) of 1 Hz for Attention-Deficit Hyperactivity Disorder (ADHD) | Niederhofer et al., 2008 [26] | Case report | 1 | ADHD | Not specified | Low frequency (1 Hz, 1200 stimulations per day for five days) | Marked improvement in ADHD symptoms (hyperactivity, impulsivity, attention). Effects sustained for at least 4 weeks post-treatment. Placebo condition showed no improvement. No effect size or p-values reported. | Conner’s rating scale for adult | Level V (5): Case report or expert opinion |
The effect of repetitive transcranial magnetic stimulation on symptoms in obsessive–compulsive disorder | Prasko et al., 2006 [27] | RCT, double-blind, sham-controlled study | 37 | OCD | Left DLPFC | 10 sessions of rTMS, 1 Hz at 110% of motor threshold | No significant difference between rTMS and sham groups on OCD symptoms (Y-BOCS). No group differences on other scales (CGI, HAMA, BAI). rTMS was safe and well tolerated. | CGI, HAMA, Y-BOCS BAI | Level II (randomized, double-blind, sham-controlled trial) |
Effects of low frequency repetitive transcranial magnetic stimulation (rTMS) on gamma frequency oscillations and event-related potentials during processing of illusory figures in autism | Sokhadze et al., 2009 [28] | Open-label | 13 | ASD | DLPFC | Two times per week for 3 weeks (a total of six 0.5 Hz rTMS treatments) over the left DLPFC. Stimulation at 0.5 Hz and 90% MT, with a total of 150 pulses/day | Significant improvement in ASD-related symptoms over time. No significant difference between active rTMS and sham groups. Well tolerated; no adverse events reported. | Caregiver report and clinician ratings of improvement, Aberrant Behavior Checklist (ABC), Social Responsiveness Scale (SRS), CGI | Level II (Randomized, double-blind, sham-controlled trial) |
Low-Frequency Repetitive Transcranial Magnetic Stimulation (rTMS) Modulates Evoked-Gamma Frequency Oscillations in Autism Spectrum Disorder (ASD) | Baruth et al., 2010 [29] | RCT | 25 | ASD | Left DLPFC | rTMS, 1 Hz, 90% RMT, 10 min | Reduced gamma-band cortical activity. Improvement in behavioral symptoms (ABC, RBS-R). Suggests modulation of cortical excitability and inhibitory control. | Repetitive behavior scale–revised (RBS) (p = 0.02). Social responsiveness scale (SRS) (N.S). Aberrant behavior checklist (ABC) (p = 0.002). | Level IV (Open-label, uncontrolled study) |
Noninvasive brain stimulation with high-frequency and low-intensity repetitive transcranial magnetic stimulation treatment for posttraumatic stress disorder | Boggio et al., 2010 [30] | Double-blind, placebo-controlled phase II trial | 30 | PTSD | DLPFC | 10 daily sessions over 2 weeks of active 20 Hz rTMS of the right DLPFC, active 20 Hz rTMS of the left DLPFC, or sham rTMS | Both right and left DLPFC rTMS groups improved significantly in PTSD symptoms. Right DLPFC stimulation produced greater benefit on core PTSD symptoms and anxiety. Left DLPFC stimulation produced greater improvement in mood. Effects persisted at 3-month follow-up. Safe and well tolerated. | PTSD Checklist; Treatment Outcome PTSD Scale; Hamilton Anxiety Rating Scale; Hamilton Depression Rating Scale | Level II (Randomized, double-blind, sham-controlled trial) |
1 Hz low frequency repetitive transcranial magnetic stimulation in children with Tourette syndrome | Kwon et al., 2011 [31] | Open-label trial | 10 | TS [ADHD, MDD, OCD] | SMA | rTMS, supplementary motor area (SMA), 10 sessions, 1 Hz rTMS, 100% of motor threshold, 1200 stimuli/day | Significant reduction in tic severity (YGTSS ↓ from 20.6 to 13.5, p = 0.012). Significant improvement in CGI-TS scores (p = 0.002). No significant effects on ADHD, depression, or anxiety measures. | Yale Tic Rating Scale; CGI-TS | Level IV (case series without control group) |
Repetitive Transcranial Magnetic Stimulation (rTMS) Modulates Event-Related Potential (ERP) Indices of Attention in Autism | Casanova et al. monitoring, 2012 [32] | RCT | 45 | ASD | SMA | 1 Hz and 90% MT, 150 pulses/day (15 × 10 s trains with 20 at 30 s intervals). 12 sessions: 6 left and 6 right DLPFC | Significant reduction in tic severity (YGTSS, p = 0.012). Improvement in CGI-TS scores (p = 0.002). No significant changes in ADHD, anxiety, or depression scores. | Aberrant Behavior Checklist (ABC; Social Responsiveness Scale (SRS); Repetitive Behavior Scale (RBS) | Level IV (Open-label pilot cohort study) |
A randomized, double-blind trial of repetitive transcranial magnetic stimulation in obsessive–compulsive disorder with three-month follow-up | Gomes et al., 2012 [33] | RCT | 22 | OCD [MDD] | pre-SMA, bilaterally | 1 Hz, 20 min trains (1200 pulses/day) at 100% of resting MT, once per day, 5 days/week, for 2 weeks | At 2 weeks: 42% responders in active vs. 12% in sham (p < 0.001). At 14 weeks: 35% responders in active vs. 6% in sham (p < 0.001). Significant improvements in CGI-S and anxiety (HAM-A). No significant effect on depression. | Y-BOCS; HAMD-24; BDI–IIc, HARS-14, CGI–S | Level II (Randomized, double-blind, sham-controlled trial) |
Transcranial magnetic stimulation (TMS) in the treatment of attention-deficit/hyperactivity disorder in adolescents and young adults: a pilot study | Weaver et al., 2012 [34] | RCT, sham-controlled, crossover | 9 | ADHD [Anxiety disorders] | Right DLPFC | rTMS at 10 Hz, 100% motor threshold, 2000 pulses/session, 10 sessions/2 weeks | CGI-I: Significant overall improvement across phases (p < 0.005). ADHD-IV: 9-point reduction overall (p < 0.05), but no difference between active and sham conditions. Neurocognitive & EEG outcomes: no group differences. Well tolerated (mild headache/scalp discomfort in 3 participants). | CGI-I scale, ADHD-IV scale | Level II (Randomized, sham-controlled crossover pilot study) |
Transcranial magnetic stimulation at 1 Hertz improves clinical symptoms in children with Tourette syndrome for at least 6 months | Le et al., 2013 [35] | Clinical trial | 25 | TS [ADHD, anxiety, and depression] | Right prefrontal cortex (approx. right DLPFC, 5 cm anterior to motor hotspot) | 1 Hz rTMS, 20 daily sessions, 5 days/week × 4 weeks, 110% RMT, 1200 stimuli/day | Significant improvement in tic severity (CGI-I, p < 0.005). ADHD symptoms reduced (ADHD-IV, p < 0.05), though no significant sham difference. Mean treatment effect size = 0.48 (not statistically significant). | YGTSS; CGI; SNAP-IV; Kovacs’ CDI; SCAS | Level II |
Effects of weekly low-frequency rTMS on autonomic measures in children with autism spectrum disorder | Casanova et al., 2014 [36] | Clinical trial | 18 | ASD | DLPFC | rTMS, 5 Hz, 90% resting motor threshold, 10 min duration, 18 sessions, 160 pulses delivered, trains with 8.10 s on, 20 s ISI, Right and Left DLPFC | Significant reduction in repetitive and ritualistic behaviors (RBS-R). Improvements in irritability, lethargy, and hyperactivity (ABC subscales). Overall behavioral benefits with good tolerability. | Aberrant Behavior Checklist, Restricted Behavior Pattern | Level 3 (non-randomized, open-label, proof-of-concept study) |
Low frequency repetitive transcranial magnetic stimulation in children with attention deficit/hyperactivity disorder. Preliminary results | Gómez et al., 2014 [37] | Open-label, preliminary study without a control group | 13 | ADHD | Left DLPFC | 1 Hz rTMS over the Left DLPFC, 5 consecutive days; 1500 stimuli per session, 90% of resting motor threshold | Significant improvement in ADHD symptoms (parent and teacher checklists). Strongest effects in inattention at school and hyperactivity/impulsivity at home. Well tolerated (headache, local discomfort, mild neck pain; no seizures or cognitive changes). | Checklist (SCL) for ADHD from DSM-IV | Level 4 (Open-label, uncontrolled pilot study) |
Functional MRI-navigated repetitive transcranial magnetic stimulation over supplementary motor area in chronic tic disorders | Wu et al., 2014 [38] | RCT, double-blind, parallel, Sham-controlled trial | 12 | TS [ADHD, OCD] | SMA | cTBS, Bilateral SMA/Sham, 2 sessions, fMRI-navigated, (3-pulse 30 Hz bursts, repeated 5 times/s, 90% RMT, 600 pulses/train, 4 trains/day) | Active cTBS reduced SMA and motor cortex activation on fMRI compared with sham. No significant clinical difference in tic severity (YGTSS) between active and sham groups. Suggests neurophysiological modulation without clear clinical benefit. | YGTSS; PUTS; CYBOCS | Level II Randomized, double-blind, sham-controlled trial |
rTMS neuromodulation improves electrocortical functional measures of information processing and behavioral responses in autism | Sokhadze et al., 2014 [39] | 27 | ASD | DLPFC | 1 Hz frequency, 90% MT, 180 pulses/day, 9 trains of 20 pulses each, 20–30 s inter-train interval | EEG: Reduced P50/P300 amplitudes, increased N100/N200 amplitudes (improved cortical processing). Behavior: Significant reductions in irritability, hyperactivity, stereotypy (ABC subscales). Suggests improvements in both neurophysiological and behavioral outcomes. | Aberrant Behavior Checklist (ABC), Repetitive Behavior Scale (RBS-R) | Level III, Open-label study with no sham control; small sample size | |
A simple, repeated rTMS protocol effectively removes auditory verbal hallucinations in a single patient study | Blanco-Lopez et al., 2016 [40] | Case report | 1 | Schizophrenia | Left Temporoparietal Cortex | Two blocks of 10 daily sessions over two weeks each; low-frequency (1 Hz) rTMS over the left temporoparietal cortex, 1200 stimuli/session at 90% RMT | Complete and sustained resolution of auditory verbal hallucinations after second treatment block. Depression scores improved (PHQ-9: 23 → 7). Grief and psychosis ratings also improved (ICG: 5 → 1). | PHQ-9, ICG, PYSRATS | Level IV, case report, no control group |
Clinical effects of repetitive transcranial magnetic stimulation combined with atomoxetine in the treatment of attention-deficit hyperactivity disorder | Cao et al., 2018 [41] | RCT | 64 | ADHD | Right dorsolateral prefrontal cortex | 10 Hz, 4 s stimulation, 26 s interval, 100% rMT, 2000 pulses/session, 25 min/session, 5 sessions/week for 6 weeks (30 sessions total) | Significant symptom improvements across all groups (rTMS, atomoxetine, and rTMS + ATX). Combination group (rTMS + ATX) showed greatest improvements in attention, hyperactivity/impulsivity, and oppositional behaviors. Executive function (digit span, arithmetic, coding, CPT, IGT) improved most in the combination group. Well tolerated. | SNAP-IV continuous performance test, WISC (arithmetic, and coding | Level II |
High-frequency repetitive TMS for suicidal ideation in adolescents with depression | Croarkin et al., 2018 [12] | Open-label | 19 | Suicidal ideation [MDD] | Left dorsolateral prefrontal cortex | rTMS, Left DLPFC, 30 sessions, 10 Hz, 120% motor threshold, 4 s trains, 26 s intertrain, 3000 pulses/session | Significant reduction in suicidal ideation (C-SSRS, CDRS-R Item 13). However, effects lost significance after adjusting for depression severity. Treatment was well tolerated. | C-SSRS CDRS-R Item 13 | Level: III (Exploratory open-label study) |
Exploratory Study of rTMS Neuromodulation Effects on Electrocortical Functional Measures of Performance in an Oddball Test and Behavioral Symptoms in Autism | Sokhadze et al., 2018 [42] | 124 | ASD | Dorsolateral Prefrontal Cortex | 1 Hz frequency, 90% MT, 180 pulses/session (9 trains of 20 pulses each with 20–30 s intervals) | Significant improvements in error monitoring (↓ commission errors, improved post-error slowing). ERP changes: more negative ERN amplitude, shorter ERN latency, changes in P3a/P3b. Behavioral benefits: reductions in ritualistic behaviors, stereotypy, irritability, hyperactivity, and lethargy (ABC, RBS-R). | Aberrant Behavior Checklist (ABC) (RBS-R): | Level II | |
Does rTMS reduce depressive symptoms in young people who have not responded to antidepressants? | Rosenich et al., 2019 [43] | Retrospective study | 15 | Treatment-resistant MDD [Various psychiatric comorbidities] | Right dorsolateral prefrontal cortex (DLPFC) in unilateral protocols; both right and left DLPFC in bilateral protocols | Bilateral or unilateral rTMS, 6-week protocol | Significant improvements in depression scores (HAM-D, MADRS, Zung). Response rate: 40%; remission rate: 13%; partial response in 87%. Well tolerated in a real-world clinical setting. | HAM-D, MADRS | Level IV (Retrospective open-label naturalistic study; no control group or randomization) |
Add-on rTMS for the acute treatment of depressive symptoms is probably more effective in adolescents than in adults: Evidence from real-world clinical practice | Zhang et al., 2019 [44] | Naturalistic, observational study | 117 (42 adolescents, 75 adults) | Depression and anxiety disorders [Bipolar II, dysthymia, GAD, eating disorder, OCD] | Left dorsolateral prefrontal cortex | rTMS to left DLPFC, 10 Hz, 120% motor threshold, 10–20 sessions | All age groups improved significantly in depressive symptoms. Adolescents showed greater reduction in depression scores and higher response/remission rates compared to adults. Suggests enhanced efficacy of rTMS in adolescent patients. | HAMD, HAMA | Level III (Naturalistic observational study; non-randomized, non-controlled) |
Treatment of Executive Function Deficits in autism spectrum disorder with repetitive transcranial magnetic stimulation: A double-blind, sham-controlled, pilot trial | Ameis et al., 2020 [9] | RCT, blinded, parallel, sham-controlled design | 40 | ASD [ADHD] | Left dorsolateral prefrontal cortex | 4-week course of 20 Hz rTMS targeting DLPFC (90%RMT) vs. sham | No significant overall improvement in executive function vs. sham. Exploratory analysis: patients with lower baseline adaptive functioning showed greater benefit from active rTMS. Safe and feasible in ASD youth and young adults. | BRIEF-SR or BRIEF-Adult; CANTAB SWM total errors | Level II (Randomized controlled trial) |
Left prefrontal transcranial magnetic stimulation for treatment-resistant depression in adolescents: a double-blind, randomized, sham-controlled trial | Croarkin et al., 2021 [45] | RCT, sham-controlled trial | 112 | MDD | Left dorsolateral prefrontal cortex | 10-Hz, left prefrontal, 30 treatment sessions over 6 weeks, no more than 2 days between sessions | Clinically meaningful reduction in depression (HAM-D-24), but no significant difference between active and sham groups. Response rates: 41.7% (active) vs. 36.4% (sham). Remission rates: ~29% in both groups. Meta-analysis including this and adult trials showed small, non-significant effect. | HAM-D-24 | Level I (Randomized, double-blind, sham-controlled trial; multicenter) |
Bilateral transcranial magnetic stimulation of the supplementary motor area in children with Tourette syndrome | Kahl et al., 2021 [46] | Open-label trial | 10 | TS [ADHD, anxiety, social phobia, OCD, epilepsy] | Bilateral Supplementary Motor Area | rTMS, Bilateral SMA (each hemisphere separately), 15 sessions, 1 Hz rTMS, 100%RMT, 900 pulses per hemisphere | Significant reduction in tic severity (YGTSS ↓ from 64.4 → 26.4, p = 0.005). Improvements in motor and phonic tic subscores, impairment, anxiety (MASC-2), and depression (CDRS-R). Physiological measures: longer cortical silent period, increased intracortical facilitation. Well tolerated; some MRS data inconclusive. | YGTSS; MASC 2; CDRS-R | Level IV (Open-label, uncontrolled pilot trial) |
A lack of efficacy of continuous theta burst stimulation over the left dorsolateral prefrontal cortex in autism: A double blind randomized sham-controlled trial | Ni et al., 2021 [47] | RCT, parallel, double-blind and sham-controlled trial | 60 | ASD [ADHD, OCD, Learning disorders] | Left dorsolateral prefrontal cortex | cTBS: 3 TMS pulses at 50 Hz at 200 ms intervals for 40 s (600 pulses), 90% AMT | Significant improvements in social communication and interaction (ADOS, SRS). No significant effect on restricted/repetitive behaviors. EEG: increased gamma-band oscillations post-treatment. Well tolerated, no major adverse events. | SRS, RBS-R, Emotion Dysregulation Inventory (EDI) | Level 1b: Randomized controlled trial (RCT), double-blind, sham-controlled |
Abnormal individualized functional connectivity: A potential stimulation target for pediatric Tourette syndrome | Wang et al., 2024 [48] | Case–Control Observational study | 116 | Tourette syndrome | Left Supplementary Motor Area | MRI data were acquired using a 3-T scanner | Children with TS showed significantly lower functional connectivity (FC) between left GPi and left SMA (p = 0.011, Bonferroni corrected). Decreased FC was negatively correlated with tic severity (YGTSS, p = 0.01; Bonferroni significant). Suggests individualized FC peak in SMA as a potential rTMS target for TS. | Yale Global Tics Severity Scale (YGTSS) | Level III—Prospective observational study |
A Multisite, 6-Month, Open-Label Study of Maintenance Transcranial Magnetic Stimulation for Adolescents with Treatment-Resistant Depression | Garzon et al., 2025 [49] | Open-label study | 41 | Treatment-resistant depression | Left dorsolateral prefrontal cortex | 22 TMS session | Maintenance TMS was feasible, safe, and clinically effective. 43% required retreatment; average = 22.5 sessions. Higher baseline depression severity (HAMD-24) predicted greater relapse risk (HR = 1.11, p ≤ 0.001). Treatment resistance level (ATR) did not predict relapse. | HAMD-24 CDRS-R: QIDS-SR CGI-S | Level III—Multisite open-label longitudinal follow-up study (non-randomized, uncontrolled) |
Function-Specific Localization in the Supplementary Motor Area: A Potential Effective Target for Tourette Syndrome | Wang et al., 2025 [50] | Randomized longitudinal study | 54 | Tourette syndrome | - Function-specific SMA (left SMA or right SMA) determined by GPi-based peak functional connectivity (FC) - Compared with conventional scalp-localized SMA | cTBS:600 pulses/train (3 pulses/burst at 5 Hz); 3 trains/day for 5 days | Left SMA fMRI-guided targeting: ≥30% YGTSS reduction in 4/19 patients after 1 week. Significant GPi–SMA FC changes correlated with tic reduction (r = 0.638, p = 0.026). YGTSS improved significantly (baseline vs. 1 week, p < 0.0001; baseline vs. 2 weeks, p = 0.005). Demonstrates added value of function-specific SMA targeting vs. conventional scalp-based localization. | YGTSS | Randomized, parallel-group, controlled trial with functional MRI-guided targeting (preliminary evidence; Level II). |
Probing the Neurodynamic Mechanisms of Cognitive Flexibility in Depressed Individuals with Autism Spectrum Disorder | Elmaghraby et al., 2025 [51] | Open label Study | 9 | Autism Spectrum Disorder [TRD] | Dorsolateral prefrontal cortex | 30 accelerated theta burst stimulation of thedorsolateral prefrontal cortex, either unilaterally or bilaterally. | rTMS reduced prefrontal excitability and increased right temporoparietal excitability. Significant improvements in fluid cognition (t = 3.79, p = 0.005) and depressive symptoms (F(3,21) = 28.49, p < 0.001). Cognitive improvement at week 4 correlated with later depression improvement at week 12 (r = 0.71, p = 0.05). Suggests early cognitive gains may predict mood response. | NIH Toolbox Fluid Cognition Composite score and the Dimensional Change Card Sort subtest | Open-label pilot study (Level IV) |
3.1.2. Paired-Pulse Transcranial Magnetic Stimulation (ppTMS)
- Short ISIs (1–5 ms) measure short-interval intracortical inhibition (SICI), mediated by GABAergic interneurons.
- Longer ISIs (8–30 ms) assess intracortical facilitation (ICF), reflecting glutamatergic excitatory transmission [53].
3.1.3. Repetitive TMS (rTMS)
3.1.4. Theta-Burst Stimulation (TBS)
- Intermittent TBS (iTBS)—Typically excitatory.
- Continuous TBS (cTBS)—Typically inhibitory.
3.2. Studies Utilizing Any Type of TMS in Treatment of Various Disorders
4. Discussion
4.1. TMS Use in Disorders Among Children and Adolescents
4.1.1. Tourette Syndrome (TS)
4.1.2. Suicidality
4.1.3. Autism Spectrum Disorder (ASD)
4.1.4. Attention Deficit Hyperactivity Disorder (ADHD)
4.1.5. Mood Disorder
4.1.6. Schizophrenia in Adolescents
4.1.7. Post-Traumatic Stress Disorder (PTSD)
4.1.8. Obsessive–Compulsive Disorder (OCD)
4.2. Key Implications and Limitations
4.3. Long-Term Safety Considerations in Developing Brains
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Abbreviation | Definition |
ADHD | Attention-deficit/hyperactivity disorder |
ASD | Autism spectrum disorder |
BSI-CV | Beck scale for suicide ideation, chinese version |
CPT | Continuous performance test |
cTBS | Continuous theta-burst stimulation |
DLPFC | Dorsolateral prefrontal cortex |
EEG | Electroencephalography |
EMG | Electromyography |
HAM-D | Hamilton depression rating scale |
iTBS | Intermittent theta-burst stimulation |
ISI | Inter-train interval |
LPFC | Lateral prefrontal cortex |
MDD | Major depressive disorder |
MRI | Magnetic resonance imaging |
MRS | Magnetic resonance spectroscopy |
OCD | Obsessive–compulsive disorder |
PAS | Paired associative stimulation |
pre-SMA | Pre-supplementary motor area |
PTSD | Post-traumatic stress disorder |
RCT | Randomized controlled trial |
RMT | Resting motor threshold |
rTMS | Repetitive transcranial magnetic stimulation |
SMA | Supplementary motor area |
sTMS | Single-pulse transcranial magnetic stimulation |
TBS | Theta-burst stimulation |
TMS | Transcranial magnetic stimulation |
TS | Tourette syndrome |
Y-BOCS | Yale–Brown obsessive compulsive scale |
YGTSS | Yale global tic severity scale |
References
- Piao, J.; Huang, Y.; Han, C.; Li, Y.; Xu, Y.; Liu, Y.; He, X. Alarming changes in the global burden of mental disorders in children and adolescents from 1990 to 2019: A systematic analysis for the Global Burden of Disease study. Eur. Child. Adolesc. Psychiatry 2022, 31, 1827–1845. [Google Scholar] [CrossRef] [PubMed]
- Persico, A.M.; Arango, C.; Buitelaar, J.K.; Correll, C.U.; Glennon, J.C.; Hoekstra, P.J.; Moreno, C.; Vitiello, B.; Vorstman, J.; Zuddas, A. Unmet needs in paediatric psychopharmacology: Present scenario and future perspectives. Eur. Neuropsychopharmacol. 2015, 25, 1513–1531. [Google Scholar] [CrossRef] [PubMed]
- Rani, S.; Dhar, S.B.; Khajuria, A.; Gupta, D.; Jaiswal, P.K.; Singla, N.; Kaur, M.; Singh, G.; Barnwal, R.P. Advanced Overview of Biomarkers and Techniques for Early Diagnosis of Alzheimer’s Disease. Cell Mol. Neurobiol. 2023, 43, 2491–2523. [Google Scholar] [CrossRef] [PubMed]
- Wassermann, E.M.; Zimmermann, T. Transcranial magnetic brain stimulation: Therapeutic promises and scientific gaps. Pharmacol. Ther. 2012, 133, 98–107. [Google Scholar] [CrossRef]
- Barker, A.T.; Jalinous, R.; Freeston, I.L. Non-invasive magnetic stimulation of human motor cortex. Lancet 1985, 1, 1106–1107. [Google Scholar] [CrossRef]
- McIntyre, R.S.; Alsuwaidan, M.; Baune, B.T.; Berk, M.; Demyttenaere, K.; Goldberg, J.F.; Gorwood, P.; Ho, R.; Kasper, S.; Kennedy, S.H.; et al. Treatment-resistant depression: Definition, prevalence, detection, management, and investigational interventions. World Psychiatry 2023, 22, 394–412. [Google Scholar] [CrossRef]
- Siebner, H.R.; Funke, K.; Aberra, A.S.; Antal, A.; Bestmann, S.; Chen, R.; Classen, J.; Davare, M.; Di Lazzaro, V.; Fox, P.T.; et al. Transcranial magnetic stimulation of the brain: What is stimulated?—A consensus and critical position paper. Clin. Neurophysiol. 2022, 140, 59–97. [Google Scholar] [CrossRef]
- Konstantinou, G.; Hui, J.; Ortiz, A.; Kaster, T.S.; Downar, J.; Blumberger, D.M.; Daskalakis, Z.J. Repetitive transcranial magnetic stimulation (rTMS) in bipolar disorder: A systematic review. Bipolar Disord. 2022, 24, 10–26. [Google Scholar] [CrossRef]
- Ameis, S.H.; Blumberger, D.M.; Croarkin, P.E.; Mabbott, D.J.; Lai, M.C.; Desarkar, P.; Szatmari, P.; Daskalakis, Z.J. Treatment of Executive Function Deficits in autism spectrum disorder with repetitive transcranial magnetic stimulation: A double-blind, sham-controlled, pilot trial. Brain Stimul. 2020, 13, 539–547. [Google Scholar] [CrossRef]
- Paulus, T.; Wernecke, L.; Lundie, A.; Friedrich, J.; Verrel, J.; Rawish, T.; Weissbach, A.; Frings, C.; Beste, C.; Bäumer, T.; et al. The Role of the Left Inferior Parietal Cortex in Gilles de la Tourette Syndrome-An rTMS Study. Biomedicines 2023, 11, 980. [Google Scholar] [CrossRef]
- Croarkin, P.E.; MacMaster, F.P. Transcranial Magnetic Stimulation for Adolescent Depression. Child. Adolesc. Psychiatr. Clin. N. Am. 2019, 28, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Croarkin, P.E.; Nakonezny, P.A.; Deng, Z.D.; Romanowicz, M.; Voort, J.L.V.; Camsari, D.D.; Schak, K.M.; Port, J.D.; Lewis, C.P. High-frequency repetitive TMS for suicidal ideation in adolescents with depression. J. Affect. Disord. 2018, 239, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Croarkin, P.E.; Wall, C.A.; Lee, J. Applications of transcranial magnetic stimulation (TMS) in child and adolescent psychiatry. Int. Rev. Psychiatry 2011, 23, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Walter, G.; Tormos, J.M.; Israel, J.A.; Pascual-Leone, A. Transcranial magnetic stimulation in young persons: A review of known cases. J. Child Adolesc. Psychopharmacol. 2001, 11, 69–75. [Google Scholar] [CrossRef]
- Burke, M.J.; Fried, P.J.; Pascual-Leone, A. Transcranial magnetic stimulation: Neurophysiological and clinical applications. Handb. Clin. Neurol. 2019, 163, 73–92. [Google Scholar] [CrossRef]
- Jannati, A.; Oberman, L.M.; Rotenberg, A.; Pascual-Leone, A. Assessing the mechanisms of brain plasticity by transcranial magnetic stimulation. Neuropsychopharmacology 2023, 48, 191–208. [Google Scholar] [CrossRef]
- Salehinejad, M.A.; Siniatchkin, M. Safety of noninvasive brain stimulation in children. Curr. Opin. Psychiatry 2024, 37, 78–86. [Google Scholar] [CrossRef]
- Bejenaru, A.M.; Malhi, N.K. Use of Repetitive Transcranial Magnetic Stimulation in Child Psychiatry. Innov. Clin. Neurosci. 2022, 19, 11–22. [Google Scholar]
- Cullen, K.R.; Jasberg, S.; Nelson, B.; Klimes-Dougan, B.; Lim, K.O.; Croarkin, P.E. Seizure Induced by Deep Transcranial Magnetic Stimulation in an Adolescent with Depression. J. Child. Adolesc. Psychopharmacol. 2016, 26, 637–641. [Google Scholar] [CrossRef]
- Seewoo, B.J.; Hennessy, L.A.; Jaeschke, L.A.; Mackie, L.A.; Etherington, S.J.; Dunlop, S.A.; Croarkin, P.E.; Rodger, J. A Preclinical Study of Standard Versus Accelerated Transcranial Magnetic Stimulation for Depression in Adolescents. J. Child. Adolesc. Psychopharmacol. 2022, 32, 187–193. [Google Scholar] [CrossRef]
- Noda, Y.; Daskalakis, Z.J.; Downar, J.; Croarkin, P.E.; Fitzgerald, P.B.; Blumberger, D.M. Magnetic seizure therapy in an adolescent with refractory bipolar depression: A case report. Neuropsychiatr. Dis. Treat. 2014, 10, 2049–2055. [Google Scholar] [CrossRef]
- Lewis, C.P.; Farzan, F.; Croarkin, P.E. Chapter 7—TMS in Child and Adolescent Major Depression. In Neurotechnology and Brain Stimulation in Pediatric Psychiatric and Neurodevelopmental Disorders; Oberman, L.M., Enticott, P.G., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 147–188. [Google Scholar] [CrossRef]
- Mantovani, A.; Lisanby, S.H.; Pieraccini, F.; Ulivelli, M.; Castrogiovanni, P.; Rossi, S. Repetitive transcranial magnetic stimulation (rTMS) in the treatment of obsessive-compulsive disorder (OCD) and Tourette’s syndrome (TS). Int. J. Neuropsychopharmacol. 2006, 9, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Jardri, R.; Lucas, B.; Delevoye-Turrell, Y.; Delmaire, C.; Delion, P.; Thomas, P.; Goeb, J.L. An 11-year-old boy with drug-resistant schizophrenia treated with temporo-parietal rTMS. Mol. Psychiatry 2007, 12, 320. [Google Scholar] [CrossRef] [PubMed]
- Sachdev, P.S.; Loo, C.K.; Mitchell, P.B.; McFarquhar, T.F.; Malhi, G.S. Repetitive transcranial magnetic stimulation for the treatment of obsessive compulsive disorder: A double-blind controlled investigation. Psychol. Med. 2007, 37, 1645–1649. [Google Scholar] [CrossRef]
- Niederhofer, H. Effectiveness of the repetitive Transcranical Magnetic Stimulation (rTMS) of 1 Hz for Attention-Deficit Hyperactivity Disorder (ADHD). Psychiatr. Danub. 2008, 20, 91–92. [Google Scholar] [PubMed]
- Prasko, J.; Pasková, B.; Záleský, R.; Novák, T.; Kopecek, M.; Bares, M.; Horácek, J. The effect of repetitive transcranial magnetic stimulation (rTMS) on symptoms in obsessive compulsive disorder. A randomized, double blind, sham controlled study. Neuro Endocrinol. Lett. 2006, 27, 327–332. [Google Scholar] [PubMed]
- Sokhadze, E.M.; El-Baz, A.; Baruth, J.; Mathai, G.; Sears, L.; Casanova, M.F. Effects of low frequency repetitive transcranial magnetic stimulation (rTMS) on gamma frequency oscillations and event-related potentials during processing of illusory figures in autism. J. Autism Dev. Disord. 2009, 39, 619–634. [Google Scholar] [CrossRef]
- Baruth, J.M.; Casanova, M.F.; El-Baz, A.; Horrell, T.; Mathai, G.; Sears, L.; Sokhadze, E. Low-Frequency Repetitive Transcranial Magnetic Stimulation (rTMS) Modulates Evoked-Gamma Frequency Oscillations in Autism Spectrum Disorder (ASD). J. Neurother. 2010, 14, 179–194. [Google Scholar] [CrossRef]
- Boggio, P.S.; Rocha, M.; Oliveira, M.O.; Fecteau, S.; Cohen, R.B.; Campanhã, C.; Ferreira-Santos, E.; Meleiro, A.; Corchs, F.; Zaghi, S.; et al. Noninvasive brain stimulation with high-frequency and low-intensity repetitive transcranial magnetic stimulation treatment for posttraumatic stress disorder. J. Clin. Psychiatry 2010, 71, 992–999. [Google Scholar] [CrossRef]
- Kwon, H.J.; Lim, W.S.; Lim, M.H.; Lee, S.J.; Hyun, J.K.; Chae, J.H.; Paik, K.C. 1-Hz low frequency repetitive transcranial magnetic stimulation in children with Tourette’s syndrome. Neurosci. Lett. 2011, 492, 1–4. [Google Scholar] [CrossRef]
- Casanova, M.F.; Baruth, J.M.; El-Baz, A.; Tasman, A.; Sears, L.; Sokhadze, E. Repetitive Transcranial Magnetic Stimulation (rTMS) Modulates Event-Related Potential (ERP) Indices of Attention in Autism. Transl. Neurosci. 2012, 3, 170–180. [Google Scholar] [CrossRef]
- Gomes, P.V.; Brasil-Neto, J.P.; Allam, N.; Rodrigues de Souza, E. A randomized, double-blind trial of repetitive transcranial magnetic stimulation in obsessive-compulsive disorder with three-month follow-up. J. Neuropsychiatry Clin. Neurosci. 2012, 24, 437–443. [Google Scholar] [CrossRef]
- Weaver, L.; Rostain, A.L.; Mace, W.; Akhtar, U.; Moss, E.; O’Reardon, J.P. Transcranial magnetic stimulation (TMS) in the treatment of attention-deficit/hyperactivity disorder in adolescents and young adults: A pilot study. J. ECT 2012, 28, 98–103. [Google Scholar] [CrossRef]
- Le, K.; Liu, L.; Sun, M.; Hu, L.; Xiao, N. Transcranial magnetic stimulation at 1 Hertz improves clinical symptoms in children with Tourette syndrome for at least 6 months. J. Clin. Neurosci. Off. J. Neurosurg. Soc. Australas. 2013, 20, 257–262. [Google Scholar] [CrossRef]
- Casanova, M.F.; Hensley, M.K.; Sokhadze, E.M.; El-Baz, A.S.; Wang, Y.; Li, X.; Sears, L. Effects of weekly low-frequency rTMS on autonomic measures in children with autism spectrum disorder. Front. Hum. Neurosci. 2014, 8, 851. [Google Scholar] [CrossRef] [PubMed]
- Gómez, L.; Vidal, B.; Morales, L.; Báez, M.; Maragoto, C.; Galvizu, R.; Vera, H.; Cabrera, I.; Zaldívar, M.; Sánchez, A. Low frequency repetitive transcranial magnetic stimulation in children with attention deficit/hyperactivity disorder. Preliminary results. Brain Stimul. 2014, 7, 760–762. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.W.; Maloney, T.; Gilbert, D.L.; Dixon, S.G.; Horn, P.S.; Huddleston, D.A.; Eaton, K.; Vannest, J. Functional MRI-navigated repetitive transcranial magnetic stimulation over supplementary motor area in chronic tic disorders. Brain Stimul. 2014, 7, 212–218. [Google Scholar] [CrossRef]
- Sokhadze, E.M.; El-Baz, A.S.; Sears, L.L.; Opris, I.; Casanova, M.F. rTMS neuromodulation improves electrocortical functional measures of information processing and behavioral responses in autism. Front. Syst. Neurosci. 2014, 8, 134. [Google Scholar] [CrossRef]
- Blanco-Lopez, M.J.; Cudeiro-Blanco, J.; Iglesias, G.; Gago, A.; Cudeiro, J. A simple, repeated rTMS protocol effectively removes auditory verbal hallucinations in a single patient study. Schizophr. Res. 2016, 172, 224–225. [Google Scholar] [CrossRef]
- Cao, P.; Xing, J.; Cao, Y.; Cheng, Q.; Sun, X.; Kang, Q.; Dai, L.; Zhou, X.; Song, Z. Clinical effects of repetitive transcranial magnetic stimulation combined with atomoxetine in the treatment of attention-deficit hyperactivity disorder. Neuropsychiatr. Dis. Treat. 2018, 14, 3231–3240. [Google Scholar] [CrossRef]
- Sokhadze, E.M.; Lamina, E.V.; Casanova, E.L.; Kelly, D.P.; Opris, I.; Tasman, A.; Casanova, M.F. Exploratory Study of rTMS Neuromodulation Effects on Electrocortical Functional Measures of Performance in an Oddball Test and Behavioral Symptoms in Autism. Front. Syst. Neurosci. 2018, 12, 20. [Google Scholar] [CrossRef]
- Rosenich, E.; Gill, S.; Clarke, P.; Paterson, T.; Hahn, L.; Galletly, C. Does rTMS reduce depressive symptoms in young people who have not responded to antidepressants? Early Interv. Psychiatry 2019, 13, 1129–1135. [Google Scholar] [CrossRef]
- Zhang, T.; Zhu, J.; Xu, L.; Tang, X.; Cui, H.; Wei, Y.; Wang, Y.; Hu, Q.; Qian, Z.; Liu, X.; et al. Add-on rTMS for the acute treatment of depressive symptoms is probably more effective in adolescents than in adults: Evidence from real-world clinical practice. Brain Stimul. 2019, 12, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Croarkin, P.E.; Elmaadawi, A.Z.; Aaronson, S.T.; Schrodt, G.R., Jr.; Holbert, R.C.; Verdoliva, S.; Heart, K.L.; Demitrack, M.A.; Strawn, J.R. Left prefrontal transcranial magnetic stimulation for treatment-resistant depression in adolescents: A double-blind, randomized, sham-controlled trial. Neuropsychopharmacology 2021, 46, 462–469. [Google Scholar] [CrossRef]
- Kahl, C.K.; Kirton, A.; Pringsheim, T.; Croarkin, P.E.; Zewdie, E.; Swansburg, R.; Wrightson, J.; Langevin, L.M.; Macmaster, F.P. Bilateral transcranial magnetic stimulation of the supplementary motor area in children with Tourette syndrome. Dev. Med. Child. Neurol. 2021, 63, 808–815. [Google Scholar] [CrossRef] [PubMed]
- Ni, H.C.; Chen, Y.L.; Chao, Y.P.; Wu, C.T.; Wu, Y.Y.; Liang, S.H.; Chin, W.C.; Chou, T.L.; Gau, S.S.; Huang, Y.Z.; et al. Intermittent theta burst stimulation over the posterior superior temporal sulcus for children with autism spectrum disorder: A 4-week randomized blinded controlled trial followed by another 4-week open-label intervention. Autism 2021, 25, 1279–1294. [Google Scholar] [CrossRef]
- Wang, Y.; Yue, J.; Lou, Y.-T.; Lin, Q.-Y.; Zang, Y.-F.; Wang, J.; Feng, J.-H. Abnormal individualized functional connectivity: A potential stimulation target for pediatric tourette syndrome. Clin. Neurophysiol. 2024, 168, 25–33. [Google Scholar] [CrossRef]
- Garzon, J.F.; Elmaadawi, A.Z.; Aaronson, S.T.; Schrodt, G.R., Jr.; Holbert, R.C.; Zuckerman, S.; Demitrack, M.A.; Strawn, J.R.; Croarkin, P.E. A Multisite, 6-Month, Open-Label Study of Maintenance Transcranial Magnetic Stimulation for Adolescents with Treatment-Resistant Depression. J. Child. Adolesc. Psychopharmacol. 2025, 35, 99–108. [Google Scholar] [CrossRef]
- Wang, J.; Yue, J.; Wang, Y.; Li, X.L.; Deng, X.P.; Lou, Y.T.; Gao, L.Y.; Chen, X.Q.; Su, Q.Y.; Zang, Y.F.; et al. Function-Specific Localization in the Supplementary Motor Area: A Potential Effective Target for Tourette Syndrome. CNS Neurosci. Ther. 2025, 31, e70280. [Google Scholar] [CrossRef]
- Elmaghraby, R.; Blank, E.; Miyakoshi, M.; Gilbert, D.L.; Wu, S.W.; Larsh, T.; Westerkamp, G.; Liu, Y.; Horn, P.S.; Erickson, C.A.; et al. Probing the Neurodynamic Mechanisms of Cognitive Flexibility in Depressed Individuals with Autism Spectrum Disorder. J. Child. Adolesc. Psychopharmacol. 2025, 35, 231–243. [Google Scholar] [CrossRef]
- Di Lazzaro, V.; Pilato, F.; Oliviero, A.; Dileone, M.; Saturno, E.; Mazzone, P.; Insola, A.; Profice, P.; Ranieri, F.; Capone, F. Origin of facilitation of motor-evoked potentials after paired magnetic stimulation: Direct recording of epidural activity in conscious humans. J. Neurophysiol. 2006, 96, 1765–1771. [Google Scholar] [CrossRef] [PubMed]
- Cash, R.F.; Noda, Y.; Zomorrodi, R.; Radhu, N.; Farzan, F.; Rajji, T.K.; Fitzgerald, P.B.; Chen, R.; Daskalakis, Z.J.; Blumberger, D.M. Characterization of Glutamatergic and GABA(A)-Mediated Neurotransmission in Motor and Dorsolateral Prefrontal Cortex Using Paired-Pulse TMS-EEG. Neuropsychopharmacology 2017, 42, 502–511. [Google Scholar] [CrossRef] [PubMed]
- Lewis, C.P.; Nakonezny, P.A.; Ameis, S.H.; Vande Voort, J.L.; Husain, M.M.; Emslie, G.J.; Daskalakis, Z.J.; Croarkin, P.E. Cortical inhibitory and excitatory correlates of depression severity in children and adolescents. J. Affect. Disord. 2016, 190, 566–575. [Google Scholar] [CrossRef] [PubMed]
- Petrichella, S.; Johnson, N.; He, B. The influence of corticospinal activity on TMS-evoked activity and connectivity in healthy subjects: A TMS-EEG study. PLoS ONE 2017, 12, e0174879. [Google Scholar] [CrossRef]
- Oberman, L.; Ifert-Miller, F.; Najib, U.; Bashir, S.; Woollacott, I.; Gonzalez-Heydrich, J.; Picker, J.; Rotenberg, A.; Pascual-Leone, A. Transcranial magnetic stimulation provides means to assess cortical plasticity and excitability in humans with fragile x syndrome and autism spectrum disorder. Front. Synaptic Neurosci. 2010, 2, 26. [Google Scholar] [CrossRef]
- Klomjai, W.; Katz, R.; Lackmy-Vallée, A. Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS). Ann. Phys. Rehabil. Med. 2015, 58, 208–213. [Google Scholar] [CrossRef]
- Burke, L.M.; Jeukendrup, A.E.; Jones, A.M.; Mooses, M. Contemporary Nutrition Strategies to Optimize Performance in Distance Runners and Race Walkers. Int. J. Sport. Nutr. Exerc. Metab. 2019, 29, 117–129. [Google Scholar] [CrossRef]
- Baeken, C.; Lefaucheur, J.P.; Van Schuerbeek, P. The impact of accelerated high frequency rTMS on brain neurochemicals in treatment-resistant depression: Insights from (1)H MR spectroscopy. Clin. Neurophysiol. 2017, 128, 1664–1672. [Google Scholar] [CrossRef]
- Chung, D.T.; Ryan, C.J.; Hadzi-Pavlovic, D.; Singh, S.P.; Stanton, C.; Large, M.M. Suicide Rates After Discharge From Psychiatric Facilities: A Systematic Review and Meta-analysis. JAMA Psychiatry 2017, 74, 694–702. [Google Scholar] [CrossRef]
- Caulfield, K.A.; Lopez, J.W.; Cox, C.E.; Roberts, D.R.; McTeague, L.M. A new, open-source 3D-printed transcranial magnetic stimulation (TMS) coil tracker holder for double blind, sham-controlled neuronavigation studies. Brain Stimul. 2020, 13, 600–602. [Google Scholar] [CrossRef]
- Billnitzer, A.; Jankovic, J. Current Management of Tics and Tourette Syndrome: Behavioral, Pharmacologic, and Surgical Treatments. Neurother. J. Am. Soc. Exp. Neurother. 2020, 17, 1681–1693. [Google Scholar] [CrossRef] [PubMed]
- Dyke, K.; Jackson, G.; Jackson, S. Non-invasive brain stimulation as therapy: Systematic review and recommendations with a focus on the treatment of Tourette syndrome. Exp. Brain Res. 2022, 240, 341–363. [Google Scholar] [CrossRef]
- Zhao, Y.; He, Z.; Luo, W.; Yu, Y.; Chen, J.; Cai, X.; Gao, J.; Li, L.; Gao, Q.; Chen, H.; et al. Effect of intermittent theta burst stimulation on suicidal ideation and depressive symptoms in adolescent depression with suicide attempt: A randomized sham-controlled study. J. Affect. Disord. 2023, 325, 618–626. [Google Scholar] [CrossRef] [PubMed]
- Guyer, A.E.; Silk, J.S.; Nelson, E.E. The neurobiology of the emotional adolescent: From the inside out. Neurosci. Biobehav. Rev. 2016, 70, 74–85. [Google Scholar] [CrossRef] [PubMed]
- Lewis, C.P.; Nakonezny, P.A.; Blacker, C.J.; Vande Voort, J.L.; Port, J.D.; Worrell, G.A.; Jo, H.J.; Daskalakis, Z.J.; Croarkin, P.E. Cortical inhibitory markers of lifetime suicidal behavior in depressed adolescents. Neuropsychopharmacology 2018, 43, 1822–1831. [Google Scholar] [CrossRef]
- Lamanna, J.; Meldolesi, J. Autism Spectrum Disorder: Brain Areas Involved, Neurobiological Mechanisms, Diagnoses and Therapies. Int. J. Mol. Sci. 2024, 25, 2433. [Google Scholar] [CrossRef]
- Salari, N.; Rasoulpoor, S.; Rasoulpoor, S.; Shohaimi, S.; Jafarpour, S.; Abdoli, N.; Khaledi-Paveh, B.; Mohammadi, M. The global prevalence of autism spectrum disorder: A comprehensive systematic review and meta-analysis. Ital. J. Pediatr. 2022, 48, 112. [Google Scholar] [CrossRef]
- Maenner, M.J.; Warren, Z.; Williams, A.R.; Amoakohene, E.; Bakian, A.V.; Bilder, D.A.; Durkin, M.S.; Fitzgerald, R.T.; Furnier, S.M.; Hughes, M.M.; et al. Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2020. Morbidity and mortality weekly report. Surveill. Summ. 2023, 72, 1–14. [Google Scholar] [CrossRef]
- Ji, Y.; Xu, M.; Liu, X.; Dai, Y.; Zhou, L.; Li, F.; Zhang, L. Temporopolar volumes are associated with the severity of social impairment and language development in children with autism spectrum disorder with developmental delay. Front. Psychiatry 2022, 13, 1072272. [Google Scholar] [CrossRef]
- Li, X.; Zhang, K.; He, X.; Zhou, J.; Jin, C.; Shen, L.; Gao, Y.; Tian, M.; Zhang, H. Structural, Functional, and Molecular Imaging of Autism Spectrum Disorder. Neurosci. Bull. 2021, 37, 1051–1071. [Google Scholar] [CrossRef]
- Alkhatib, A.; Darabseh, R. Mirror Neuron Cells, Autism, Language Deficit, and the Potential Role of Artificial Intelligence. J. Ecohumanism 2024, 3. [Google Scholar] [CrossRef]
- Yi, T.; Liu, Y.; Wei, W.; He, S.; Jin, K. Microstructural abnormalities of the right hemisphere in preschool autism spectrum disorders. J. Psychiatr. Res. 2024, 180, 258–264. [Google Scholar] [CrossRef]
- Herbert, M.R.; Harris, G.J.; Adrien, K.T.; Ziegler, D.A.; Makris, N.; Kennedy, D.N.; Lange, N.T.; Chabris, C.F.; Bakardjiev, A.; Hodgson, J.; et al. Abnormal asymmetry in language association cortex in autism. Ann. Neurol. 2002, 52, 588–596. [Google Scholar] [CrossRef]
- Wang, L.; Wang, B.; Wu, C.; Wang, J.; Sun, M. Autism Spectrum Disorder: Neurodevelopmental Risk Factors, Biological Mechanism, and Precision Therapy. Int. J. Mol. Sci. 2023, 24, 1819. [Google Scholar] [CrossRef] [PubMed]
- Ni, H.C.; Chen, Y.L.; Chao, Y.P.; Wu, C.T.; Chen, R.S.; Chou, T.L.; Gau, S.S.; Lin, H.Y. A lack of efficacy of continuous theta burst stimulation over the left dorsolateral prefrontal cortex in autism: A double blind randomized sham-controlled trial. Autism Res. 2023, 16, 1247–1262. [Google Scholar] [CrossRef] [PubMed]
- Blank, E.; Gilbert, D.L.; Wu, S.W.; Larsh, T.; Elmaghraby, R.; Liu, R.; Smith, E.; Westerkamp, G.; Liu, Y.; Horn, P.S.; et al. Accelerated Theta Burst Transcranial Magnetic Stimulation for Refractory Depression in Autism Spectrum Disorder. J. Autism Dev. Disord. 2025, 55, 940–954. [Google Scholar] [CrossRef]
- Polanczyk, G.V.; Salum, G.A.; Sugaya, L.S.; Caye, A.; Rohde, L.A. Annual research review: A meta-analysis of the worldwide prevalence of mental disorders in children and adolescents. J. Child Psychol. Psychiatry Allied Discip. 2015, 56, 345–365. [Google Scholar] [CrossRef] [PubMed]
- Danielson, M.L.; Bitsko, R.H.; Ghandour, R.M.; Holbrook, J.R.; Kogan, M.D.; Blumberg, S.J. Prevalence of Parent-Reported ADHD Diagnosis and Associated Treatment Among U.S. Children and Adolescents, 2016. J. Clin. Child Adolesc. Psychol. 2018, 47, 199–212. [Google Scholar] [CrossRef]
- Sonuga-Barke, E.J. Causal models of attention-deficit/hyperactivity disorder: From common simple deficits to multiple developmental pathways. Biol. Psychiatry 2005, 57, 1231–1238. [Google Scholar] [CrossRef]
- Gilbert, D.L.; Isaacs, K.M.; Augusta, M.; Macneil, L.K.; Mostofsky, S.H. Motor cortex inhibition: A marker of ADHD behavior and motor development in children. Neurology 2011, 76, 615–621. [Google Scholar] [CrossRef]
- Kieling, C.; Buchweitz, C.; Caye, A.; Silvani, J.; Ameis, S.H.; Brunoni, A.R.; Cost, K.T.; Courtney, D.B.; Georgiades, K.; Merikangas, K.R.; et al. Worldwide Prevalence and Disability From Mental Disorders Across Childhood and Adolescence: Evidence From the Global Burden of Disease Study. JAMA Psychiatry 2024, 81, 347–356. [Google Scholar] [CrossRef]
- Kaushik, A.; Kostaki, E.; Kyriakopoulos, M. The stigma of mental illness in children and adolescents: A systematic review. Psychiatry Res. 2016, 243, 469–494. [Google Scholar] [CrossRef]
- Wu, S.W.; Gilbert, D.L.; Shahana, N.; Huddleston, D.A.; Mostofsky, S.H. Transcranial magnetic stimulation measures in attention-deficit/hyperactivity disorder. Pediatr. Neurol. 2012, 47, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Mohan, A.; Kostelecky, S.M.; Sivakumar, A.; Khalil, M.; Clark, H. Improving adolescent wellbeing is an urgent global priority. BMJ 2022, 379, o2551. [Google Scholar] [CrossRef] [PubMed]
- Wall, C.A.; Croarkin, P.E.; Sim, L.A.; Husain, M.M.; Janicak, P.G.; Kozel, F.A.; Emslie, G.J.; Dowd, S.M.; Sampson, S.M. Adjunctive use of repetitive transcranial magnetic stimulation in depressed adolescents: A prospective, open pilot study. J. Clin. Psychiatry 2011, 72, 1263–1269. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, J.B.; Bloch, M.H. Antidepressants for Pediatric Patients. Curr. Psychiatr. 2019, 18, 26–42f. [Google Scholar]
- Milev, R.V.; Giacobbe, P.; Kennedy, S.H.; Blumberger, D.M.; Daskalakis, Z.J.; Downar, J.; Modirrousta, M.; Patry, S.; Vila-Rodriguez, F.; Lam, R.W.; et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) 2016 Clinical Guidelines for the Management of Adults with Major Depressive Disorder: Section 4. Neurostimulation Treatments. Can. J. Psychiatry 2016, 61, 561–575. [Google Scholar] [CrossRef]
- Lewis, C.P.; Nakonezny, P.A.; Sonmez, A.I.; Ozger, C.; Garzon, J.F.; Camsari, D.D.; Yuruk, D.; Romanowicz, M.; Shekunov, J.; Zaccariello, M.J.; et al. A Dose-Finding, Biomarker Validation, and Effectiveness Study of Transcranial Magnetic Stimulation for Adolescents With Depression. J. Am. Acad. Child. Adolesc. Psychiatry 2024. [Google Scholar] [CrossRef]
- NeuroStar® Advanced Therapy Receives FDA Clearance as a First-Line Add-On Treatment for Adolescents with Depression. In GlobeNewswire; News release, 25 March 2024; Vol. 2025. Available online: https://ir.neuronetics.com/news-releases/news-release-details/neurostarr-advanced-therapy-receives-fda-clearance-first-line (accessed on 31 August 2025).
- Zhang, J.J.Q.; Fong, K.N.K.; Ouyang, R.G.; Siu, A.M.H.; Kranz, G.S. Effects of repetitive transcranial magnetic stimulation (rTMS) on craving and substance consumption in patients with substance dependence: A systematic review and meta-analysis. Addiction 2019, 114, 2137–2149. [Google Scholar] [CrossRef]
- Qiu, H.; Liang, K.; Lu, L.; Gao, Y.; Li, H.; Hu, X.; Xing, H.; Huang, X.; Gong, Q. Efficacy and safety of repetitive transcranial magnetic stimulation in children and adolescents with depression: A systematic review and preliminary meta-analysis. J. Affect. Disord. 2023, 320, 305–312. [Google Scholar] [CrossRef]
- Thai, M.; Nair, A.U.; Klimes-Dougan, B.; Albott, C.S.; Silamongkol, T.; Corkrum, M.; Hill, D.; Roemer, J.W.; Lewis, C.P.; Croarkin, P.E.; et al. Deep transcranial magnetic stimulation for adolescents with treatment-resistant depression: A preliminary dose-finding study exploring safety and clinical effectiveness. J. Affect. Disord. 2024, 354, 589–600. [Google Scholar] [CrossRef]
- Chen, H.; Hu, X.; Gao, J.; Han, H.; Wang, X.; Xue, C. Early Effects of Repetitive Transcranial Magnetic Stimulation Combined With Sertraline in Adolescents With First-Episode Major Depressive Disorder. Front. Psychiatry 2022, 13, 853961. [Google Scholar] [CrossRef]
- Zhong, Y.; Lai, S.; Hu, A.; Liao, Y.; Li, Y.; Zhang, Z.; Zhang, X.Y. Sex differences in prevalence and clinical correlates of internet addiction among Chinese adolescents with schizophrenia. BMC Psychiatry 2024, 24, 258. [Google Scholar] [CrossRef]
- Grover, S.; Avasthi, A. Clinical Practice Guidelines for the Management of Schizophrenia in Children and Adolescents. Indian. J. Psychiatry 2019, 61, 277–293. [Google Scholar] [CrossRef]
- Aleman, A.; Sommer, I.E.; Kahn, R.S. Efficacy of slow repetitive transcranial magnetic stimulation in the treatment of resistant auditory hallucinations in schizophrenia: A meta-analysis. J. Clin. Psychiatry 2007, 68, 416–421. [Google Scholar] [CrossRef]
- Freitas, C.; Fregni, F.; Pascual-Leone, A. Meta-analysis of the effects of repetitive transcranial magnetic stimulation (rTMS) on negative and positive symptoms in schizophrenia. Schizophr. Res. 2009, 108, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Hoppen, T.H.; Priebe, S.; Vetter, I.; Morina, N. Global burden of post-traumatic stress disorder and major depression in countries affected by war between 1989 and 2019: A systematic review and meta-analysis. BMJ Glob. Health 2021, 6, e006303. [Google Scholar] [CrossRef] [PubMed]
- Walton, D.; Spencer, D.C.; Nevitt, S.J.; Michael, B.D. Transcranial magnetic stimulation for the treatment of epilepsy. Cochrane Database Syst. Rev. 2021, 4, Cd011025. [Google Scholar] [CrossRef] [PubMed]
- Mehta, D.D.; Siddiqui, S.; Ward, H.B.; Steele, V.R.; Pearlson, G.D.; George, T.P. Functional and structural effects of repetitive transcranial magnetic stimulation (rTMS) for the treatment of auditory verbal hallucinations in schizophrenia: A systematic review. Schizophr. Res. 2024, 267, 86–98. [Google Scholar] [CrossRef]
- Cohen, H.; Kaplan, Z.; Kotler, M.; Kouperman, I.; Moisa, R.; Grisaru, N. Repetitive transcranial magnetic stimulation of the right dorsolateral prefrontal cortex in posttraumatic stress disorder: A double-blind, placebo-controlled study. Am. J. Psychiatry 2004, 161, 515–524. [Google Scholar] [CrossRef]
- Watts, B.V.; Landon, B.; Groft, A.; Young-Xu, Y. A sham controlled study of repetitive transcranial magnetic stimulation for posttraumatic stress disorder. Brain Stimul. 2012, 5, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Oznur, T.; Akarsu, S.; Celik, C.; Bolu, A.; Ozdemir, B.; Akcay, B.D.; Ozselek, S.; Bozkurt, A.; Ozmenler, K.N. Is transcranial magnetic stimulation effective in treatment-resistant combat related posttraumatic stress disorder? Neurosci. J. 2014, 19, 29–32. [Google Scholar]
- Fernández de la Cruz, L.; Isomura, K.; Lichtenstein, P.; Larsson, H.; Kuja-Halkola, R.; Chang, Z.; D’Onofrio, B.M.; Brikell, I.; Rück, C.; Sidorchuk, A.; et al. All cause and cause specific mortality in obsessive-compulsive disorder: Nationwide matched cohort and sibling cohort study. BMJ 2024, 384, e077564. [Google Scholar] [CrossRef] [PubMed]
- Trapp, N.T.; Purgianto, A.; Taylor, J.J.; Singh, M.K.; Oberman, L.M.; Mickey, B.J.; Youssef, N.A.; Solzbacher, D.; Zebley, B.; Cabrera, L.Y.; et al. Consensus review and considerations on TMS to treat depression: A comprehensive update endorsed by the National Network of Depression Centers, the Clinical TMS Society, and the International Federation of Clinical Neurophysiology. Clin. Neurophysiol. 2025, 170, 206–233. [Google Scholar] [CrossRef]
- Younus, S.; Havel, L.; Stiede, J.T.; Rast, C.E.; Saxena, K.; Goodman, W.K.; Storch, E.A. Pediatric Treatment-Resistant Obsessive Compulsive Disorder: Treatment Options and Challenges. Paediatr. Drugs 2024, 26, 397–409. [Google Scholar] [CrossRef]
- Blom, R.M.; Figee, M.; Vulink, N.; Denys, D. Update on repetitive transcranial magnetic stimulation in obsessive-compulsive disorder: Different targets. Curr. Psychiatry Rep. 2011, 13, 289–294. [Google Scholar] [CrossRef]
- Chen, S.C.; Bluhm, R.; Achtyes, E.D.; McCright, A.M.; Cabrera, L.Y. Looking through the lens of stigma: Understanding and anticipating concerns about the responsible development and use of psychiatric electroceutical interventions (PEIs). SSM-Ment. Health 2023, 4, 100261. [Google Scholar] [CrossRef]
- Mills, K.L.; Goddings, A.L.; Clasen, L.S.; Giedd, J.N.; Blakemore, S.J. The developmental mismatch in structural brain maturation during adolescence. Dev. Neurosci. 2014, 36, 147–160. [Google Scholar] [CrossRef]
- Paus, T.; Keshavan, M.; Giedd, J.N. Why do many psychiatric disorders emerge during adolescence? Nat. Rev. Neurosci. 2008, 9, 947–957. [Google Scholar] [CrossRef]
- Allen, C.H.; Kluger, B.M.; Buard, I. Safety of Transcranial Magnetic Stimulation in Children: A Systematic Review of the Literature. Pediatr. Neurol. 2017, 68, 3–17. [Google Scholar] [CrossRef]
- Garvey, M.A.; Gilbert, D.L. Transcranial magnetic stimulation in children. Eur. J. Paediatr. Neurol. 2004, 8, 7–19. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Shahawy, O.; Salehi, M.; Saeidi, M.; Jaka, S.; Lopez, J.; Yakhchalian, P.; Abbasi-Kangevari, M.; Gunturu, S. Exploring Applications of Transcranial Magnetic Stimulation in Child and Adolescent Psychiatry: A Narrative Review. J. Clin. Med. 2025, 14, 6513. https://doi.org/10.3390/jcm14186513
El-Shahawy O, Salehi M, Saeidi M, Jaka S, Lopez J, Yakhchalian P, Abbasi-Kangevari M, Gunturu S. Exploring Applications of Transcranial Magnetic Stimulation in Child and Adolescent Psychiatry: A Narrative Review. Journal of Clinical Medicine. 2025; 14(18):6513. https://doi.org/10.3390/jcm14186513
Chicago/Turabian StyleEl-Shahawy, Omar, Mona Salehi, Mahdieh Saeidi, Sanobar Jaka, Julia Lopez, Pegah Yakhchalian, Mohsen Abbasi-Kangevari, and Sasidhar Gunturu. 2025. "Exploring Applications of Transcranial Magnetic Stimulation in Child and Adolescent Psychiatry: A Narrative Review" Journal of Clinical Medicine 14, no. 18: 6513. https://doi.org/10.3390/jcm14186513
APA StyleEl-Shahawy, O., Salehi, M., Saeidi, M., Jaka, S., Lopez, J., Yakhchalian, P., Abbasi-Kangevari, M., & Gunturu, S. (2025). Exploring Applications of Transcranial Magnetic Stimulation in Child and Adolescent Psychiatry: A Narrative Review. Journal of Clinical Medicine, 14(18), 6513. https://doi.org/10.3390/jcm14186513