New Frontiers of microRNA in Heart Failure: From Clinical Risk to Therapeutic Applications
Abstract
1. Introduction
2. Current Validated Biomarkers in Heart Failure
3. The Mechanism of Action of microRNAs
4. MicroRNAs as Emerging Biomarkers in HF: Diagnostic and Prognostic Utility
5. Bench-to-Bedside Perspectives: Therapeutic Applications of microRNAs in HF
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McMurray, J.J.; Pfeffer, M.A. Heart Failure. Lancet 2005, 365, 1877–1889. [Google Scholar] [CrossRef]
- La Vecchia, G.; Fumarulo, I.; Caffè, A.; Chiatto, M.; Montone, R.A.; Aspromonte, N. Microvascular Dysfunction across the Spectrum of Heart Failure Pathology: Pathophysiology, Clinical Features and Therapeutic Implications. Int. J. Mol. Sci. 2024, 25, 7628. [Google Scholar] [CrossRef] [PubMed]
- Shams, P.; Malik, A.; Chhabra, L. Heart Failure (Congestive Heart Failure). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Aspromonte, N.; Fumarulo, I.; Petrucci, L.; Biferali, B.; Liguori, A.; Gasbarrini, A.; Massetti, M.; Miele, L. The Liver in Heart Failure: From Biomarkers to Clinical Risk. Int. J. Mol. Sci. 2023, 24, 15665. [Google Scholar] [CrossRef]
- Ronco, C.; McCullough, P.; Anker, S.D.; Anand, I.; Aspromonte, N.; Bagshaw, S.M.; Bellomo, R.; Berl, T.; Bobek, I.; Cruz, D.N.; et al. Acute Dialysis Quality Initiative (ADQI) consensus group. Cardio-Renal Syndromes: Report from the Consensus Conference of the Acute Dialysis Quality Initiative. Eur. Heart J. 2010, 31, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.L.; Cleland, J.G.F. Causes and Treatment of Oedema in Patients with Heart Failure. Nat. Rev. Cardiol. 2013, 10, 156–170. [Google Scholar] [CrossRef]
- Fumarulo, I.; Salerno, E.N.M.; De Prisco, A.; Ravenna, S.E.; Grimaldi, M.C.; Burzotta, F.; Aspromonte, N. Atrioventricular Node Dysfunction in Heart Failure: New Horizons from Pathophysiology to Therapeutic Perspectives. J. Cardiovasc. Dev. Dis. 2025, 12, 310. [Google Scholar] [CrossRef]
- Fumarulo, I.; Pasquini, A.; La Vecchia, G.; Pellizzeri, B.; Sten, A.; Garramone, B.; Vaccarella, M.; Ravenna, S.E.; Lombardo, A.; Burzotta, F.; et al. Evaluation of the Effects of the Sodium–Glucose Cotransporter 2 Inhibitors and Sacubitril/Valsartan Combined Therapy in Patients with HFrEF: An Echocardiographic Study. Int. J. Mol. Sci. 2025, 26, 5651. [Google Scholar] [CrossRef]
- Kandala, J.; Altman, R.K.; Park, M.Y.; Singh, J.P. Clinical, Laboratory, and Pacing Predictors of CRT Response. J. Cardiovasc. Trans. Res. 2012, 5, 196–212. [Google Scholar] [CrossRef] [PubMed]
- Masarone, D.; Kittleson, M.M.; D’Onofrio, A.; Falco, L.; Fumarulo, I.; Massetti, M.; Crea, F.; Aspromonte, N.; Pacileo, G. Basic Science of Cardiac Contractility Modulation Therapy: Molecular and Electrophysiological Mechanisms. Heart Rhythm. 2024, 21, 82–88. [Google Scholar] [CrossRef]
- Fumarulo, I.; Stefanini, A.; Masarone, D.; Burzotta, F.; Cameli, M.; Aspromonte, N. Cardiac Replacement Therapy: Critical Issues and Future Perspectives of Heart Transplantation and Artificial Heart. Curr. Probl. Cardiol. 2025, 50, 102971. [Google Scholar] [CrossRef]
- Aspromonte, N.; Zaninotto, M.; Aimo, A.; Fumarulo, I.; Plebani, M.; Clerico, A. Measurement of Cardiac-Specific Biomarkers in the Emergency Department: New Insight in Risk Evaluation. Int. J. Mol. Sci. 2023, 24, 15998. [Google Scholar] [CrossRef]
- Huang, S.; Zhou, Y.; Zhang, Y.; Liu, N.; Liu, J.; Liu, L.; Fan, C. Advances in MicroRNA Therapy for Heart Failure: Clinical Trials, Preclinical Studies, and Controversies. Cardiovasc. Drugs Ther. 2025, 39, 221–232. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Christ, M.; Mueller, C. Use of Natriuretic Peptide Assay in Dyspnea. Dtsch. Arztebl. Int. 2008, 105, 95–100. [Google Scholar] [CrossRef]
- Potter, L.R.; Yoder, A.R.; Flora, D.R.; Antos, L.K.; Dickey, D.M. Natriuretic Peptides: Their Structures, Receptors, Physiologic Functions and Therapeutic Applications. In Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2009; Volume 191, pp. 341–366. [Google Scholar] [CrossRef]
- Yanagisawa, K.; Takagi, T.; Tsukamoto, T.; Tetsuka, T.; Tominaga, S. Presence of a Novel Primary Response Gene ST2L, Encoding a Product Highly Similar to the Interleukin 1 Receptor Type 1. FEBS Lett. 1993, 318, 83–87. [Google Scholar] [CrossRef]
- Cheng, W.; Li, B.; Kajstura, J.; Li, P.; Wolin, M.S.; Sonnenblick, E.H.; Hintze, T.H.; Olivetti, G.; Anversa, P. Stretch-Induced Programmed Myocyte Cell Death. J. Clin. Investig. 1995, 96, 2247–2259. [Google Scholar] [CrossRef]
- Latini, R.; Masson, S.; Anand, I.S.; Missov, E.; Carlson, M.; Vago, T.; Angelici, L.; Barlera, S.; Parrinello, G.; Maggioni, A.P.; et al. Val-HeFT Investigators. Prognostic Value of Very Low Plasma Concentrations of Troponin T in Patients with Stable Chronic Heart Failure. Circulation 2007, 116, 1242–1249. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef]
- Fabian, M.R.; Sonenberg, N. The Mechanics of miRNA-Mediated Gene Silencing: A Look under the Hood of miRISC. Nat. Struct. Mol. Biol. 2012, 19, 586–593. [Google Scholar] [CrossRef] [PubMed]
- Davis-Dusenbery, B.N.; Hata, A. Mechanisms of Control of microRNA Biogenesis. J. Biochem. 2010, 148, 381–392. [Google Scholar] [CrossRef] [PubMed]
- Kakoulidis, P.; Theotoki, E.I.; Pantazopoulou, V.I.; Vlachos, I.S.; Emiris, I.Z.; Stravopodis, D.J.; Anastasiadou, E. Comparative Structural Insights and Functional Analysis for the Distinct Unbound States of Human AGO Proteins. Sci. Rep. 2025, 15, 9432. [Google Scholar] [CrossRef]
- Stempien-Otero, A.; Kim, D.-H.; Davis, J. Molecular Networks Underlying Myofibroblast Fate and Fibrosis. J. Mol. Cell. Cardiol. 2016, 97, 153–161. [Google Scholar] [CrossRef]
- Wang, H.; You, C.; Chang, F.; Wang, Y.; Wang, L.; Qi, J.; Ma, H. Alternative Splicing during Arabidopsis Flower Development Results in Constitutive and Stage-Regulated Isoforms. Front. Genet. 2014, 5, 25. [Google Scholar] [CrossRef]
- Afonso-Grunz, F.; Müller, S. Principles of miRNA-mRNA Interactions: Beyond Sequence Complementarity. Cell Mol. Life Sci. 2015, 72, 3127–3141. [Google Scholar] [CrossRef]
- Gherasim, L. Troponins in Heart Failure—A Perpetual Challenge. Maedica (Bucur) 2019, 14, 371–377. [Google Scholar] [CrossRef]
- D’Amato, A.; Severino, P.; Prosperi, S.; Mariani, M.V.; Germanò, R.; De Prisco, A.; Myftari, V.; Cestiè, C.; Labbro Francia, A.; Marek-Iannucci, S.; et al. The Role of High-Sensitivity Troponin T Regarding Prognosis and Cardiovascular Outcome across Heart Failure Spectrum. J. Clin. Med. 2024, 13, 3533. [Google Scholar] [CrossRef]
- Masson, S.; Anand, I.; Favero, C.; Barlera, S.; Vago, T.; Bertocchi, F.; Maggioni, A.P.; Tavazzi, L.; Tognoni, G.; Cohn, J.N.; et al. Valsartan Heart Failure Trial (Val-HeFT) and Gruppo Italiano per lo Studio della Sopravvivenza nell’Insufficienza Cardiaca–Heart Failure (GISSI-HF) Investigators. Serial Measurement of Cardiac Troponin T Using a Highly Sensitive Assay in Patients with Chronic Heart Failure: Data from 2 Large Randomized Clinical Trials. Circulation 2012, 125, 280–288. [Google Scholar] [CrossRef]
- Shapiro, J.S.; Langlois, R.A.; Pham, A.M.; Tenoever, B.R. Evidence for a Cytoplasmic Microprocessor of Pri-miRNAs. RNA 2012, 18, 1338–1346. [Google Scholar] [CrossRef]
- Aimo, A.; Januzzi, J.L.; Vergaro, G.; Ripoli, A.; Latini, R.; Masson, S.; Magnoli, M.; Anand, I.S.; Cohn, J.N.; Tavazzi, L.; et al. Prognostic Value of High-Sensitivity Troponin T in Chronic Heart Failure: An Individual Patient Data Meta-Analysis. Circulation 2018, 137, 286–297. [Google Scholar] [CrossRef]
- Manavella, P.A.; Koenig, D.; Weigel, D. Plant Secondary siRNA Production Determined by microRNA-Duplex Structure. Proc. Natl. Acad. Sci. USA 2012, 109, 2461–2466. [Google Scholar] [CrossRef]
- Tijsen, A.J.; Creemers, E.E.; Moerland, P.D.; De Windt, L.J.; Van Der Wal, A.C.; Kok, W.E.; Pinto, Y.M. MiR423-5p As a Circulating Biomarker for Heart Failure. Circ. Res. 2010, 106, 1035–1039. [Google Scholar] [CrossRef]
- Corsten, M.F.; Dennert, R.; Jochems, S.; Kuznetsova, T.; Devaux, Y.; Hofstra, L.; Wagner, D.R.; Staessen, J.A.; Heymans, S.; Schroen, B. Circulating MicroRNA-208b and MicroRNA-499 Reflect Myocardial Damage in Cardiovascular Disease. Circ. Cardiovasc. Genet. 2010, 3, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Ellis, K.L.; Cameron, V.A.; Troughton, R.W.; Frampton, C.M.; Ellmers, L.J.; Richards, A.M. Circulating microRNAs as Candidate Markers to Distinguish Heart Failure in Breathless Patients. Eur. J. Heart Fail. 2013, 15, 1138–1147. [Google Scholar] [CrossRef] [PubMed]
- Wong, L.L.; Armugam, A.; Sepramaniam, S.; Karolina, D.S.; Lim, K.Y.; Lim, J.Y.; Chong, J.P.; Ng, J.Y.; Chen, Y.T.; Chan, M.M.; et al. Circulating microRNAs in heart failure with reduced and preserved left ventricular ejection fraction. Eur. J. Heart Fail. 2015, 17, 393–404. [Google Scholar] [CrossRef]
- Feng, M.; Li, Z.; Wang, D.; Wang, F.; Wang, C.; Wang, C.; Ding, F. MicroRNA-210 aggravates hypoxia-induced injury in cardiomyocyte H9c2 cells by targeting CXCR4. Biomed. Pharmacother. = Biomed. Pharmacother. 2018, 102, 981–987. [Google Scholar] [CrossRef]
- Parvan, R.; Becker, V.; Hosseinpour, M.; Moradi, Y.; Louch, W.E.; Cataliotti, A.; Devaux, Y.; Frisk, M.; Silva, G.J.J.; AtheroNET COST Action CA21153. Prognostic and Predictive microRNA Panels for Heart Failure Patients with Reduced or Preserved Ejection Fraction: A Meta-Analysis of Kaplan–Meier-Based Individual Patient Data. BMC Med. 2025, 23, 409. [Google Scholar] [CrossRef]
- Bonaventura, A.; Vecchié, A.; Costantino, S.; Paneni, F. MicroRNA-122 in Heart Failure with Reduced Ejection Fraction: Epiphenomenon or Causal? Int. J. Cardiol. 2020, 303, 66–67. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xu, R.; Liu, S.; Dong, S.; Zhao, X.; Zhang, B. Diagnostic Value of Circulating microRNA-19b in Heart Failure. Eur. J. Clin. Investig. 2020, 50, e13308. [Google Scholar] [CrossRef] [PubMed]
- Derda, A.A.; Thum, S.; Lorenzen, J.M.; Bavendiek, U.; Heineke, J.; Keyser, B.; Stuhrmann, M.; Givens, R.C.; Kennel, P.J.; Christian Schulze, P.; et al. Blood-Based microRNA Signatures Differentiate Various Forms of Cardiac Hypertrophy. Int. J. Cardiol. 2015, 196, 115–122. [Google Scholar] [CrossRef]
- Derda, A.A.; Pfanne, A.; Bär, C.; Schimmel, K.; Kennel, P.J.; Xiao, K.; Schulze, P.C.; Bauersachs, J.; Thum, T. Blood-Based microRNA Profiling in Patients with Cardiac Amyloidosis. PLoS ONE 2018, 13, e0204235. [Google Scholar] [CrossRef]
- Vita, G.L.; Aguennouz, M.; Polito, F.; Oteri, R.; Russo, M.; Gentile, L.; Barbagallo, C.; Ragusa, M.; Rodolico, C.; Di Giorgio, R.M.; et al. Circulating microRNAs Profile in Patients With Transthyretin Variant Amyloidosis. Front. Mol. Neurosci. 2020, 13, 102. [Google Scholar] [CrossRef]
- Qiang, L.; Hong, L.; Ningfu, W.; Huaihong, C.; Jing, W. Expression of miR-126 and miR-508-5p in Endothelial Progenitor Cells Is Associated with the Prognosis of Chronic Heart Failure Patients. Int. J. Cardiol. 2013, 168, 2082–2088. [Google Scholar] [CrossRef]
- Morley-Smith, A.C.; Mills, A.; Jacobs, S.; Meyns, B.; Rega, F.; Simon, A.R.; Pepper, J.R.; Lyon, A.R.; Thum, T. Circulating microRNAs for Predicting and Monitoring Response to Mechanical Circulatory Support from a Left Ventricular Assist Device. Eur. J. Heart Fail. 2014, 16, 871–879. [Google Scholar] [CrossRef] [PubMed]
- Marfella, R.; Di Filippo, C.; Potenza, N.; Sardu, C.; Rizzo, M.R.; Siniscalchi, M.; Musacchio, E.; Barbieri, M.; Mauro, C.; Mosca, N.; et al. Circulating microRNA Changes in Heart Failure Patients Treated with Cardiac Resynchronization Therapy: Responders vs. Non-responders. Eur. J. Heart Fail. 2013, 15, 1277–1288. [Google Scholar] [CrossRef] [PubMed]
- Batkai, S.; Genschel, C.; Viereck, J.; Rump, S.; Bär, C.; Borchert, T.; Traxler, D.; Riesenhuber, M.; Spannbauer, A.; Lukovic, D.; et al. CDR132L Improves Systolic and Diastolic Function in a Large Animal Model of Chronic Heart Failure. Eur. Heart J. 2021, 42, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Hinkel, R.; Batkai, S.; Bähr, A.; Bozoglu, T.; Straub, S.; Borchert, T.; Viereck, J.; Howe, A.; Hornaschewitz, N.; Oberberger, L.; et al. AntimiR-132 Attenuates Myocardial Hypertrophy in an Animal Model of Percutaneous Aortic Constriction. J. Am. Coll. Cardiol. 2021, 77, 2923–2935. [Google Scholar] [CrossRef]
- Ucar, A.; Gupta, S.K.; Fiedler, J.; Erikci, E.; Kardasinski, M.; Batkai, S.; Dangwal, S.; Kumarswamy, R.; Bang, C.; Holzmann, A.; et al. The miRNA-212/132 Family Regulates Both Cardiac Hypertrophy and Cardiomyocyte Autophagy. Nat. Commun. 2012, 3, 1078. [Google Scholar] [CrossRef]
- Foinquinos, A.; Batkai, S.; Genschel, C.; Viereck, J.; Rump, S.; Gyöngyösi, M.; Traxler, D.; Riesenhuber, M.; Spannbauer, A.; Lukovic, D.; et al. Preclinical Development of a miR-132 Inhibitor for Heart Failure Treatment. Nat. Commun. 2020, 11, 633. [Google Scholar] [CrossRef]
- Wahlquist, C.; Jeong, D.; Rojas-Muñoz, A.; Kho, C.; Lee, A.; Mitsuyama, S.; van Mil, A.; Park, W.J.; Sluijter, J.P.G.; Doevendans, P.A.F.; et al. Inhibition of miR-25 Improves Cardiac Contractility in the Failing Heart. Nature 2014, 508, 531–535. [Google Scholar] [CrossRef]
- Gozdowska, R.; Makowska, A.; Gąsecka, A.; Chabior, A.; Marchel, M. Circulating microRNA in Heart Failure-Practical Guidebook to Clinical Application. Cardiol. Rev. 2022, 30, 16–23. [Google Scholar] [CrossRef]
- Abplanalp, W.T.; Fischer, A.; John, D.; Zeiher, A.M.; Gosgnach, W.; Darville, H.; Montgomery, R.; Pestano, L.; Allée, G.; Paty, I.; et al. Efficiency and Target Derepression of Anti-miR-92a: Results of a First in Human Study. Nucleic Acid. Ther. 2020, 30, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Pan, C.; Tang, X.; Zhang, M.; Shi, H.; Wang, T.; Zhang, Y. MicroRNA-200a Represses Myocardial Infarction-Related Cell Death and Inflammation by Targeting the Keap1/Nrf2 and β-Catenin Pathways. Hell. J. Cardiol. 2021, 62, 139–148. [Google Scholar] [CrossRef] [PubMed]
- LaRocca, T.J.; Seeger, T.; Prado, M.; Perea-Gil, I.; Neofytou, E.; Mecham, B.H.; Ameen, M.; Chang, A.C.Y.; Pandey, G.; Wu, J.C.; et al. Pharmacological Silencing of MicroRNA-152 Prevents Pressure Overload-Induced Heart Failure. Circ. Heart Fail. 2020, 13, e006298. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-K.; Kafert-Kasting, S.; Thum, T. Preclinical and Clinical Development of Noncoding RNA Therapeutics for Cardiovascular Disease. Circ. Res. 2020, 126, 663–678. [Google Scholar] [CrossRef]
Biomarker | Family | Source | Stimulus/Pathophysiology | Clinical Role | Representative Cut-Off | Key References |
---|---|---|---|---|---|---|
Atrial natriuretic peptide (ANP) | Natriuretic peptide | Atrial cardiomyocytes | Wall stress → release; reflects elevated intracardiac (atrial) pressure | Diagnostic and prognostic | Not standardized in ESC HF guidance | [14] |
Mid-regional proANP (MR-proANP) | Natriuretic peptide (prohormone) | Atrial cardiomyocytes | Wall stress; stable surrogate of ANP release | Diagnostic and prognostic | Chronic > 40; Acute > 120 | [14] |
B-type natriuretic peptide (BNP) | Natriuretic peptide | Ventricular cardiomyocytes | Wall stress → release; reflects elevated intracardiac (ventricular) pressure | Diagnostic and prognostic | Acute HF > 100 pg/mL; Chronic HF > 35 pg/mL (ESC 2021 [14]) | [15] |
N-terminal proBNP (NT-proBNP) | Natriuretic peptide (prohormone) | Ventricular cardiomyocytes | Wall stress; stable surrogate of BNP release | Diagnostic and prognostic | Acute HF > 300 pg/mL; age-specific chronic HF cut-offs (ESC 2021 [14]) | [15] |
Soluble ST2 (sST2) | IL-1 receptor family (decoy receptor) | Cardiomyocytes, lung, liver, others | Shear stress and inflammation → release; antagonizes IL-33/ST2 protective pathway, promotes fibrosis | Prognostic (not diagnostic) | >20 ng/mL (PRIDE trial) | [17,18,19] |
Galectin-3 | Galactose-binding lectin | Activated macrophages and damaged cardiomyocytes | Inflammation-induced expression; drives fibrosis and ventricular remodeling | Prognostic (rehospitalization, mortality) | ≥17.8 ng/dL (CORONA sub-analysis) | [20,21,22] |
High-sensitivity cardiac troponins (hs-cTnI/T) | Cardiac structural protein | Cardiomyocyte cytosol and sarcomere | Myocyte injury/apoptosis due to chronic subendocardial ischemia and pressure overload (non-ACS) | Prognostic (severity and outcomes) | Results expressed in ng/L; prognostic thresholds vary by assay | [23,24,25,26] |
miRNA | Diagnosis/HF Subtype | Regulation | Authors | Sample Size | Follow-Up | Predictive Value |
---|---|---|---|---|---|---|
miR-103 | Acute HF | Decreased | Ellis et al. [35] | n = 225 (HF ~100 cases) | 12 months | AUC ~0.85 (diagnosis) |
miR-142-3p | Acute HF | Decreased | Ellis et al. [35] | n = 225 | 12 months | Prognostic, associated with mortality |
miR-30b | Acute HF | Decreased | Ellis et al. [35] | n = 225 | 12 months | Prognostic, associated with readmission |
miR-342-3p | Acute HF | Decreased | Ellis et al. [35] | n = 225 | 12 months | Prognostic accuracy for outcomes |
miR-499 | Acute HF | Increased | Corsten et al. [34] | n = 102 (AMI + HF) | 30 days | Early diagnostic marker for cardiomyocyte injury |
miR-423-5p | Acute HF | Increased | Tijsen et al. [33] | n = 225 | 12 months | AUC 0.91 for HF diagnosis |
miR-190a | Chronic HF | Decreased | Wong et al. [36] | n = 156 HF, 80 controls | 24 months | Correlated with LV remodeling |
miR-210 | Chronic HF | Increased | Feng et al. [37] | n = 120 HF, 60 controls | 24 months | Linked with hypoxia, worse prognosis |
miR-145-5p | HFrEF | Increased | Parvan et al. [38] | n = 5000+ pooled | Up to 36 months | HR 1.5–2.0 for mortality |
miR-590-3p | HFrEF | Increased | Parvan et al. [38] | n = 5000+ pooled | Up to 36 months | HR ~1.7 for mortality |
miR-129-5p | HFrEF | Increased | Parvan et al. [38] | n = 5000+ pooled | Up to 36 months | Prognostic value validated |
miR-27a-3p | HFrEF | Increased | Parvan et al. [38] | n = 5000+ pooled | Up to 36 months | Prognostic value validated |
miR-19a-3p | HFpEF | Increased | Parvan et al. [38] | n = 5000+ pooled | Up to 36 months | Independent biomarker in HFpEF |
miR-122 | HFrEF + congestion | Increased | Bonaventura et al. [39] | n = 200 | 12 months | Associated with hepatic congestion, adverse outcomes |
miR-19b | HFrEF, prognosis | Decreased | Zhang et al. [40] | n = 200 HF, 100 controls | 18 months | Correlated with NT-proBNP, adverse events |
miR-29a | HCM | Decreased | Derda et al. [41] | n = 100 HCM | 24 months | Linked with fibrosis markers |
miR-339-3p | ATTRwt | Increased | Derda et al. [42] | n = 50 ATTRwt | 12 months | Diagnostic marker |
miR-150-5p | ATTRm | Increased | Vita et al. [43] | n = 40 ATTRm | 12 months | Diagnostic marker |
miR-126 | Ischemic HF | Decreased | Qiang et al. [44] | n = 120 ICM patients | 12 months | Correlated with endothelial dysfunction |
miR-508a-5p | Non-ischemic HF | Increased | Qiang et al. [44] | n = 120 NICM patients | 12 months | Correlated with adverse remodeling |
Trial | Phase | Target MiRNA | Delivery Method | Population | Outcome |
---|---|---|---|---|---|
HF-REVERT (CDR132L) | Phase II | miR-132 | AntimiR (oligonucleotide) | Post-MI HF patients (LVEF < 45%) | Improved LV remodeling (↓LVESVi), ↓NT-proBNP, QoL benefit |
NCT04045405 | Phase I | miR-132 | AntimiR (CDR132L) | Stable ischemic HF | Safe, well tolerated |
ASTRAAS-HF | Phase II | miR-related AGT pathway | Antisense inhibitor (IONIS-AGT-LRX) | Chronic HFrEF (LVEF < 40%) | ↓Plasma AGT, ↓NT-proBNP (ongoing) |
MRG-110 | Phase I | miR-92a (angiogenesis) | AntimiR | Ischemic HF | Target engagement, safety |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fumarulo, I.; De Prisco, A.; Salerno, E.N.M.; Ravenna, S.E.; Vaccarella, M.; Garramone, B.; Burzotta, F.; Aspromonte, N. New Frontiers of microRNA in Heart Failure: From Clinical Risk to Therapeutic Applications. J. Clin. Med. 2025, 14, 6361. https://doi.org/10.3390/jcm14186361
Fumarulo I, De Prisco A, Salerno ENM, Ravenna SE, Vaccarella M, Garramone B, Burzotta F, Aspromonte N. New Frontiers of microRNA in Heart Failure: From Clinical Risk to Therapeutic Applications. Journal of Clinical Medicine. 2025; 14(18):6361. https://doi.org/10.3390/jcm14186361
Chicago/Turabian StyleFumarulo, Isabella, Andrea De Prisco, Elia Nunzio Maria Salerno, Salvatore Emanuele Ravenna, Marcello Vaccarella, Barbara Garramone, Francesco Burzotta, and Nadia Aspromonte. 2025. "New Frontiers of microRNA in Heart Failure: From Clinical Risk to Therapeutic Applications" Journal of Clinical Medicine 14, no. 18: 6361. https://doi.org/10.3390/jcm14186361
APA StyleFumarulo, I., De Prisco, A., Salerno, E. N. M., Ravenna, S. E., Vaccarella, M., Garramone, B., Burzotta, F., & Aspromonte, N. (2025). New Frontiers of microRNA in Heart Failure: From Clinical Risk to Therapeutic Applications. Journal of Clinical Medicine, 14(18), 6361. https://doi.org/10.3390/jcm14186361