Sex-Associated Differences in Outcomes in Acute Myeloid Leukemia Patients Following Intense Induction Treatment: A Real-World Single Center Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Selection
2.2. Molecular Analyses
2.3. Covariates
2.4. Statistical Analysis
3. Results
3.1. Study Population and Baseline Clinical Characteristics
3.2. Association Between Sex, Treatment Patterns, and Treatment Response
3.3. Association Between Sex and Toxicity
3.4. Association Between Sex and Overall Survival
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AML | Acute Myeloid Leukemia |
MDS | Myelodysplastic Neoplasm |
FAB | French American British Classification |
WHO | World Health Organization |
ICC | International Consensus Classification |
ELN | European Leukemia Net |
ASCT | Autologous Stem Cell Transplant |
alloHSCT | Allogeneic Hematopoietic Stem Cell Transplant |
OS | Overall Survival |
APL | Acute Promyelocytic Leukemia |
MRD | Minimal Residual Disease |
NGS | Next Generation Sequencing |
AE | Adverse Events |
CI | Confidence Interval |
LDH | Lactate Dehydrogenase |
ULN | Upper Limit of Normal |
References
- Khoury, J.D.; Solary, E.; Abla, O.; Akkari, Y.; Alaggio, R.; Apperley, J.F.; Bejar, R.; Berti, E.; Busque, L.; Chan, J.K.C.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022, 36, 1703–1719. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Manero, G.; Chien, K.S.; Montalban-Bravo, G. Myelodysplastic syndromes: 2021 update on diagnosis, risk stratification and management. Am. J. Hematol. 2020, 95, 1399–1420. [Google Scholar] [CrossRef]
- Jani, C.T.; Ahmed, A.; Singh, H.; Mouchati, C.; Al Omari, O.; Bhatt, P.S.; Sharma, R.; Farooq, M.; Liu, W.; Shalhoub, J.; et al. Burden of AML, 1990–2019: Estimates From the Global Burden of Disease Study. JCO Glob. Oncol. 2023, 9, e2300229. [Google Scholar] [CrossRef]
- Bennett, J.M.; Catovsky, D.; Daniel, M.; Flandrin, G.; Galton, D.A.G.; Gralnick, H.R.; Sultan, C. Proposals for the classification of the acute leukaemias. Br. J. Haematol. 1976, 33, 451–458. [Google Scholar] [CrossRef]
- Arber, D.A.; Orazi, A.; Hasserjian, R.P.; Borowitz, M.J.; Calvo, K.R.; Kvasnicka, H.-M.; Wang, S.A.; Bagg, A.; Barbui, T.; Branford, S.; et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: Integrating morphologic, clinical, and genomic data. Blood 2022, 140, 1200–1228. [Google Scholar] [CrossRef]
- Döhner, H.; Estey, E.; Grimwade, D.; Amadori, S.; Appelbaum, F.R.; Büchner, T.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Larson, R.A.; et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017, 129, 424–447. [Google Scholar] [CrossRef] [PubMed]
- Döhner, H.; Wei, A.H.; Appelbaum, F.R.; Craddock, C.; DiNardo, C.D.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Godley, L.A.; Hasserjian, R.P.; et al. Diagnosis and management of AML in Adults: 2022 ELN Recommendations from an International Expert Panel. Blood 2022, 140, 1345–1377. [Google Scholar] [CrossRef]
- Kantarjian, H.; Kadia, T.; DiNardo, C.; Daver, N.; Borthakur, G.; Jabbour, E.; Garcia-Manero, G.; Konopleva, M.; Ravandi, F. Acute myeloid leukemia: Current progress and future directions. Blood Cancer J. 2021, 11, 41. [Google Scholar] [CrossRef]
- Cornelissen, J.J.; Blaise, D. Review Series Advances in Acute Myeloid Leukemia Hematopoietic stem cell transplantation for patients with AML in first complete remission. Blood J. Am. Soc. Hematol. 2016, 127, 62–70. [Google Scholar] [CrossRef]
- Dombret, H.; Gardin, C. An update of current treatments for adult acute myeloid leukemia. Blood 2016, 127, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Shallis, R.M.; Wang, R.; Davidoff, A.; Ma, X.; Zeidan, A.M. Epidemiology of acute myeloid leukemia: Recent progress and enduring challenges. Blood Rev. 2019, 36, 70–87. [Google Scholar] [CrossRef]
- Linet, M.S.; Curtis, R.E.; Schonfeld, S.J.; Vo, J.B.; Morton, L.M.; Dores, G.M. Survival of adult AML patients treated with chemotherapy in the U.S. population by age, race and ethnicity, sex, calendar-year period, and AML subgroup, 2001–2019. eClinicalMedicine 2024, 71, 102549. [Google Scholar] [CrossRef]
- Kamphuis, P.; van Zeventer, I.A.; de Graaf, A.O.; Salzbrunn, J.B.; van Bergen, M.G.J.M.; Dinmohamed, A.G.; van der Reijden, B.A.; Schuringa, J.J.; Jansen, J.H.; Huls, G. Sex Differences in the Spectrum of Clonal Hematopoiesis. Hemasphere 2023, 7, E832. [Google Scholar] [CrossRef] [PubMed]
- Kar, S.P.; Quiros, P.M.; Gu, M.; Jiang, T.; Mitchell, J.; Langdon, R.; Iyer, V.; Barcena, C.; Vijayabaskar, M.S.; Fabre, M.A.; et al. Genome-wide analyses of 200,453 individuals yield new insights into the causes and consequences of clonal hematopoiesis. Nat. Genet. 2022, 54, 1155–1166. [Google Scholar] [CrossRef] [PubMed]
- Matteuzzi, T.; Dall’Olio, D.; Sträng, E.; Merlotti, A.; Elicegui, J.M.; Benner, A.; Saadati, M.; Krzykalla, J.; Heckman, C.A.; Casanoves, A.H.; et al. Impact of Gender on Molecular AML Subclasses—A Harmony Alliance Study. Blood 2021, 138, 3438. [Google Scholar] [CrossRef]
- Li, Z.; Yu, L.; Hu, L.-J.; Zhao, T.; Duan, W.; Wang, J.; Jia, J.; Liu, J.; Qin, Y.-Z.; Jiang, H.; et al. Sex Differences in Disease Characteristics and Outcome in Adults with Acute Myeloid Leukemia from China. Blood 2024, 144, 6121. [Google Scholar] [CrossRef]
- Ozga, M.; Nicolet, D.; Mrózek, K.; Yilmaz, A.S.; Kohlschmidt, J.; Larkin, K.T.; Blachly, J.S.; Oakes, C.C.; Buss, J.; Walker, C.J.; et al. Sex-associated differences in frequencies and prognostic impact of recurrent genetic alterations in adult acute myeloid leukemia (Alliance, AMLCG). Leukemia 2024, 38, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Tinsley, S.; Padron, E.; Lengacher, C.; Komrokji, R. Gender Differences in Quality of Life of Patients with Acute Myeloid Leukemia and High-risk Myelodysplastic Syndromes Receiving Treatment. Clin. Lymphoma Myeloma Leuk. 2019, 19, S216. [Google Scholar] [CrossRef]
- Pemberton-Whiteley, Z.; Nier, S.; Geissler, J.; Wintrich, S.; Verhoeven, B.; Christensen, R.O.; Salek, S.; Oliva, E.N.; Ionova, T.; Bradley, J. Understanding Quality of Life in Patients With Acute Leukemia, a Global Survey. J. Patient Centered Res. Rev. 2023, 10, 21–30. [Google Scholar] [CrossRef]
- Schuurhuis, G.J.; Heuser, M.; Freeman, S.; Béné, M.-C.; Buccisano, F.; Cloos, J.; Grimwade, D.; Haferlach, T.; Hills, R.K.; Hourigan, C.S.; et al. Minimal/measurable residual disease in AML: A consensus document from the European LeukemiaNet MRD Working Party. Blood 2018, 131, 1275–1291. [Google Scholar] [CrossRef]
- Unger, J.M.; Vaidya, R.; Albain, K.S.; LeBlanc, M.; Minasian, L.M.; Gotay, C.C.; Henry, N.L.; Fisch, M.J.; Lee, S.M.; Blanke, C.D.; et al. Sex Differences in Risk of Severe Adverse Events in Patients Receiving Immunotherapy, Targeted Therapy, or Chemotherapy in Cancer Clinical Trials. J. Clin. Oncol. 2022, 40, 1474–1486. [Google Scholar] [CrossRef]
- Ozdemir, B.C.; Gerard, C.L.; Espinosa da Silva, C. Sex and Gender Differences in Anticancer Treatment Toxicity: A Call for Revisiting Drug Dosing in Oncology. Endocrinology 2022, 163, bqac058. [Google Scholar] [CrossRef]
- Fleming, R.A.; Capizzi, R.L.; Rosner, G.L.; Oliver, L.K.; Smith, S.J.; Schiffer, C.A.; Silver, R.T.; Peterson, B.A.; Weiss, R.B.; Omura, G.A.; et al. Clinical pharmacology of cytarabine in patients with acute myeloid leukemia: A Cancer and Leukemia Group B study. Cancer Chemother. Pharmacol. 1995, 36, 425–443. [Google Scholar] [CrossRef]
- Han, S.; Xiu, M.; Li, S.; Shi, Y.; Wang, X.; Lin, X.; Cai, H.; Liu, Y.; He, J. Exposure to cytarabine causes side effects on adult development and physiology and induces intestinal damage via apoptosis in Drosophila. Biomed. Pharmacother. 2023, 159, 114265. [Google Scholar] [CrossRef]
- Harris, A.L.; Potter, C.; Bunch, C.; Boutagy, J.; Harvey, D.J.; Grahame Smith, D.G. Pharmacokinetics of cytosine arabinoside in patients with acute myeloid leukaemia. Br. J. Clin. Pharmacol. 1979, 8, 219–227. [Google Scholar] [CrossRef]
- Savic, A.; Kvrgic, V.; Rajic, N.; Urosevic, I.; Kovacevic, D.; Percic, I.; Popovic, S. The hematopoietic cell transplantation comorbidity index is a predictor of early death and survival in adult acute myeloid leukemia patients. Leuk. Res. 2012, 36, 479–482. [Google Scholar] [CrossRef] [PubMed]
- Juliusson, G.; Jädersten, M.; Deneberg, S.; Lehmann, S.; Möllgård, L.; Wennström, L.; Antunovic, P.; Cammenga, J.; Lorenz, F.; Ölander, E.; et al. The prognostic impact of FLT3-ITD and NPM1 mutation in adult AML is age-dependent in the population-based setting. Blood Adv. 2020, 4, 1094–1101. [Google Scholar] [CrossRef] [PubMed]
- Hilberink, J.R.; van Zeventer, I.A.; Chitu, D.A.; Pabst, T.; Klein, S.K.; Stussi, G.; Griskevicius, L.; Valk, P.J.M.; Cloos, J.; van de Loosdrecht, A.A.; et al. Age and sex associate with outcome in older AML and high risk MDS patients treated with 10-day decitabine. Blood Cancer J. 2023, 13, 93. [Google Scholar] [CrossRef]
- De-Morgan, A.; Meggendorfer, M.; Haferlach, C.; Shlush, L. Male predominance in AML is associated with specific preleukemic mutations. Leukemia 2021, 35, 867–870. [Google Scholar] [CrossRef]
- Igarashi, H.; Kouro, T.; Yokota, T.; Comp, P.C.; Kincade, P.W. Age and stage dependency of estrogen receptor expression by lymphocyte precursors. Proc. Natl. Acad. Sci. USA 2001, 98, 15131–15136. [Google Scholar] [CrossRef] [PubMed]
- Özdemir, B.C.; Dotto, G.P. Sex hormones and anticancer immunity. Clin. Cancer Res. 2019, 25, 4603–4610. [Google Scholar] [CrossRef]
- Tettero, J.M.; Cloos, J.; Bullinger, L. Acute myeloid leukemia: Does sex matter? Leukemia 2024, 38, 2329–2331. [Google Scholar] [CrossRef]
- Özdemir, B.C. Removing barriers to address sex differences in anticancer drug toxicity. Nat. Rev. Cancer 2024, 24, 161–162. [Google Scholar] [CrossRef] [PubMed]
- Özdemir, B.C.; Richters, A.; Espinosa da Silva, C.; Berner, A.M. Cancer researchers’ perceptions of the importance of the sex of cell lines, animals, and human samples for cancer biology research. iScience 2023, 26, 106212. [Google Scholar] [CrossRef] [PubMed]
- Darphin, X.; Moor, J.; da Silva, C.E.; Richters, A.; Özdemir, B.C. Awareness of the impact of sex and gender in the disease risk and outcomes in hematology and medical oncology—A survey of Swiss clinicians. Cancer Rep. 2024, 7, e1961. [Google Scholar] [CrossRef] [PubMed]
- Oppegaard, K.R.; Dunn, L.; Kober, K.; Mackin, L.; Hammer, M.; Conley, Y.; Levine, J.; Miaskowski, C. Gender Differences in the Use of Engagement and Disengagement Coping Strategies in Patients With Cancer Receiving Chemotherapy. Oncol. Nurs. Forum 2020, 47, 586–594. [Google Scholar] [CrossRef]
Males | Females | |
---|---|---|
Number (%) | 40 (62%) | 25 (38%) |
Age in years (median, range) | 53 (18–73) | 59 (23–70) |
AML subtype | ||
M0 | 2 (5%) | 1 (4.0%) |
M1 | 10 (25%) | 6 (24%) |
M2 | 7 (18%) | 5 (20%) |
M4 | 7 (18%) | 4 (16%) |
M5 | 2 (5%) | 0 (0%) |
M6 | 0 (0%) | 0 (0%) |
Secondary AML | 7 (18%) | 3 (12%) |
Treatment-associated AML | 2 (5%) | 4 (16%) |
Mixed phenotype AML | 1 (3%) | 0 (0%) |
Undifferentiated AML | 0 (0%) | 0 (0%) |
Extramedullary AML | 2 (5%) | 2 (8%) |
ELN 2017 classification | ||
favorable | 13 (33%) | 9 (36%) |
intermediate | 7 (18%) | 3 (12%) |
adverse | 18 (45%) | 12 (48%) |
not applicable | 2 (5%) | 1 (4%) |
Hematological Variables | Males (n = 40) Median (min, max) | Females (n = 25) Median (min, max) | p-Value * |
---|---|---|---|
Hemoglobin (g/L) | 98 (45–170) | 87 (47–140) | 0.24 |
Thrombocytes (G/L) | 58 (8–296) | 79 (8–311) | 0.50 |
Neutrophils (G/L) | 1.53 (0.02–21.15) | 0.94 (0.04–8.89) | 0.75 |
Leucocytes (G/L) | 5.29 (0.65–106) | 6.86 (0.3–97.2) | 0.84 |
Blasts in peripheral blood (%) | 17.8 (0–84.5) | 33 (0–84) | 0.30 |
Blasts in bone marrow (%) | 65 (0–95) | 70 (0–95) | 0.35 |
LDH (x ULN) | 1.42 (0.56–26.2) | 1.02 (0.67–10.2) | 0.25 |
Treatment | Males | Females |
---|---|---|
Before first induction | ||
Hydroxycarbamide | 8 (20%) | 3 (12%) |
Tretinoin | 1 (3%) | 1 (4%) |
Leukapharesis | 1 (3%) | 0 (0%) |
First induction 3 + 7 Regimen | 40 | 25 |
Idarubicin and Cytarabine | 35 (88%) | 20 (80%) |
Daunorubicin and Cytarabine | 4 (10%) | 5 (20%) |
Cladribine and Cytarabine | 1 (3%) | 0 (0%) |
Second induction 3 + 7 Regimen | 22 | 17 |
Idarubicin and Cytarabine | 1 (5%) | 3 (18%) |
Daunorubicin and Cytarabine | 16 (73%) | 10 (59%) |
Cytarabine monotherapy | 4 (18%) | 4 (24%) |
Cladribine and Cytarabine | 1 (5%) | 0 (0%) |
No second induction (any reason) | 18 (45%) | 8 (32%) |
No second induction (death) | 8 (20%) | 2 (8%) |
Subsequent treatment for relapse * | 6 (15%) | 9 (36%) |
Cladribine, Idarubicin, Cytarabine (Cla-Ida scheme) | 0 (0%) | 2 (22%) |
Gilteritinib | 1 (17%) | 0 (0%) |
Midostaurin | 0 (0%) | 0 (0%) |
Azacitidine | 0 (0%) | 0 (0%) |
Decitabine | 3 (50%) | 5 (56%) |
Decitabine and Enasidenib | 1 (17%) | 0 (0%) |
Decitabine and Venetoclax | 1 (17%) | 1 (11%) |
Sorafenib | 0 (0%) | 1 (11%) |
No subsequent treatment (death during the first or second induction cycle) | 10 (25%) | 2 (8%) |
Consolidation in the first complete remission | 24 (60%) | 14 (56%) |
Allogeneic HSCT | 10 (25%) | 3 (12%) |
Autologous HSCT | 13 (33%) | 9 (36%) |
Chemotherapy | 1 (3%) | 1 (4%) |
Refusal of subsequent treatment for consolidation | 0 (0%) | 1 (4%) |
Males | Females | Fisher’s Exact Test p-Value (2-Tailed) | |
---|---|---|---|
Response after first induction cycle | n = 40 | n = 25 | |
Morphological complete remission | 24 (60%) | 16 (64%) | |
No morphological complete remission | 10 (25%) | 8 (32%) | |
Death before response assessment | 6 (15%) | 1 (4%) | |
Response after second induction cycle | n = 22 | n = 17 | |
Morphological complete remission | 20 (91%) | 15 (88%) | |
No morphological complete remission | 1 (5%) | 2 (12%) | |
MRD negative at flow cytometry | 13 (59%) | 10 (59%) | |
MRD positive at flow cytometry | 5 (23%) | 5 (29%) | |
No bone marrow biopsy (death before response assessment) | 1 (5%) | 0 (0%) | |
No information on flow cytometry | 3 (13.6%) | 2 (11.8%) | |
Hematological regeneration after first induction cycle | n = 40 | n = 25 | 0.394 |
Neutrophils > 1 G/L reached | 27 (68%) | 20 (80%) | |
Neutrophils > 1 G/L reached in days (median, range) | 24 (18–201) | 24 (16–132) | 0.371 |
Thrombocytes > 100 G/L reached | 29 (73%) | 21 (84%) | |
Thrombocytes > 100 G/L reached in days (median, range) | 23 (17–94) | 24 (18–132) | |
Hematological regeneration after second induction cycle | n = 22 | n = 17 | 1 |
Neutrophils > 1 G/L reached | 20 (91%) | 16 (94%) | |
Neutrophils > 1 G/L reached in days (median, range) | 21 (15–122) | 28 (12–68) | 0.64 |
Thrombocytes > 100 G/L reached | 19 (86%) | 14 (82%) | |
Thrombocytes > 100 G/L reached in days (median, range) | 27 (18–122) | 37 (19–136) |
Males | Females | Fisher’s Exact Test p-Value (2-Tailed) | |
---|---|---|---|
Toxicity after first induction cycle (regimen 7 + 3) | n = 40 | n = 25 | |
Neutropenic colitis | 32 (80%) | 25 (100%) | 0.019 |
Bacteremia | 36 (90%) | 20 (80%) | 0.288 |
Mucositis | 6 (15%) | 2 (8%) | 0.471 |
Fungal infections | 4 (10%) | 6 (24%) | 0.165 |
Bacteriuria | 3 (8%) | 5 (20%) | 0.243 |
Clostridium difficile-associated colitis | 3 (8%) | 0 (0%) | 0.279 |
Urosepsis | 0 (0%) | 1 (4%) | 0.385 |
Toxicity after second induction cycle (regimen 7 + 3) | n = 22 | n = 17 | |
Neutropenic colitis | 12 (54%) | 15 (88%) | 0.073 |
Bacteremia | 16 (73%) | 10 (59%) | 0.279 |
Mucositis | 4 (18%) | 2 (12%) | 0.667 |
Fungal infections | 2 (9%) | 3 (18%) | 0.644 |
Bacteriuria | 1 (5%) | 2 (12%) | 0.584 |
Clostridium difficile-associated colitis | 4 (18%) | 3 (18%) | 1 |
Urosepsis | 0 (0%) | 1 (6%) | 0.459 |
Duration of Hospitalization in Days | Males (Median, Range) | Females (Median, Range) | p-Value * |
---|---|---|---|
First induction 3 + 7 regimen | 28 (11–68) | 29 (23–61) | 0.32 |
Second induction 3 + 7 regimen | 24 (18–32) | 26 (22–51) | 0.039 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darphin, X.; Blattner, J.; Hoffmann, M.; Gobat, K.; Kronig, M.-N.; Pabst, T.; Özdemir, B.C. Sex-Associated Differences in Outcomes in Acute Myeloid Leukemia Patients Following Intense Induction Treatment: A Real-World Single Center Analysis. J. Clin. Med. 2025, 14, 6457. https://doi.org/10.3390/jcm14186457
Darphin X, Blattner J, Hoffmann M, Gobat K, Kronig M-N, Pabst T, Özdemir BC. Sex-Associated Differences in Outcomes in Acute Myeloid Leukemia Patients Following Intense Induction Treatment: A Real-World Single Center Analysis. Journal of Clinical Medicine. 2025; 14(18):6457. https://doi.org/10.3390/jcm14186457
Chicago/Turabian StyleDarphin, Xenia, Janina Blattner, Michèle Hoffmann, Katrin Gobat, Marie-Noëlle Kronig, Thomas Pabst, and Berna C. Özdemir. 2025. "Sex-Associated Differences in Outcomes in Acute Myeloid Leukemia Patients Following Intense Induction Treatment: A Real-World Single Center Analysis" Journal of Clinical Medicine 14, no. 18: 6457. https://doi.org/10.3390/jcm14186457
APA StyleDarphin, X., Blattner, J., Hoffmann, M., Gobat, K., Kronig, M.-N., Pabst, T., & Özdemir, B. C. (2025). Sex-Associated Differences in Outcomes in Acute Myeloid Leukemia Patients Following Intense Induction Treatment: A Real-World Single Center Analysis. Journal of Clinical Medicine, 14(18), 6457. https://doi.org/10.3390/jcm14186457