Testing the Association Between Low Back Pain Intensity and Core Muscle Strength in Postpartum Women with Different Delivery Modes: An Analytical Cross-Sectional Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Variables of Interest
2.2. Materials for Evaluation
- 1.
- Visual Analogue Scale (VAS): this scale was applied to estimate the severity or intensity score of NSLBP measured by a 10 cm continuous scale for women in the three groups.
- 2.
- Pressure Biofeedback Unit (PBU): It was used to measure the maximal voluntary isometric contraction (MVIC) of TrA and LM muscles for women in the three groups.
2.3. Data Collection
2.4. Statistical Analysis
- -
- Quantitative descriptive statistics data: The mean and standard deviation (SD) for the following variables were determined: physical characteristics of subjects (age, BMI, and Parity or number of deliveries), VAS, TrA MVIC, and LM MVIC.
- -
- The Unpaired t-test: It was utilized for the mean comparison of the normally distributed variables (age and BMI) between the two groups.
- -
- The Mann–Whitney U test: It was utilized for the mean rank comparison of the non-normally distributed variables (Parity, VAS, TrA MVIC, and LM MVIC) between the two groups.
- -
- Spearman’s Correlation test: This analysis measured the association between NSLBP VAS scores and each core muscle strength in every group.
- -
- Multilinear Regression Analysis: This analysis examined the relationship between Age, BMI, Parity, TrA MVIC, LM MVIC, and VAS scores of NSLBP.
- -
- At the 0.05 level of probability, all statistical analyses were significant (i.e., p ≤ 0.05).
3. Results
3.1. Physical Characteristics of Participants
3.2. The Mann–Whitney U Test
3.2.1. The Visual Analogue Scale (VAS)
3.2.2. Transversus Abdominis (TrA) and Lumbar Multifidus (LM) Maximum Voluntary Isometric Contraction (MVIC)
3.3. Spearman’s Correlation Test
3.4. Multiple Linear Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NSLBP | Nonspecific low back pain |
VAS | Visual analogue scale |
TrA | Transversus abdominis |
LM | Lumbar multifidus |
PBU | Pressure biofeedback unit |
CD | Cesarean delivery |
VD | Vaginal delivery |
BMI | Body mass index |
WHO | World Health Organization |
CAPMAS | Central Agency for Public Mobilization and Statistics |
References
- Sung, S.; Mahdy, H. Cesarean Section. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Hiramatsu, Y. Lower-Segment Transverse Cesarean Section. Surg. J. 2020, 6 (Suppl. 2), S72–S80. [Google Scholar] [CrossRef]
- Berghella, V.; Baxter, J.K.; Chauhan, S.P. Evidence-Based Surgery for Cesarean Delivery. Am. J. Obstet. Gynecol. 2005, 193, 1607–1617. [Google Scholar] [CrossRef]
- Lurie, S.; Glezerman, M. The History of the Cesarean Technique. Am. J. Obstet. Gynecol. 2003, 189, 1803–1806. [Google Scholar] [CrossRef]
- Boerma, T.; Ronsmans, C.; Melesse, D.Y.; Barros, A.J.D.; Barros, F.C.; Juan, L.; Moller, A.-B.; Say, L.; Hosseinpoor, A.R.; Yi, M.; et al. Global Epidemiology of Use of and Disparities in Cesarean Sections. Lancet 2018, 392, 1341–1348. [Google Scholar] [CrossRef] [PubMed]
- Betrán, A.P.; Ye, J.; Moller, A.B.; Zhang, J.; Gülmezoglu, A.M.; Torloni, M.R. The Increasing Trend in Cesarean Section Rates: Global, Regional, and National Estimates: 1990–2014. PLoS ONE 2016, 11, e0148343. [Google Scholar] [CrossRef] [PubMed]
- Omona, K. Vaginal Delivery. In Empowering Midwives and Obstetric Nurses; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Withers, M.; Kharazmi, N.; Lim, E. Traditional Beliefs and Practices in Pregnancy, Childbirth and Postpartum: A Review of the Evidence from Asian Countries. Midwifery 2018, 56, 158–170. [Google Scholar] [CrossRef]
- Betran, A.P.; Ye, J.; Moller, A.B.; Souza, J.P.; Zhang, J. Trends and projections of caesarean section rates: Global and regional estimates. BMJ Glob. Health 2021, 6, e005671. [Google Scholar] [CrossRef] [PubMed]
- Egypt’s Central Agency for Public Mobilization and Statistics (CAPMAS). Egypt Family Health Survey: Development in Obstetric Care Between 2014 and 2021. 2022. Available online: https://amwalalghad.com/wp-content/uploads/2022/08/%D8%B9%D8%B1%D8%B6-%D9%86%D9%87%D8%A7%D8%A6%D9%89-30-8-2022.pdf (accessed on 1 August 2022).
- Gu, J.; Karmakar-Hore, S.; Hogan, M.E.; Azzam, H.M.; Barrett, J.F.; Brown, A.; Cook, J.L.; Jain, V.; Melamed, N.; Smith, G.N.; et al. Examining Cesarean Section Rates in Canada Using the Modified Robson Classification. J. Obstet. Gynaecol. Can. 2020, 42, 757–765. [Google Scholar] [CrossRef]
- Al Rifai, R.H. Trend of Cesarean Deliveries in Egypt and Its Associated Factors: Evidence from National Surveys, 2005–2014. BMC Pregnancy Childbirth 2017, 17, 417. [Google Scholar] [CrossRef]
- Shamshad, B. Factors Leading to Increased Cesarean Section Rate. Gomal J. Med. Sci. 2008, 6, 1–5. [Google Scholar]
- Maher, C.; Underwood, M.; Buchbinder, R. Non-Specific Low Back Pain. Lancet 2017, 389, 736–747. [Google Scholar] [CrossRef] [PubMed]
- Balagué, F.; Mannion, A.F.; Pellisé, F.; Cedraschi, C. Non-Specific Low Back Pain. Lancet 2012, 379, 482–491. [Google Scholar] [CrossRef] [PubMed]
- Parikh, S.; Suchi, J. Prevalence of Low Back Pain and Its Impact on Quality of Life in Post-Partum Women. Int. J. Sci. Res. 2016, 7, 14342–14348. [Google Scholar]
- MacArthur, C.; Lewis, M.; Knox, E.G.; Crawford, J.S.; Marx, G.F. Epidural Anaesthesia and Long-Term Backache After Childbirth. Obstet. Anesth. Dig. 1991, 10, 207. [Google Scholar] [CrossRef]
- Komatsu, R.; Ando, K.; Flood, P.D. Factors Associated with Persistent Pain After Childbirth: A Narrative Review. Br. J. Anaesth. 2020, 124, e117–e130. [Google Scholar] [CrossRef]
- Ali, M.G.; Mamoon, R.S.; Alwhaibi, R.M.; Sarhan, M.A.; Yousef, A.M.; Okeel, F.M.; Zakaria, H.M.; Mohammed, A.A.; Soliman, M.A.; Auais, M. Correlation between pressure pain threshold and L4-5 supraspinous ligament biomechanics after cesarean delivery under spinal anesthesia. J. Back Musculoskelet. Rehabil. 2025, 38, 892–901. [Google Scholar] [CrossRef]
- Terzi, R.; Terzi, H.; Özer, T.; Kale, A. A Rare Cause of Postpartum Low Back Pain: Pregnancy- and Lactation-Associated Osteoporosis. BioMed Res. Int. 2014, 2014, 287832. [Google Scholar] [CrossRef]
- Blomquist, J.L.; Muñoz, A.; Carroll, M.; Handa, V.L. Association of Delivery Mode with Pelvic Floor Disorders After Childbirth. JAMA J. Am. Med. Assoc. 2018, 320, 2438–2447. [Google Scholar] [CrossRef]
- Mohamed, H.; Yousef, A.; Kamel, H.E.; Oweda, K.; Abdelsameaa, G. Kinesio Taping and Strength Recovery of Postnatal Abdominal Muscles After Cesarean Section. Egypt. J. Phys. Ther. 2020, 4, 13–19. [Google Scholar] [CrossRef]
- Gürşen, C.; İnanoğlu, D.; Kaya, S.; Akbayrak, T.; Baltacı, G. Effects of Exercise and Kinesio Taping on Abdominal Recovery in Women with Cesarean Section: A Pilot Randomized Controlled Trial. Arch. Gynecol. Obstet. 2016, 293, 557–565. [Google Scholar] [CrossRef]
- Staelens, A.S.E.; Van Cauwelaert, S.; Tomsin, K.; Mesens, T.; Malbrain, M.L.N.; Gyselaers, W. Intra-Abdominal Pressure Measurements in Term Pregnancy and Postpartum: An Observational Study. PLoS ONE 2014, 9, e104782. [Google Scholar] [CrossRef]
- Fan, C.; Guidolin, D.; Ragazzo, S.; Fede, C.; Pirri, C.; Gaudreault, N.; Porzionato, A.; Macchi, V.; De Caro, R.; Stecco, C. Effects of Cesarean Section and Vaginal Delivery on Abdominal Muscles and Fasciae. Medicina 2020, 56, 260. [Google Scholar] [CrossRef] [PubMed]
- Malátová, R.; Rokytová, J.; Stumbauer, J. The use of muscle dynamometer for correction of muscle imbalances in the area of deep stabilising spine system. Proc. Inst. Mech. Eng. H 2013, 227, 896–903. [Google Scholar] [CrossRef] [PubMed]
- Faries, M.D.; Greenwood, M. Core training: Stabilizing the confusion. Strength. Cond. J. 2007, 29, 10. [Google Scholar] [CrossRef]
- Vera-García, F.J.; Barbado, D.; Moreno-Pérez, V.; Hernández-Sánchez, S.; Juan-Recio, C.; Elvira, J.L.L. Core stability. Concepto y aportaciones al entrenamiento y la prevención de lesiones. Rev. Andal. Med. Deport. 2015, 8, 79–85. [Google Scholar] [CrossRef]
- Arjmand, N.; Shirazi-Adl, A. Role of intra-abdominal pressure in the unloading and stabilization of the human spine during static lifting tasks. Eur. Spine J. 2006, 15, 1265–1275. [Google Scholar] [CrossRef]
- Raabe, M.E.; Chaudhari, A.M. Biomechanical consequences of running with deep core muscle weakness. J. Biomech. 2018, 67, 98–105. [Google Scholar] [CrossRef]
- Chang, W.D.; Lin, H.Y.; Lai, P.T. Core strength training for patients with chronic low back pain. J. Phys. Ther. Sci. 2015, 27, 619–622. [Google Scholar] [CrossRef]
- Freeman, M.D.; Woodham, M.A.; Woodham, A.W. The role of the lumbar multifidus in chronic low back pain: A review. PM&R 2010, 2, 142–167. [Google Scholar] [CrossRef]
- Gorbet, N.; Selkow, N.M.; Hart, J.M.; Saliba, S. No difference in transverse abdominis activation ratio between healthy and asymptomatic low back pain patients during therapeutic exercise. Rehabil. Res. Pract. 2010, 2010, 459738. [Google Scholar] [CrossRef]
- Gaillard, R.; Rurangirwa, A.A.; Williams, M.A.; Hofman, A.; Mackenbach, J.P.; Franco, O.H.; Steegers, E.A.; Jaddoe, V.W. Maternal parity, fetal and childhood growth, and cardiometabolic risk factors. Hypertension 2014, 64, 266–274. [Google Scholar] [CrossRef]
- Nawshin, N.; Sanam, S. The Impact of Low Back Pain on Functional Status of Postpartum Women: Survey in Bangladesh. Nur. Prim. Care 2023, 8, 1–8. [Google Scholar] [CrossRef]
- WHO. Technical Consultation on Postpartum and Postnatal Care; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Chauhan, G.; Tadi, P. Physiology, Postpartum Changes. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Meldrum, D.; Cahalane, E.; Keogan, F.; Hardiman, O. Maximum voluntary isometric contraction: Investigation of reliability and learning effect. Amyotroph. Lateral Scler. Other Mot. Neuron Disord. 2003, 4, 36–44. [Google Scholar] [CrossRef]
- Bijur, P.E.; Silver, W.; Gallagher, E.J. Reliability of the visual analog scale for the measurement of acute pain. Acad. Emerg. Med. 2001, 8, 1153–1157. [Google Scholar] [CrossRef]
- Shafshak, T.S.; Elnemr, R. The Visual Analogue Scale Versus Numerical Rating Scale in Measuring Pain Severity and Predicting Disability in Low Back Pain. J. Clin. Rheumatol. 2021, 27, 282–285. [Google Scholar] [CrossRef] [PubMed]
- Hjermstad, M.J.; Fayers, P.M.; Haugen, D.F.; Caraceni, A.; Hanks, G.W.; Loge, J.H.; Fainsinger, R.; Aass, N.; Kaasa, S. Studies comparing Numerical Rating Scales, Verbal Rating Scales, and Visual Analogue Scales for assessment of pain intensity in adults: A systematic literature review. J. Pain Symptom Manag. 2011, 41, 1073–1093. [Google Scholar] [CrossRef] [PubMed]
- Sheshna, R.; Neeta, V. Interrater and intrarater reliability of pressure biofeedback unit in measurement of transverses abdominis activity. Indian J. Phys. Ther. 2015, 3, 81–84. [Google Scholar]
- de Paula Lima, P.O.; de Oliveira, R.R.; Costa, L.O.; Laurentino, G.E. Measurement properties of the pressure biofeedback unit in the evaluation of transversus abdominis muscle activity: A systematic review. Physiotherapy 2011, 97, 100–106. [Google Scholar] [CrossRef]
- Hodges, P.; Richardson, C.; Jull, G. Evaluation of the relationship between laboratory and clinical tests of transversus abdominis function. Physiother. Res. Int. 1996, 1, 30–40. [Google Scholar] [CrossRef]
- Costa, L.O.; Costa, L.D.; Cançado, R.L.; De Melo Oliveira, W.; Ferreira, P.H. Reliability of the palpatory test and the pressure biofeedback unit in the activation of the transversus abdominis muscle in normal subjects. Acta Fisiátrica 2004, 11, 101–105. [Google Scholar]
- Pienaar, A.W.; Barnard, J.G. Development, validity and reliability of a new pressure air biofeedback device (PAB) for measuring isometric extension strength of the lumbar spine. J. Med. Eng. Technol. 2017, 41, 216–222. [Google Scholar] [CrossRef]
- Ramos, L.A.V.; França, F.J.R.; Callegari, B.; Burke, T.N.; Magalhães, M.O.; Marques, A.P. Are Lumbar Multifidus Fatigue and Transversus Abdominis Activation Similar in Patients with Lumbar Disc Herniation and Healthy Controls? A Case-Control Study. Eur. Spine J. 2016, 25, 1435–1442. [Google Scholar] [CrossRef]
- Li, X.; Lo, W.L.A.; Lu, S.W.; Liu, H.; Lin, K.-Y.; Lai, J.-Y.; Li, L.; Wang, C.-H. Trunk Muscle Activity during Pressure Feedback Monitoring among Individuals with and without Chronic Low Back Pain. BMC Musculoskelet. Disord. 2020, 21, 569. [Google Scholar] [CrossRef]
- Richardson, C. Therapeutic Exercise for Lumbopelvic Stabilization: A Motor Control Approach for the Treatment and Prevention of Low Back Pain; Churchill Livingstone: London, UK, 2004. [Google Scholar]
- Kamel, D.M.; Raoof, N.A.A.; Tantawy, S.A. Efficacy of Lumbar Mobilization on Postpartum Low Back Pain in Egyptian Females: A Randomized Control Trial. J. Back. Musculoskelet. Rehabil. 2016, 29, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.G.; Mohammed, A.A.; Ragab, W.M.; Zakaria, H.M.; Alwhaibi, R.M.; Ibrahim, Z.M.; Mamoon, R.S. Do Lumbar Paravertebral Muscle Properties Show Changes in Mothers with Moderate-Severity Low Back Pain Following a Cesarean Birth? A Case–Control Study. J. Clin. Med. 2025, 14, 719. [Google Scholar] [CrossRef]
- Chia, Y.Y.; Lo, Y.; Chen, Y.B.; Liu, C.P.; Huang, W.C.; Wen, C.H. Risk of Chronic Low Back Pain among Parturients Who Undergo Cesarean Delivery with Neuraxial Anesthesia: A Nationwide Population-Based Retrospective Cohort Study. Medicine 2016, 95, e3468. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, N.; Khan, M.H.; Rasheed, N. Comparison of Incidence of Low Back Pain in Women with Normal Vaginal Delivery and Cesarean Section. J. Pak. Orthop. Assoc. 2017, 29, 152–156. [Google Scholar]
- Kwon, Y.J.; Hyung, E.J.; Yang, K.H.; Lee, H.O. How Different Modes of Child Delivery Influence Abdominal Muscle Activities in the Active Straight Leg Raise. J. Phys. Ther. Sci. 2014, 26, 1271–1274. [Google Scholar] [CrossRef]
- Hodges, P.W.; Smeets, R.J. Interaction between Pain, Movement, and Physical Activity: Short-Term Benefits, Long-Term Consequences, and Targets for Treatment. Clin. J. Pain. 2015, 31, 97–107. [Google Scholar] [CrossRef]
- Kuciel, N.; Mazurek, J.; Sutkowska, E.; Biernat, K.; Pawik, Ł. A Comparison of Abdominal Muscles Fatigue in Women after Vaginal Birth Women after Cesarean Section, and a Control Group. A Pilot Study. Physiother. Q. 2021, 29, 62–66. [Google Scholar] [CrossRef]
- Spearman’s Correlation. Available online: http://www.statstutor.ac.uk/resources/uploaded/spearmans.pdf (accessed on 20 January 2019).
- Roffey, D.M.; Wai, E.K.; Bishop, P.; Kwon, B.K.; Dagenais, S. Causal Assessment of Awkward Occupational Postures and Low Back Pain: Results of a Systematic Review. Spine J. 2010, 10, 89–99. [Google Scholar] [CrossRef]
- Abdelraouf, O.R.; Abdel-Aziem, A.A. The Relationship between Core Endurance and Back Dysfunction in Collegiate Male Athletes with and without Nonspecific Low Back Pain. Int. J. Sports Phys. Ther. 2016, 11, 337–344. [Google Scholar]
- Gunnarsson, U.; Stark, B.; Dahlstrand, U.; Strigård, K. Correlation between Abdominal Rectus Diastasis Width and Abdominal Muscle Strength. Dig. Surg. 2015, 32, 112–116. [Google Scholar] [CrossRef]
Items | Physical Characteristics of Subjects (Mean ± SD) | ||
---|---|---|---|
Age in Years | BMI in kg/m2 | Parity (Number of Deliveries) | |
Group A (n = 18 CD Women) | 25.8 ± 5.6 | 24.9 ± 3.1 | 2.2 ± 1.2 |
Group B (n = 18 VD Women) | 27.3 ± 3.5 | 24.2 ± 2.4 | 2.2 ± 1.3 |
p-value | 0.342 | 0.429 | 0.894 |
VAS Scores of NSLBP (Mean ± SD) | |
---|---|
Group A (n = 18 CD Women) | 5.1 ± 1.5 (95% CI: 4.4–5.8) |
Group B (n = 18 VD Women) | 3.4 ± 0.8 (95% CI: 3.0–3.8) |
MD (change) | 1.7 |
p-value | 0.000 * |
TrA MVIC (Mean ± SD) | LM MVIC (Mean ± SD) | |
---|---|---|
Group A (n = 18 CD Women) | 2.8 ± 1.1 (95% CI: 2.2–3.4) | 3.7 ± 0.6 (95% CI: 3.4–4.0) |
Group B (n = 18 VD Women) | 3.7 ± 0.5 (95% CI: 3.4–3.9) | 3.7 ± 0.5 (95% CI: 3.5–4.0) |
MD (change) | −0.9 | 0 |
p-value | 0.009 * | 0.602 |
Correlations | |||||
---|---|---|---|---|---|
VAS | TrA MVIC | LM MVIC | |||
Spearman’s rho | Group A VAS | Correlation Coefficient | 1.000 | 0.097 | −0.371 |
Sig. (2-tailed) p-value | - | 0.702 | 0.129 | ||
Spearman’s rho | Group B VAS | Correlation Coefficient | 1.000 | 0.354 | −0.039 |
Sig. (2-tailed) p-value | - | 0.149 | 0.877 |
Model | R | R Square | Adjusted R Square | F Change | df1 | df2 | Sig. F Change |
---|---|---|---|---|---|---|---|
All predictors (Age, BMI, Parity, TrA MVIC, LM MVIC) | 0.443 | 0.196 | 0.062 | 1.464 | 5 | 30 | 0.231 |
Model | Standardized Coefficients Beta | p-Value | 95% Confidence Interval (CI) for Beta | Approximated Effect Size (Semi-Partial r2) | |
---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||
(Constant) | 0.645 | −4.717 | 7.498 | ||
Age | −0.022 | 0.915 | −0.137 | 0.124 | Negligible |
BMI | 0.353 | 0.087 | −0.029 | 0.397 | Small to moderate |
Parity | 0.088 | 0.638 | −0.334 | 0.537 | Negligible |
TrA MVIC | −0.221 | 0.205 | −0.863 | 0.193 | Small |
LM MVIC | −0.062 | 0.715 | −1.083 | 0.752 | Negligible |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, M.G.; Yousef, A.M.; Sarhan, M.A.M.; Alwhaibi, R.M.; Zakaria, H.M.; Mohammed, A.A.; Ragab, W.M.; Mamoon, R.S.; Auais, M. Testing the Association Between Low Back Pain Intensity and Core Muscle Strength in Postpartum Women with Different Delivery Modes: An Analytical Cross-Sectional Study. J. Clin. Med. 2025, 14, 6505. https://doi.org/10.3390/jcm14186505
Ali MG, Yousef AM, Sarhan MAM, Alwhaibi RM, Zakaria HM, Mohammed AA, Ragab WM, Mamoon RS, Auais M. Testing the Association Between Low Back Pain Intensity and Core Muscle Strength in Postpartum Women with Different Delivery Modes: An Analytical Cross-Sectional Study. Journal of Clinical Medicine. 2025; 14(18):6505. https://doi.org/10.3390/jcm14186505
Chicago/Turabian StyleAli, Mohamed G., Amel M. Yousef, Mohammed A. M. Sarhan, Reem M. Alwhaibi, Hoda M. Zakaria, Abeer A. Mohammed, Walaa M. Ragab, Rehab S. Mamoon, and Mohammad Auais. 2025. "Testing the Association Between Low Back Pain Intensity and Core Muscle Strength in Postpartum Women with Different Delivery Modes: An Analytical Cross-Sectional Study" Journal of Clinical Medicine 14, no. 18: 6505. https://doi.org/10.3390/jcm14186505
APA StyleAli, M. G., Yousef, A. M., Sarhan, M. A. M., Alwhaibi, R. M., Zakaria, H. M., Mohammed, A. A., Ragab, W. M., Mamoon, R. S., & Auais, M. (2025). Testing the Association Between Low Back Pain Intensity and Core Muscle Strength in Postpartum Women with Different Delivery Modes: An Analytical Cross-Sectional Study. Journal of Clinical Medicine, 14(18), 6505. https://doi.org/10.3390/jcm14186505