Cytokine Landscapes, Immune Dysregulation, and Treatment Perspectives in Philadelphia-Negative Myeloproliferative Neoplasms: A Narrative Review
Abstract
1. Introduction
2. JAK2-Mutation and Impact on Lymphocytes
3. Lymphocyte Subsets Changes in MPNs
4. Impact of JAK2-Mutation on Granulocytes
5. Megakaryocytes at the Core of Myelofibrosis
6. Distinct Cytokine Profile and Impact on MPNs Progression
7. JAK Inhibitors in Ph-Negative MPNs
8. Future Perspectives in MPNs Treatment
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, Y.; Gao, S.; Xia, J.; Liu, F. Hematopoietic Hierarchy—An Updated Roadmap. Trends Cell Biol. 2018, 28, 976–986. [Google Scholar] [CrossRef]
- Tefferi, A.; Thiele, J.; Vardiman, J.W. The 2008 World Health Organization Classification System for Myeloproliferative Neoplasms: Order out of Chaos. Cancer 2009, 115, 3842–3847. [Google Scholar] [CrossRef] [PubMed]
- Godfrey, A.L. Myeloproliferative Neoplasms (MPNs). Blood Rev. 2020, 42, 100717. [Google Scholar] [CrossRef] [PubMed]
- Greenfield, G.; McMullin, M.F.; Mills, K. Molecular Pathogenesis of the Myeloproliferative Neoplasms. J. Hematol. Oncol. 2021, 14, 103. [Google Scholar] [CrossRef] [PubMed]
- Rampal, R.; Al-Shahrour, F.; Abdel-Wahab, O.; Patel, J.P.; Brunel, J.-P.; Mermel, C.H.; Bass, A.J.; Pretz, J.; Ahn, J.; Hricik, T.; et al. Integrated Genomic Analysis Illustrates the Central Role of JAK-STAT Pathway Activation in Myeloproliferative Neoplasm Pathogenesis. Blood 2014, 123, e123–e133. [Google Scholar] [CrossRef]
- Scott, D.W.; Mottok, A.; Ennishi, D.; Wright, G.W.; Farinha, P.; Ben-Neriah, S.; Kridel, R.; Barry, G.S.; Hother, C.; Abrisqueta, P.; et al. Prognostic Significance of Diffuse Large B-Cell Lymphoma Cell of Origin Determined by Digital Gene Expression in Formalin-Fixed Paraffin-Embedded Tissue Biopsies. J. Clin. Oncol. 2015, 33, 2848–2856. [Google Scholar] [CrossRef]
- Nangalia, J.; Massie, C.E.; Baxter, E.J.; Nice, F.L.; Gundem, G.; Wedge, D.C.; Avezov, E.; Li, J.; Kollmann, K.; Kent, D.G.; et al. Somatic CALR Mutations in Myeloproliferative Neoplasms with Nonmutated JAK2. N. Engl. J. Med. 2013, 369, 2391–2405. [Google Scholar] [CrossRef]
- Baxter, E.J.; Scott, L.M.; Campbell, P.J.; East, C.; Fourouclas, N.; Swanton, S.; Vassiliou, G.S.; Bench, A.J.; Boyd, E.M.; Curtin, N.; et al. Acquired Mutation of the Tyrosine Kinase JAK2 in Human Myeloproliferative Disorders. Lancet 2005, 365, 1054–1061. [Google Scholar] [CrossRef]
- Nangalia, J.; Green, A.R. Myeloproliferative Neoplasms: From Origins to Outcomes. Blood 2017, 130, 2475–2483. [Google Scholar] [CrossRef]
- Todor, S.B.; Ichim, C.; Boicean, A.; Mihaila, R.G. Cardiovascular Risk in Philadelphia-Negative Myeloproliferative Neoplasms: Mechanisms and Implications—A Narrative Review. Curr. Issues Mol. Biol. 2024, 46, 8407–8423. [Google Scholar] [CrossRef]
- Thiele, J.; Kvasnicka, H.M.; Dietrich, H.; Stein, G.; Hann, M.; Kaminski, A.; Rathjen, N.; Metz, K.A.; Beelen, D.W.; Ditschkowski, M.; et al. Dynamics of Bone Marrow Changes in Patients with Chronic Idiopathic Myelofibrosis Following Allogeneic Stem Cell Transplantation. Histol. Histopathol. 2005, 20, 879–889. [Google Scholar] [CrossRef]
- Colotta, F.; Allavena, P.; Sica, A.; Garlanda, C.; Mantovani, A. Cancer-Related Inflammation, the Seventh Hallmark of Cancer: Links to Genetic Instability. Carcinogenesis 2009, 30, 1073–1081. [Google Scholar] [CrossRef]
- Demaria, S.; Pikarsky, E.; Karin, M.; Coussens, L.M.; Chen, Y.-C.; El-Omar, E.M.; Trinchieri, G.; Dubinett, S.M.; Mao, J.T.; Szabo, E.; et al. Cancer and Inflammation: Promise for Biologic Therapy. J. Immunother. 2010, 33, 335–351. [Google Scholar] [CrossRef]
- Li, F.; Chen, Z.; Wang, S.; Yang, R. Clinical Study of Lymphocyte Subsets in Patients with BCR/ABL Negative Myeloproliferative Neoplasms. Blood 2023, 142, 6420. [Google Scholar] [CrossRef]
- Fu, X.Y.; Kessler, D.S.; Veals, S.A.; Levy, D.E.; Darnell, J.E. ISGF3, the Transcriptional Activator Induced by Interferon Alpha, Consists of Multiple Interacting Polypeptide Chains. Proc. Natl. Acad. Sci. USA 1990, 87, 8555–8559. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, A.; Naka, T.; Kubo, M. SOCS Proteins, Cytokine Signalling and Immune Regulation. Nat. Rev. Immunol. 2007, 7, 454–465. [Google Scholar] [CrossRef]
- Ungureanu, D.; Wu, J.; Pekkala, T.; Niranjan, Y.; Young, C.; Jensen, O.N.; Xu, C.-F.; Neubert, T.A.; Skoda, R.C.; Hubbard, S.R.; et al. The Pseudokinase Domain of JAK2 Is a Dual-Specificity Protein Kinase That Negatively Regulates Cytokine Signaling. Nat. Struct. Mol. Biol. 2011, 18, 971–976. [Google Scholar] [CrossRef] [PubMed]
- Tamiya, T.; Kashiwagi, I.; Takahashi, R.; Yasukawa, H.; Yoshimura, A. Suppressors of Cytokine Signaling (SOCS) Proteins and JAK/STAT Pathways: Regulation of T-Cell Inflammation by SOCS1 and SOCS3. Arter. Thromb. Vasc. Biol. 2011, 31, 980–985. [Google Scholar] [CrossRef] [PubMed]
- Walz, C.; Cross, N.C.P.; Van Etten, R.A.; Reiter, A. Comparison of Mutated ABL1 and JAK2 as Oncogenes and Drug Targets in Myeloproliferative Disorders. Leukemia 2008, 22, 1320–1334. [Google Scholar] [CrossRef]
- Smith, C.A.; Fan, G. The Saga of JAK2 Mutations and Translocations in Hematologic Disorders: Pathogenesis, Diagnostic and Therapeutic Prospects, and Revised World Health Organization Diagnostic Criteria for Myeloproliferative Neoplasms. Hum. Pathol. 2008, 39, 795–810. [Google Scholar] [CrossRef]
- Haricharan, S.; Li, Y. STAT Signaling in Mammary Gland Differentiation, Cell Survival and Tumorigenesis. Mol. Cell. Endocrinol. 2014, 382, 560–569. [Google Scholar] [CrossRef]
- Khwaja, A. The Role of Janus Kinases in Haemopoiesis and Haematological Malignancy. Br. J. Haematol. 2006, 134, 366–384. [Google Scholar] [CrossRef]
- Hookham, M.B.; Elliott, J.; Suessmuth, Y.; Staerk, J.; Ward, A.C.; Vainchenker, W.; Percy, M.J.; McMullin, M.F.; Constantinescu, S.N.; Johnston, J.A. The Myeloproliferative Disorder–Associated JAK2 V617F Mutant Escapes Negative Regulation by Suppressor of Cytokine Signaling 3. Blood 2007, 109, 4924–4929. [Google Scholar] [CrossRef] [PubMed]
- Pellegrino, R.; Paganelli, R.; Di Iorio, A.; Bandinelli, S.; Moretti, A.; Iolascon, G.; Sparvieri, E.; Tarantino, D.; Ferrucci, L. Temporal Trends, Sex Differences, and Age-Related Disease Influence in Neutrophil, Lymphocyte Count and Neutrophil to Lymphocyte-Ratio: Results from InCHIANTI Follow-up Study. Immun. Ageing 2023, 20, 46. [Google Scholar] [CrossRef] [PubMed]
- MacKinney, A.A. Effect of Aging on the Peripheral Blood Lymphocyte Count. J. Gerontol. 1978, 33, 213–216. [Google Scholar] [CrossRef]
- Choi, D.C.; Messali, N.; Uda, N.R.; Abu-Zeinah, G.; Kermani, P.; Yabut, M.M.; Lischer, H.E.L.; Castillo Tokumori, F.; Erdos, K.; Lehmann, T.; et al. JAK2V617F Impairs Lymphoid Differentiation in Myeloproliferative Neoplasms. Leukemia 2024, 38, 2487–2491. [Google Scholar] [CrossRef]
- Radtke, F.; Wilson, A.; Stark, G.; Bauer, M.; Van Meerwijk, J.; MacDonald, H.R.; Aguet, M. Deficient T Cell Fate Specification in Mice with an Induced Inactivation of Notch1. Immunity 1999, 10, 547–558. [Google Scholar] [CrossRef]
- Robey, E.A.; Bluestone, J.A. Notch Signaling in Lymphocyte Development and Function. Curr. Opin. Immunol. 2004, 16, 360–366. [Google Scholar] [CrossRef]
- Swierczek, S.; Nausova, J.; Jelinek, J.; Liu, E.; Roda, P.; Kucerova, J.; Jarosova, M.; Urbankova, H.; Indrak, K.; Prchal, J.T.; et al. Concomitant JAK2 V617F—Positive Polycythemia Vera and B-cell Chronic Lymphocytic Leukemia in Three Patients Originating from Two Separate Hematopoietic Stem Cells. Am. J. Hematol. 2013, 88, 157–158. [Google Scholar] [CrossRef]
- Vannucchi, A.M. Insights into the Pathogenesis and Management of Thrombosis in Polycythemia Vera and Essential Thrombocythemia. Intern. Emerg. Med. 2010, 5, 177–184. [Google Scholar] [CrossRef]
- Choi, D.C.; Messali, N.; Abu-Zeinah, G.; Kermani, P.; Yabut, M.M.; Castillo Tokumori, F.; Erdos, K.; Scandura, J.M.; Rao Uda, N.; Lischer, H.; et al. Hematopoietic Bias Drives Lymphopenia in Myeloproliferative Neoplasms. Blood 2024, 144, 1764. [Google Scholar] [CrossRef]
- Khan, A.R.; Hams, E.; Floudas, A.; Sparwasser, T.; Weaver, C.T.; Fallon, P.G. PD-L1hi B Cells Are Critical Regulators of Humoral Immunity. Nat. Commun. 2015, 6, 5997. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, G.; Wang, Z.; Liu, B.; Han, N.; Li, J.; Lu, C.; Liu, X.; Zhang, Q.; Yang, Q.; et al. PD-1-Expressing B Cells Suppress CD4+ and CD8+ T Cells via PD-1/PD-L1-Dependent Pathway. Mol. Immunol. 2019, 109, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Veletic, I.; Prijic, S.; Manshouri, T.; Nogueras-Gonzalez, G.M.; Verstovsek, S.; Estrov, Z. Altered T-Cell Subset Repertoire Affects Treatment Outcome of Patients with Myelofibrosis. Haematologica 2020, 106, 2384–2396. [Google Scholar] [CrossRef]
- Sørensen, A.L.; Bjørn, M.E.; Riley, C.H.; Holmstrøm, M.; Andersen, M.H.; Svane, I.M.; Mikkelsen, S.U.; Skov, V.; Kjær, L.; Hasselbalch, H.C.; et al. B-cell Frequencies and Immunoregulatory Phenotypes in Myeloproliferative Neoplasms: Influence of Ruxolitinib, Interferon-α2, or Combination Treatment. Eur. J. Haematol. 2019, 103, 351–361. [Google Scholar] [CrossRef]
- Barosi, G. An Immune Dysregulation in MPN. Curr. Hematol. Malig. Rep. 2014, 9, 331–339. [Google Scholar] [CrossRef]
- Ruprecht, C.R.; Gattorno, M.; Ferlito, F.; Gregorio, A.; Martini, A.; Lanzavecchia, A.; Sallusto, F. Coexpression of CD25 and CD27 Identifies FoxP3+ Regulatory T Cells in Inflamed Synovia. J. Exp. Med. 2005, 201, 1793–1803. [Google Scholar] [CrossRef]
- Keohane, C.; Kordasti, S.Y.; Seidl, T.; Abellan, P.P.; Thomas, N.S.B.; Mufti, G.J.; Harrison, C.N.; McLornan, D. JAK Inhibition Reduces CD25 High CD27+ FOXp3+ T Regulatory Cells and Causes a Silencing of T Effector Cells in Patients with Myeloproliferative Neoplasms Whilst Promoting a TH17 Phenotype. Blood 2013, 122, 4092. [Google Scholar] [CrossRef]
- Sutanto, H.; Ningtyas, M.C.; Rachma, B.; Pratiwi, L.; Fetarayani, D. Th17 Cells in Cancer: Plasticity-driven Immunopathology and Therapeutic Opportunity. Immunol. Cell. Biol. 2025, 103, 696–722. [Google Scholar] [CrossRef]
- Massa, M.; Rosti, V.; Campanelli, R.; Fois, G.; Barosi, G. Rapid and Long-Lasting Decrease of T-Regulatory Cells in Patients with Myelofibrosis Treated with Ruxolitinib. Leukemia 2014, 28, 449–451. [Google Scholar] [CrossRef]
- Zhu, J.; Paul, W.E. CD4 T Cells: Fates, Functions, and Faults. Blood 2008, 112, 1557–1569. [Google Scholar] [CrossRef] [PubMed]
- Romano, M.; Sollazzo, D.; Trabanelli, S.; Barone, M.; Polverelli, N.; Perricone, M.; Forte, D.; Luatti, S.; Cavo, M.; Vianelli, N.; et al. Mutations in JAK2 and Calreticulin Genes Are Associated with Specific Alterations of the Immune System in Myelofibrosis. OncoImmunology 2017, 6, e1345402. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Sindhu, H.; Kundra, A.; Yarotska, M.; Cheung, T.W.; Wang, J.-C. Comparison of Ruxolitinib, Momelotinib, and Pacritinib in the Inhibition of Immune Differentiation and Proliferation of T Cells in Myeloproliferative Neoplasm. Blood 2015, 126, 5203. [Google Scholar] [CrossRef]
- Vitale, M.; Chiesa, M.D.; Carlomagno, S.; Pende, D.; Aricò, M.; Moretta, L.; Moretta, A. NK-Dependent DC Maturation Is Mediated by TNFα and IFNγ Released upon Engagement of the NKp30 Triggering Receptor. Blood 2005, 106, 566–571. [Google Scholar] [CrossRef]
- López-Soto, A.; Gonzalez, S.; Smyth, M.J.; Galluzzi, L. Control of Metastasis by NK Cells. Cancer Cell 2017, 32, 135–154. [Google Scholar] [CrossRef]
- Di Vito, C.; Mikulak, J.; Mavilio, D. On the Way to Become a Natural Killer Cell. Front. Immunol. 2019, 10, 1812. [Google Scholar] [CrossRef]
- Yeap, W.H.; Wong, K.L.; Shimasaki, N.; Teo, E.C.Y.; Quek, J.K.S.; Yong, H.X.; Diong, C.P.; Bertoletti, A.; Linn, Y.C.; Wong, S.C. CD16 Is Indispensable for Antibody-Dependent Cellular Cytotoxicity by Human Monocytes. Sci. Rep. 2016, 6, 34310. [Google Scholar] [CrossRef]
- Van Acker, H.H.; Capsomidis, A.; Smits, E.L.; Van Tendeloo, V.F. CD56 in the Immune System: More Than a Marker for Cytotoxicity? Front. Immunol. 2017, 8, 892. [Google Scholar] [CrossRef]
- Riley, C.H.; Hansen, M.; Brimnes, M.K.; Hasselbalch, H.C.; Bjerrum, O.W.; Straten, P.T.; Svane, I.M.; Jensen, M.K. Expansion of Circulating CD56bright Natural Killer Cells in Patients with JAK2-positive Chronic Myeloproliferative Neoplasms during Treatment with Interferon-α. Eur. J. Haematol. 2015, 94, 227–234. [Google Scholar] [CrossRef]
- Kvasnicka, H.M.; Thiele, J.; Bueso-Ramos, C.E.; Sun, W.; Cortes, J.; Kantarjian, H.M.; Verstovsek, S. Long-Term Effects of Ruxolitinib versus Best Available Therapy on Bone Marrow Fibrosis in Patients with Myelofibrosis. J. Hematol. Oncol. 2018, 11, 42. [Google Scholar] [CrossRef]
- Elli, E.M.; Baratè, C.; Mendicino, F.; Palandri, F.; Palumbo, G.A. Mechanisms Underlying the Anti-Inflammatory and Immunosuppressive Activity of Ruxolitinib. Front. Oncol. 2019, 9, 1186. [Google Scholar] [CrossRef]
- Schönberg, K.; Rudolph, J.; Vonnahme, M.; Parampalli Yajnanarayana, S.; Cornez, I.; Hejazi, M.; Manser, A.R.; Uhrberg, M.; Verbeek, W.; Koschmieder, S.; et al. JAK Inhibition Impairs NK Cell Function in Myeloproliferative Neoplasms. Cancer Res. 2015, 75, 2187–2199. [Google Scholar] [CrossRef] [PubMed]
- Haage, T.R.; Charakopoulos, E.; Bhuria, V.; Baldauf, C.K.; Korthals, M.; Handschuh, J.; Müller, P.; Li, J.; Harit, K.; Nishanth, G.; et al. Neutrophil-Specific Expression of JAK2-V617F or CALRmut Induces Distinct Inflammatory Profiles in Myeloproliferative Neoplasia. J. Hematol. Oncol. 2024, 17, 43. [Google Scholar] [CrossRef] [PubMed]
- Khatib-Massalha, E.; Di Buduo, C.A.; Chédeville, A.L.; Ho, Y.-H.; Zhu, Y.; Grockowiak, E.; Date, Y.; Khuat, L.T.; Fang, Z.; Quesada-Salas, J.; et al. Defective Neutrophil Clearance in JAK2V617F Myeloproliferative Neoplasms Drives Myelofibrosis via Immune Checkpoint CD24. Blood J. 2025, 146, 717–731. [Google Scholar] [CrossRef] [PubMed]
- Kiem, D.; Wagner, S.; Magnes, T.; Egle, A.; Greil, R.; Melchardt, T. The Role of Neutrophilic Granulocytes in Philadelphia Chromosome Negative Myeloproliferative Neoplasms. Int. J. Mol. Sci. 2021, 22, 9555. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Rizo, V.; Martínez-Guzmán, M.A.; Iñiguez-Gutierrez, L.; García-Orozco, A.; Alvarado-Navarro, A.; Fafutis-Morris, M. Neutrophil Extracellular Traps and Its Implications in Inflammation: An Overview. Front. Immunol. 2017, 8, 81. [Google Scholar] [CrossRef]
- Elaskalani, O.; Abdol Razak, N.B.; Metharom, P. Neutrophil Extracellular Traps Induce Aggregation of Washed Human Platelets Independently of Extracellular DNA and Histones. Cell. Commun. Signal. 2018, 16, 24. [Google Scholar] [CrossRef]
- Wolach, O.; Sellar, R.S.; Martinod, K.; Cherpokova, D.; McConkey, M.; Chappell, R.J.; Silver, A.J.; Adams, D.; Castellano, C.A.; Schneider, R.K.; et al. Increased Neutrophil Extracellular Trap Formation Promotes Thrombosis in Myeloproliferative Neoplasms. Sci. Transl. Med. 2018, 10, eaan8292. [Google Scholar] [CrossRef]
- Silyutina, A.A.; Gin, I.I.; Prikhod’ko, S.S.; Zhuk, S.V.; Butylin, P.A.; Zaritskii, A.Y. Monocytes with Oncogenic Mutation JAK2 V617F as a Tool for Studies of the Pathogenic Mechanisms of Myelofibrosis. Bull. Exp. Biol. Med. 2018, 164, 569–575. [Google Scholar] [CrossRef]
- Verstovsek, S.; Manshouri, T.; Pilling, D.; Bueso-Ramos, C.E.; Newberry, K.J.; Prijic, S.; Knez, L.; Bozinovic, K.; Harris, D.M.; Spaeth, E.L.; et al. Role of Neoplastic Monocyte-Derived Fibrocytes in Primary Myelofibrosis. J. Exp. Med. 2016, 213, 1723–1740. [Google Scholar] [CrossRef]
- AbdulHameed, M.D.M.; Tawa, G.J.; Kumar, K.; Ippolito, D.L.; Lewis, J.A.; Stallings, J.D.; Wallqvist, A. Systems Level Analysis and Identification of Pathways and Networks Associated with Liver Fibrosis. PLoS ONE 2014, 9, e112193. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.K.; Holten-Andersen, M.N.; Riisbro, R.; De Nully Brown, P.; Larsen, M.B.; Kjeldsen, L.; Heickendorff, L.; Brünner, N.; Hasselbalch, H.C. Elevated Plasma Levels of TIMP-1 Correlate with Plasma suPAR/uPA in Patients with Chronic Myeloproliferative Disorders. Eur. J. Haematol. 2003, 71, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Vadikolia, C.M.; Tsatalas, C.; Anagnostopoulos, K.; Trypsianis, G.; Pantelidou, D.; Bazdiara, I.; Anastasiadis, A.; Spanoudakis, E.; Kotsianidis, I.; Margaritis, D.; et al. Proteolytic Matrix Metallopeptidases and Inhibitors in BCR-ABL1-Negative Myeloproliferative Neoplasms: Correlation with JAK2V617F Mutation Status. Acta Haematol. 2011, 126, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Barbui, T.; Thiele, J.; Vannucchi, A.M.; Tefferi, A. Myeloproliferative Neoplasms: Morphology and Clinical Practice. Am. J. Hematol. 2016, 91, 430–433. [Google Scholar] [CrossRef]
- Tefferi, A.; Vannucchi, A.M.; Barbui, T. Essential Thrombocythemia: 2024 Update on Diagnosis, Risk Stratification, and Management. Am. J. Hematol. 2024, 99, 697–718. [Google Scholar] [CrossRef]
- Barbui, T.; Thiele, J.; Gisslinger, H.; Kvasnicka, H.M.; Vannucchi, A.M.; Guglielmelli, P.; Orazi, A.; Tefferi, A. The 2016 WHO Classification and Diagnostic Criteria for Myeloproliferative Neoplasms: Document Summary and in-Depth Discussion. Blood Cancer J. 2018, 8, 15. [Google Scholar] [CrossRef]
- Ciurea, S.O.; Merchant, D.; Mahmud, N.; Ishii, T.; Zhao, Y.; Hu, W.; Bruno, E.; Barosi, G.; Xu, M.; Hoffman, R. Pivotal Contributions of Megakaryocytes to the Biology of Idiopathic Myelofibrosis. Blood 2007, 110, 986–993. [Google Scholar] [CrossRef]
- Masselli, E.; Carubbi, C.; Gobbi, G.; Mirandola, P.; Galli, D.; Martini, S.; Bonomini, S.; Crugnola, M.; Craviotto, L.; Aversa, F.; et al. Protein Kinase Cɛ Inhibition Restores Megakaryocytic Differentiation of Hematopoietic Progenitors from Primary Myelofibrosis Patients. Leukemia 2015, 29, 2192–2201. [Google Scholar] [CrossRef]
- Balduini, A.; Badalucco, S.; Pugliano, M.T.; Baev, D.; De Silvestri, A.; Cattaneo, M.; Rosti, V.; Barosi, G. In Vitro Megakaryocyte Differentiation and Proplatelet Formation in Ph-Negative Classical Myeloproliferative Neoplasms: Distinct Patterns in the Different Clinical Phenotypes. PLoS ONE 2011, 6, e21015. [Google Scholar] [CrossRef]
- Marneth, A.E.; Mullally, A. Busy Signal: Platelet-Derived Growth Factor Activation in Myelofibrosis. Haematologica 2020, 105, 1988–1990. [Google Scholar] [CrossRef]
- Woods, B.; Chen, W.; Chiu, S.; Marinaccio, C.; Fu, C.; Gu, L.; Bulic, M.; Yang, Q.; Zouak, A.; Jia, S.; et al. Activation of JAK/STAT Signaling in Megakaryocytes Sustains Myeloproliferation In Vivo. Clin. Cancer Res. 2019, 25, 5901–5912. [Google Scholar] [CrossRef] [PubMed]
- Malara, A.; Abbonante, V.; Zingariello, M.; Franco Migliaccio, A.R.; Balduini, A. Megakaryocyte Contribution to Bone Marrow Fibrosis: Many Arrows in the Quiver. Mediterr. J. Hematol. Infect. Dis. 2018, 10, e2018068. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, R.; Gangat, N.; Jimma, T.; Finke, C.M.; Lasho, T.L.; Pardanani, A.; Tefferi, A. Plasma Cytokines in Polycythemia Vera: Phenotypic Correlates, Prognostic Relevance, and Comparison with Myelofibrosis. Am. J. Hematol. 2012, 87, 1003–1005. [Google Scholar] [CrossRef] [PubMed]
- Cacemiro, M.D.C.; Cominal, J.G.; Tognon, R.; Nunes, N.D.S.; Simões, B.P.; Figueiredo-Pontes, L.L.D.; Catto, L.F.B.; Traina, F.; Souto, E.X.; Zambuzi, F.A.; et al. Philadelphia-Negative Myeloproliferative Neoplasms as Disorders Marked by Cytokine Modulation. Hematol. Transfus. Cell Ther. 2018, 40, 120–131. [Google Scholar] [CrossRef]
- Chang, J.T. Pathophysiology of Inflammatory Bowel Diseases. N. Engl. J. Med. 2020, 383, 2652–2664. [Google Scholar] [CrossRef]
- Geissler, K.; Jäger, E.; Öhler, L.; Gisslinger, H.; Jäger, U.; Lechner, K. Interleukin-10 Inhibits Autonomous Myelopoiesis in Patients with Myelofibrosis. Eur. J. Haematol. 2015, 95, 239–243. [Google Scholar] [CrossRef]
- Wong, W.J.; Baltay, M.; Getz, A.; Fuhrman, K.; Aster, J.C.; Hasserjian, R.P.; Pozdnyakova, O. Gene Expression Profiling Distinguishes Prefibrotic from Overtly Fibrotic Myeloproliferative Neoplasms and Identifies Disease Subsets with Distinct Inflammatory Signatures. PLoS ONE 2019, 14, e0216810. [Google Scholar] [CrossRef]
- Masselli, E.; Pozzi, G.; Carubbi, C.; Pagliaro, L.; Follini, E.; Cambò, B.; Crugnola, M.; Gobbi, G.; Mirandola, P.; Aversa, F.; et al. Higher Monocyte Chemoattractant Protein-1 Levels in Myelofibrosis Are Sustained By the Rs1024611 Single Nucleotide Polymorphism and Correlate with Disease Subtype and Severity. Blood 2018, 132, 1785. [Google Scholar] [CrossRef]
- Panteli, K.E.; Hatzimichael, E.C.; Bouranta, P.K.; Katsaraki, A.; Seferiadis, K.; Stebbing, J.; Bourantas, K.L. Serum Interleukin (IL)-1, IL-2, sIL-2Ra, IL-6 and Thrombopoietin Levels in Patients with Chronic Myeloproliferative Diseases. Br. J. Haematol. 2005, 130, 709–715. [Google Scholar] [CrossRef]
- Melo-Cardenas, J.; Bezavada, L.; Crawford, J.C.; Gurbuxani, S.; Cotton, A.; Kang, G.; Gossett, J.; Marinaccio, C.; Weinberg, R.; Hoffman, R.; et al. IL-13/IL-4 Signaling Contributes to Fibrotic Progression of the Myeloproliferative Neoplasms. Blood 2022, 140, 2805–2817. [Google Scholar] [CrossRef]
- Oppmann, B.; Lesley, R.; Blom, B.; Timans, J.C.; Xu, Y.; Hunte, B.; Vega, F.; Yu, N.; Wang, J.; Singh, K.; et al. Novel P19 Protein Engages IL-12p40 to Form a Cytokine, IL-23, with Biological Activities Similar as Well as Distinct from IL-12. Immunity 2000, 13, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Veldhoen, M.; Hocking, R.J.; Atkins, C.J.; Locksley, R.M.; Stockinger, B. TGFβ in the Context of an Inflammatory Cytokine Milieu Supports De Novo Differentiation of IL-17-Producing T Cells. Immunity 2006, 24, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Tefferi, A.; Vaidya, R.; Caramazza, D.; Finke, C.; Lasho, T.; Pardanani, A. Circulating Interleukin (IL)-8, IL-2R, IL-12, and IL-15 Levels Are Independently Prognostic in Primary Myelofibrosis: A Comprehensive Cytokine Profiling Study. J. Clin. Oncol. 2011, 29, 1356–1363. [Google Scholar] [CrossRef] [PubMed]
- Skov, V.; Larsen, T.S.; Thomassen, M.; Riley, C.H.; Jensen, M.K.; Bjerrum, O.W.; Kruse, T.A.; Hasselbalch, H.C. Molecular Profiling of Peripheral Blood Cells from Patients with Polycythemia Vera and Related Neoplasms: Identification of Deregulated Genes of Significance for Inflammation and Immune Surveillance. Leuk. Res. 2012, 36, 1387–1392. [Google Scholar] [CrossRef] [PubMed]
- Subotički, T.; Mitrović Ajtić, O.; Živković, E.; Diklić, M.; Đikić, D.; Tošić, M.; Beleslin-Čokić, B.; Dragojević, T.; Gotić, M.; Santibanez, J.F.; et al. VEGF Regulation of Angiogenic Factors via Inflammatory Signaling in Myeloproliferative Neoplasms. Int. J. Mol. Sci. 2021, 22, 6671. [Google Scholar] [CrossRef]
- Boissinot, M.; Cleyrat, C.; Vilaine, M.; Jacques, Y.; Corre, I.; Hermouet, S. Anti-Inflammatory Cytokines Hepatocyte Growth Factor and Interleukin-11 Are over-Expressed in Polycythemia Vera and Contribute to the Growth of Clonal Erythroblasts Independently of JAK2V617F. Oncogene 2011, 30, 990–1001. [Google Scholar] [CrossRef]
- Boissinot, M.; Vilaine, M.; Hermouet, S. The Hepatocyte Growth Factor (HGF)/Met Axis: A Neglected Target in the Treatment of Chronic Myeloproliferative Neoplasms? Cancers 2014, 6, 1631–1669. [Google Scholar] [CrossRef]
- Øbro, N.F.; Grinfeld, J.; Belmonte, M.; Irvine, M.; Shepherd, M.S.; Rao, T.N.; Karow, A.; Riedel, L.M.; Harris, O.B.; Baxter, E.J.; et al. Longitudinal Cytokine Profiling Identifies GRO-α and EGF as Potential Biomarkers of Disease Progression in Essential Thrombocythemia. HemaSphere 2020, 4, e371. [Google Scholar] [CrossRef]
- Collinson, R.J.; Mazza-Parton, A.; Fuller, K.A.; Linden, M.D.; Erber, W.N.; Guo, B.B. Gene Expression of CXCL1 (GRO-α) and EGF by Platelets in Myeloproliferative Neoplasms. HemaSphere 2020, 4, e490. [Google Scholar] [CrossRef]
- Ting, S.; Lei, Z.; Yang, R. Neuropathy in the Altered Bone Marrow Microenvironment of Patients with Essential Thrombocythemia and the Effects of Interferonα-2b on Them. Blood 2017, 130, 2933. [Google Scholar] [CrossRef]
- Mascarenhas, J.; Hoffman, R. Ruxolitinib: The First FDA Approved Therapy for the Treatment of Myelofibrosis. Clin. Cancer Res. 2012, 18, 3008–3014. [Google Scholar] [CrossRef]
- Raedler, L.A. Jakafi (Ruxolitinib): First FDA-Approved Medication for the Treatment of Patients with Polycythemia Vera. Am. Health Drug Benefits 2015, 8, 75–79. [Google Scholar]
- Roca Mora, M.M.; Afzal, F.; Guimaraes, C.R.; Cunha, L.M.; Godoi, A.; Marcolin, P.; Valenzuela, S.A. Efficacy and Safety of Ruxolitinib vs Best Available Therapy for Polycythemia Vera: An Updated Systematic Review and Meta-analysis. APMIS 2024, 132, 775–786. [Google Scholar] [CrossRef]
- Yi, C.A.; Tam, C.S.; Verstovsek, S. Efficacy and Safety of Ruxolitinib in the Treatment of Patients with Myelofibrosis. Future Oncol. 2015, 11, 719–733. [Google Scholar] [CrossRef]
- Pardanani, A.; Harrison, C.; Cortes, J.E.; Cervantes, F.; Mesa, R.A.; Milligan, D.; Masszi, T.; Mishchenko, E.; Jourdan, E.; Vannucchi, A.M.; et al. Safety and Efficacy of Fedratinib in Patients with Primary or Secondary Myelofibrosis: A Randomized Clinical Trial. JAMA Oncol. 2015, 1, 643. [Google Scholar] [CrossRef] [PubMed]
- Lamb, Y.N. Pacritinib: First Approval. Drugs 2022, 82, 831–838. [Google Scholar] [CrossRef]
- Gagelmann, N.; Bose, P.; Gupta, V.; McLornan, D.P.; Vachhani, P.; Al-Ali, H.-K.; Ali, H.; Treskes, P.; Buckley, S.; Roman-Torres, K.; et al. Consistency of Spleen and Symptom Reduction Regardless of Cytopenia in Patients with Myelofibrosis Treated with Pacritinib. Clin. Lymphoma Myeloma Leuk. 2024, 24, 796–803. [Google Scholar] [CrossRef] [PubMed]
- Venugopal, S.; Mascarenhas, J. The Odyssey of Pacritinib in Myelofibrosis. Blood Adv. 2022, 6, 4905–4913. [Google Scholar] [CrossRef] [PubMed]
- Tefferi, A.; Pardanani, A. Momelotinib for Myelofibrosis: Our 14 Years of Experience with 100 Clinical Trial Patients and Recent FDA Approval. Blood Cancer J. 2024, 14, 47. [Google Scholar] [CrossRef]
- Aldalal’Ah, M.; Al-Nusair, J.; Al-Khateeb, N.; Alqudah, M.; El-shatel, O.; AlMalkawi, F.M.; Khayyat, O.; AlSeid, S.H.; Khasawneh, H.A.; Soudah, O.; et al. Efficacy and Safety of Momelotinib in Myelofibrosis: A Systematic Review and Meta-Analysis with a Focus on Anemia Outcomes. Blood 2024, 144, 6652. [Google Scholar] [CrossRef]
- Verstovsek, S.; Mesa, R.; Gupta, V.; Lavie, D.; Dubruille, V.; Cambier, N.; Platzbecker, U.; Hus, M.; Xicoy, B.; Oh, S.T.; et al. Momelotinib Long-Term Safety and Survival in Myelofibrosis: Integrated Analysis of Phase 3 Randomized Controlled Trials. Blood Adv. 2023, 7, 3582–3591. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, G.; Cimen Bozkus, C.; Moshier, E.; Dougherty, M.; Bar-Natan, M.; Sandy, L.; Johnson, K.; Foster, J.E.; Som, T.; Macrae, M.; et al. PD-1 Inhibition in Advanced Myeloproliferative Neoplasms. Blood Adv. 2021, 5, 5086–5097. [Google Scholar] [CrossRef]
- Abou Dalle, I.; Kantarjian, H.; Daver, N.; Masarova, L.; Pemmaraju, N.; Bose, P.; Garcia-Manero, G.; Verstovsek, S. Phase II Study of Single-Agent Nivolumab in Patients with Myelofibrosis. Ann. Hematol. 2021, 100, 2957–2960. [Google Scholar] [CrossRef] [PubMed]
- Holmström, M.O.; Riley, C.H.; Skov, V.; Svane, I.M.; Hasselbalch, H.C.; Andersen, M.H. Spontaneous T-Cell Responses against the Immune Check Point Programmed-Death-Ligand 1 (PD-L1) in Patients with Chronic Myeloproliferative Neoplasms Correlate with Disease Stage and Clinical Response. OncoImmunology 2018, 7, e1433521. [Google Scholar] [CrossRef] [PubMed]
- Verachi, P.; Martelli, F.; Zingariello, M.; Gobbo, F.; Sarli, G.; Crispino, J.D.; Massucci, M.T.; Brandolini, L.; Giorgio, C.; Allegretti, M.; et al. The CXCL1 Inhibitor Reparixin Rescues Myelofibrosis in the Gata1Low Model of the Disease. Blood 2021, 138, 3579. [Google Scholar] [CrossRef]
- Glynn, P.C.; Henney, E.; Hall, I.P. The Selective CXCR2 Antagonist SB272844 Blocks Interleukin-8 and Growth-Related Oncogene-α-Mediated Inhibition of Spontaneous Neutrophil Apoptosis. Pulm. Pharmacol. Ther. 2002, 15, 103–110. [Google Scholar] [CrossRef]
- Planagumà, A.; Domènech, T.; Pont, M.; Calama, E.; García-González, V.; López, R.; Aulí, M.; López, M.; Fonquerna, S.; Ramos, I.; et al. Combined Anti CXC Receptors 1 and 2 Therapy Is a Promising Anti-Inflammatory Treatment for Respiratory Diseases by Reducing Neutrophil Migration and Activation. Pulm. Pharmacol. Ther. 2015, 34, 37–45. [Google Scholar] [CrossRef]
- Chien, M.; Hsin, C.; Chou, L.S.; Chung, T.; Lin, C.; Weng, M.; Chou, M.; Chen, M.; Yang, S. Interleukin-23 Receptor Polymorphism as a Risk Factor for Oral Cancer Susceptibility. Head Neck 2012, 34, 551–556. [Google Scholar] [CrossRef]
- Che Mat, N.F.; Zhang, X.; Guzzo, C.; Gee, K. Interleukin-23-Induced Interleukin-23 Receptor Subunit Expression Is Mediated by the Janus Kinase/Signal Transducer and Activation of Transcription Pathway in Human CD4 T Cells. J. Interferon Cytokine Res. 2011, 31, 363–371. [Google Scholar] [CrossRef]
- Fotiadou, C.; Lazaridou, E.; Sotiriou, E.; Ioannides, D. Targeting IL-23 in Psoriasis: Current Perspectives. Psoriasis Targets Ther. 2018, 8, 1–5. [Google Scholar] [CrossRef]
- Gangemi, S.; Allegra, A.; Pace, E.; Alonci, A.; Ferraro, M.; Petrungaro, A.; Saitta, S.; Gerace, D.; Russo, S.; Penna, G.; et al. Evaluation of Interleukin-23 Plasma Levels in Patients with Polycythemia Vera and Essential Thrombocythemia. Cell. Immunol. 2012, 278, 91–94. [Google Scholar] [CrossRef]
- Gangat, N.; Marinaccio, C.; Swords, R.; Watts, J.M.; Gurbuxani, S.; Rademaker, A.; Fought, A.J.; Frankfurt, O.; Altman, J.K.; Wen, Q.J.; et al. Aurora Kinase A Inhibition Provides Clinical Benefit, Normalizes Megakaryocytes, and Reduces Bone Marrow Fibrosis in Patients with Myelofibrosis: A Phase I Trial. Clin. Cancer Res. 2019, 25, 4898–4906. [Google Scholar] [CrossRef] [PubMed]
- Mascarenhas, J.; Kosiorek, H.E.; Bhave, R.; Palmer, J.M.; Kuykendall, A.T.; Mesa, R.A.; Rampal, R.; Gerds, A.T.; Yacoub, A.; Pettit, K.M.; et al. Treatment of Myelofibrosis Patients with the TGF-β 1/3 Inhibitor AVID200 (MPN-RC 118) Induces a Profound Effect on Platelet Production. Blood 2021, 138, 142. [Google Scholar] [CrossRef]
- Mascarenhas, J.; Li, T.; Sandy, L.; Newsom, C.; Petersen, B.; Godbold, J.; Hoffman, R. Anti-Transforming Growth Factor-β Therapy in Patients with Myelofibrosis. Leuk. Lymphoma 2014, 55, 450–452. [Google Scholar] [CrossRef] [PubMed]
- Gerds, A.T.; Harrison, C.; Kiladjian, J.-J.; Mesa, R.; Vannucchi, A.M.; Komrokji, R.; Bose, P.; Kremyanskaya, M.; Mead, A.J.; Gotlib, J.; et al. Safety and Efficacy of Luspatercept for the Treatment of Anemia in Patients with Myelofibrosis. Blood Adv. 2024, 8, 4511–4522. [Google Scholar] [CrossRef]
- Bose, P.; Masarova, L.; Pemmaraju, N.; Bledsoe, S.D.; Daver, N.G.; Jabbour, E.J.; Kadia, T.M.; Estrov, Z.; Kornblau, S.M.; Andreeff, M.; et al. Sotatercept for Anemia of Myelofibrosis: A Phase II Investigator-Initiated Study. Haematologica 2024, 109, 2660–2664. [Google Scholar] [CrossRef]
- Alkharabsheh, O.; Frankel, A.E. Clinical Activity and Tolerability of SL-401 (Tagraxofusp): Recombinant Diphtheria Toxin and Interleukin-3 in Hematologic Malignancies. Biomedicines 2019, 7, 6. [Google Scholar] [CrossRef]
- Pemmaraju, N.; Gupta, V.; Ali, H.; Yacoub, A.; Wang, E.S.; Lee, S.; Schiller, G.J.; Sardone, M.; Wysowskyj, H.; Chen, J.; et al. Results from a Phase 1/2 Clinical Trial of Tagraxofusp (SL-401) in Patients with Intermediate, or High Risk, Relapsed/Refractory Myelofibrosis. Blood 2019, 134, 558. [Google Scholar] [CrossRef]
- Benetatos, C.A.; Mitsuuchi, Y.; Burns, J.M.; Neiman, E.M.; Condon, S.M.; Yu, G.; Seipel, M.E.; Kapoor, G.S.; LaPorte, M.G.; Rippin, S.R.; et al. Birinapant (TL32711), a Bivalent SMAC Mimetic, Targets TRAF2-Associated cIAPs, Abrogates TNF-Induced NF-κB Activation, and Is Active in Patient-Derived Xenograft Models. Mol. Cancer Ther. 2014, 13, 867–879. [Google Scholar] [CrossRef]
- Du, C.; Fang, M.; Li, Y.; Li, L.; Wang, X. Smac, a Mitochondrial Protein That Promotes Cytochrome c–Dependent Caspase Activation by Eliminating IAP Inhibition. Cell 2000, 102, 33–42. [Google Scholar] [CrossRef]
- Craver, B.M.; Nguyen, T.K.; Nguyen, J.; Nguyen, H.; Huynh, C.; Morse, S.J.; Fleischman, A.G. The SMAC Mimetic LCL-161 Selectively Targets JAK2V617F Mutant Cells. Exp. Hematol. Oncol. 2020, 9, 1. [Google Scholar] [CrossRef]
- Lucero, H.A.; Kagan, H.M. Lysyl Oxidase: An Oxidative Enzyme and Effector of Cell Function. Cell. Mol. Life Sci. 2006, 63, 2304–2316. [Google Scholar] [CrossRef]
- Eliades, A.; Papadantonakis, N.; Bhupatiraju, A.; Burridge, K.A.; Johnston-Cox, H.A.; Migliaccio, A.R.; Crispino, J.D.; Lucero, H.A.; Trackman, P.C.; Ravid, K. Control of Megakaryocyte Expansion and Bone Marrow Fibrosis by Lysyl Oxidase. J. Biol. Chem. 2011, 286, 27630–27638. [Google Scholar] [CrossRef]
- Leiva, O.; Hobbs, G.; Ravid, K.; Libby, P. Cardiovascular Disease in Myeloproliferative Neoplasms. JACC CardioOncol. 2022, 4, 166–182. [Google Scholar] [CrossRef]
- How, J.; Liu, Y.; Lombardi Story, J.; Neuberg, D.S.; Ravid, K.; Jarolimek, W.; Charlton, B.; Hobbs, G.S. Evaluation of a Pan-Lysyl Oxidase Inhibitor, Pxs-5505, in Myelofibrosis: A Phase I, Randomized, Placebo Controlled Double Blind Study in Healthy Adults. Blood 2020, 136, 16. [Google Scholar] [CrossRef]
Immune Cells | In MPNs | Under Treatment | Study Type | Reference |
---|---|---|---|---|
CD4+ T cells | ↑ Activation, ↑ PD-1 expression, effector shift | ↓ PD-1+ cells, restoration toward resting phenotype | Clinical, prospective | [34] |
CD8+ T cells | ↑ PD-1+ exhausted phenotype, ↓ proliferation and cytotoxic function | ↓ PD-1+ cells, improved viability and function | Clinical, prospective | [34] |
Regulatory T cells (Tregs) | ↓ Frequency, dysfunctional, contributes to chronic inflammation | ↓ Further decreased with JAK inhibitors, shift toward Th17 | Clinical, prospective | [37,38,40,41] |
Th17 cells | ↑ Pro-inflammatory, potential tumor-promoting or anti-tumor roles | ↑ Dominant profile post-JAK inhibition | Clinical, prospective | [38,39,41] |
PD-L1+ B cells (Bregs) | ↑ Abundant, immunosuppressive, resistant to anti-CD20 | ↓ With ruxolitinib or ruxolitinib + IFNα2b | Clinical, retrospective | [32,35,36] |
PD-1+ B cells | ↑ Immunoregulatory, suppress T-cell proliferation via PD-L1 | ↓ After therapy | Clinical, retrospective | [33,35] |
NK cells | ↓ Number and cytotoxic function | ↓ NK cell numbers due to impaired maturation; | Clinical, cross-sectional | [49,52] |
Dendritic cells (DCs) | ↓ Frequency, impaired monocyte-to-DC differentiation | Further suppression under ruxolitinib, with ↓ secretion of IL-12 and IL-15 | Clinical, cross-sectional | [42,43] |
Innate Lymphoid Cells (ILCs) | JAK2: ↑ ILC1; | Mutation-dependent modulation; effect not fully reversed | Clinical, cross-sectional | [42,43] |
Category | Cytokine/Factor | MPN Subtype | Matrix Used | Key Findings | References |
---|---|---|---|---|---|
Pro-inflammatory cytokines | IL-2, IL-2R, IL-6 | PMF | Plasma | Reflect T-cell activation and chronic inflammation | [73] |
IL-12, IL-17, TNF-α, IFN-α | PMF | Plasma | Promote Th1/Th17 cell differentiation and immune dysregulation | [74,75] | |
IL-23 | PV | Plasma | Supports Th17 maintenance; selectively elevated in PV | [81,82] | |
Anti-inflammatory cytokines | IL-1RA, IL-4, IL-10 | PMF | Plasma | Upregulated; IL-10 inhibits myelopoiesis (CFU-GM inhibition) | [73,74,76] |
Fibrosis-associated cytokines | TGF-β, FGF, TPO | PMF | Plasma | Drive marrow fibrosis and remodeling | [73,79] |
IL-13 | PMF | Plasma from humans, BM aspirate and plasma from mice | Enhances TGF-β expression, collagen biosynthesis; expands mutant megakaryocytes | [80] | |
Chemokines | MIP-1β, RANTES, MCP-1 | PMF | Plasma | Promote monocyte recruitment and stromal activation | [73,74,77] |
MCP-1 -2518 A/G (SNP) | PMF (sMF) | Peripheral blood | Linked to severe disease; germline variation affects chemokine expression and fibrosis | [78] | |
GRO-α (CXCL1) | ET ↑, PMF ↓ | Blood serum | Elevated in ET; paradoxically low in PMF | [88,89] | |
Angiogenic factors | VEGF | PV, PMF | Peripheral blood | Increased in PV and PMF; promotes eNOS, HIF-1α, especially in PV | [83,84,85] |
IL-6 + VEGF | PV | Peripheral blood | VEGF–IL-6 positive feedback loop contributes to vascular remodeling | [85] | |
Growth factors | HGF, IL-11 | PV | Blood serum and BM aspirate | Promote STAT3 activation; mutation-independent mechanism supporting JAK2V617F cell growth | [86,87] |
Hematopoietic support | SCF (Stem Cell Factor) | ET (↓) | BM aspirate | Low SCF impairs CD34+ HSPC expansion, BM microenvironment, and Treg differentiation | [90] |
Agent | Mechanism of Action | Clinical Status | Findings | Reference |
---|---|---|---|---|
Checkpoint inhibitors | ||||
Pembrolizumab | Anti–PD-1 checkpoint blockade | Phase II, single-arm—negative; study stopped after stage 1 | No objective responses; immune profiling suggests enhanced T-cell activity without clinical benefit; well tolerated | [102] |
Nivolumab | Phase II—negative/terminated early | No objective responses; 5/8 stable disease (median 3.3 mo); median OS 6.1 mo; study stopped early | [103] | |
PD-L1 peptide vaccine | Induces anti-regulatory T-cell response | Preclinical | 71% displayed spontaneous PD-L1–specific T-cell responses; stronger in non-advanced vs. advanced MPN; responses mainly CD4+, no safety assessment | [104] |
CXCR1/2 inhibition | ||||
Reparixin | CXCR1/2 inhibitor; reduces TGF-β in megakaryocytes | Preclinical | Reduced BM and splenic fibrosis in GATA1low mice | [105] |
Aurora kinase inhibitors | ||||
Alisertib | Inhibits Aurora kinase A | Phase I; safety and preliminary efficacy demonstrated | Reduced splenomegaly and symptom burden; normalized atypical megakaryocytes; decreased BM fibrosis in sequential biopsies; partial reduction in allele burden | [112] |
Others | ||||
TGF-β trap | Target fibrosis-inducing cytokines | Phase Ib | Modest clinical benefit (spleen, symptoms, progenitor restoration) | [113,114] |
Luspatercept | Enhances erythropoiesis | Phase II | Improved hemoglobin and reduced transfusion burden; symptom improvement; stable spleen size | [115] |
Sotatercept | Enhances erythropoiesis | Phase II | Increased Hb in non-TD; achieved transfusion independence in RBC-TD; effective as monotherapy and in combination with ruxolitinib | [116] |
Tagraxofusp | Targets CD123 (IL-3Rα) on malignant cells | Phase I/II | 27 MF patients treated; 53% spleen reduction in evaluable patients, 45% symptomatic response; better responses in patients with monocytosis; | [118] |
SMAC mimetics (LCL161) | SMAC mimetic | Preclinical | JAK2V617F-mutant cells hypersensitive; reduces splenomegaly and potentially fibrosis in mice; effect dependent on JAK2 kinase and NFĸB; exogenous TNFα or JAK inhibition alters efficacy | [121] |
PXS-5505 (pan-LOX inhibitor) | Pan-lysyl oxidase inhibitor | Phase I | Well tolerated; achieved strong plasma LOX inhibition; PK/PD supports daily dosing; | [125] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Todor, S.B.; Mihaila, R.G. Cytokine Landscapes, Immune Dysregulation, and Treatment Perspectives in Philadelphia-Negative Myeloproliferative Neoplasms: A Narrative Review. J. Clin. Med. 2025, 14, 6328. https://doi.org/10.3390/jcm14176328
Todor SB, Mihaila RG. Cytokine Landscapes, Immune Dysregulation, and Treatment Perspectives in Philadelphia-Negative Myeloproliferative Neoplasms: A Narrative Review. Journal of Clinical Medicine. 2025; 14(17):6328. https://doi.org/10.3390/jcm14176328
Chicago/Turabian StyleTodor, Samuel B., and Romeo Gabriel Mihaila. 2025. "Cytokine Landscapes, Immune Dysregulation, and Treatment Perspectives in Philadelphia-Negative Myeloproliferative Neoplasms: A Narrative Review" Journal of Clinical Medicine 14, no. 17: 6328. https://doi.org/10.3390/jcm14176328
APA StyleTodor, S. B., & Mihaila, R. G. (2025). Cytokine Landscapes, Immune Dysregulation, and Treatment Perspectives in Philadelphia-Negative Myeloproliferative Neoplasms: A Narrative Review. Journal of Clinical Medicine, 14(17), 6328. https://doi.org/10.3390/jcm14176328