The Role of Early Rehabilitation in Treatment of Acute Pulmonary Embolism—A Narrative Review
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Pathogenesis
3.2. Health Implications of Pulmonary Embolism
3.2.1. Physical Disfunctions
3.2.2. Increased Pulmonary Vascular Resistance (PVR)
3.2.3. Right Ventricular (RV) Dysfunction
3.2.4. Ventilation-Perfusion (V/Q) Mismatch
3.2.5. Inflammation
3.2.6. Psychological Morbidity and Life Outcomes
3.2.7. Heterogeneity of the Pulmonary Embolism Population
3.2.8. Risk Stratification in Acute PE
- High risk: Defined by hemodynamic instability, including sustained hypotension (systolic blood pressure < 90 mmHg for >15 minutes) or cardiogenic shock.
- Intermediate risk: Hemodynamically stable patients exhibiting right ventricular dysfunction on imaging or elevated cardiac biomarkers (e.g., troponin).
3.3. Pharmacological Treatment Strategies
- Low-molecular-weight heparins (LMWHs) achieve therapeutic anticoagulant levels more rapidly than VKAs such as warfarin, a factor of critical importance in the early phase of treatment.
- Time to therapeutic anticoagulation is a key determinant of clinical outcomes, with expedited attainment of effective drug levels associated with a reduced risk of recurrent PE and VTE.
- LMWHs are preferred during the initial treatment phase, particularly in patients with active malignancy or those with elevated bleeding risk, due to their predictable pharmacodynamics, subcutaneous administration, and favorable safety profile.
3.4. Pulmonary Rehabilitation
3.4.1. Physical Conditioning
3.4.2. Respiratory Exercises
3.4.3. External Ventilation Support
3.4.4. Health Prophylaxis
3.4.5. Psychological Support
3.4.6. Supplementation
3.4.7. Telehealth-Enabled Rehabilitation Approaches
3.4.8. Baseline Factors Influencing Early Rehabilitation
- Hemodynamic status: High-risk patients require full hemodynamic stabilization prior to initiating any rehabilitation efforts.
- Respiratory function: The presence and severity of hypoxemia or dyspnea dictate the feasibility and type of respiratory interventions.
- Comorbidities: Conditions such as chronic obstructive pulmonary disease (COPD) or heart failure may limit exercise capacity and influence rehabilitation intensity.
- Age and baseline functional status: Older adults and individuals with preexisting mobility limitations necessitate adapted rehabilitation protocols.
3.4.9. Rehabilitation Strategies According to Risk Level
- High risk: Focus remains on clinical stabilization; rehabilitation is deferred until hemodynamic parameters normalize.
- Intermediate risk: Upon stabilization, early initiation of supervised, moderate-intensity physical and respiratory therapy is appropriate, with continuous monitoring of vital signs.
- Low risk: Comprehensive rehabilitation may begin promptly and include aerobic and respiratory exercises, education on disease management, and strategies to address modifiable risk factors.
3.4.10. Early Rehabilitation of Patients with PE in ICU Settings
3.4.11. Differentiate Rehabilitation Approaches by Etiology and Comorbidity
3.4.12. Individualization of Rehabilitation Parameters
- Assessment of exercise tolerance: Repeated functional testing allows for the adjustment of exercise intensity.
- Monitoring of clinical symptoms: Real-time observation of dyspnea, chest discomfort, and fatigue enables dynamic modifications to the rehabilitation plan.
- Patient-centered care: Incorporating patient preferences, motivation, and engagement significantly enhances adherence and therapeutic outcomes.
3.4.13. The Role of a Multidisciplinary Team
3.4.14. Critical Analysis of Exercise and Respiratory Training Recommendations
3.5. Clinical Relevance of Pulmonary Physiotherapy
4. Insights and Perspectives
Limitations of Study
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ACBT | Active Cycle of Breathing Techniques |
AECOPD | Acute Exacerbation of Chronic Obstructive Pulmonary Disease |
CHD-PEBBS | Coronary Heart Disease—Perceived Exercise Barriers Scale |
CO2 | Carbon Dioxide |
COPD | Chronic Obstructive Pulmonary Disease |
COVID-19 | Coronavirus Disease 2019 |
CPAP | Continuous Positive Airway Pressure |
CT | Computed Tomography |
CTEPH | Chronic Thromboembolic Pulmonary Hypertension |
DOAC | Direct Oral Anticoagulant |
ECMO | Extracorporeal Membrane Oxygenation |
ECHO | Echocardiography |
ESC | European Society of Cardiology |
EVS | External Ventilation Support |
FiO2 | Fraction of Inspired Oxygen |
HR | Heart Rate |
ICU | Intensive Care Unit |
IL-6 | Interleukin-6 |
ILD | Interstitial Lung Disease |
INR | International Normalized Ratio |
IPE | Idiopathic Pulmonary Embolism |
LMWH | Low-Molecular-Weight Heparin |
MAP | Mean Arterial Pressure |
NT-proBNP | N-Terminal Pro-B-type Natriuretic Peptide |
NIV | Non-Invasive Ventilation |
PE | Pulmonary Embolism |
PPES | Post-Pulmonary Embolism Syndrome |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
PUFA | Polyunsaturated Fatty Acids |
PVR | Pulmonary Vascular Resistance |
RM | Repetition Maximum |
RST | Respiratory–Swallow Training |
RV | Right Ventricle |
RVSV | Right Ventricular Stroke Volume |
SPECT | Single Photon Emission Computed Tomography |
SpO2 | Peripheral Capillary Oxygen Saturation |
TNF-α | Tumor Necrosis Factor Alpha |
UCI | Unidad de Cuidados Intensivos (Intensive Care Unit, Spanish) |
V/Q | Ventilation/Perfusion |
VKA | Vitamin K Antagonist |
VTE | Venous Thromboembolism |
WHO | World Health Organization |
References
- Barco, S.; Mahmoudpour, S.H.; Valerio, L.; Klok, F.A.; Münzel, T.; Middeldorp, S.; Ageno, W.; Cohen, A.T.; Hunt, B.J.; Konstantinides, S.V. Trends in mortality related to pulmonary embolism in the European Region, 2000–15: Analysis of vital registration data from the WHO Mortality Database. Lancet Respir. Med. 2020, 8, 277–287. [Google Scholar] [CrossRef]
- Yu, A.; Ding, W.; Lin, W.; Cai, J.; Huang, W. Application of pulmonary rehabilitation in patients with pulmonary embolism (Review). Exp. Ther. Med. 2021, 23, 96. [Google Scholar] [CrossRef]
- Konstantinides, S.V.; Meyer, G.; Becattini, C.; Bueno, H.; Geersing, G.J.; Harjola, V.-P.; Huisman, M.V.; Humbert, M.; Jennings, C.S.; Jiménez, D.; et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur. Heart J. 2020, 41, 543–603. [Google Scholar] [CrossRef]
- Boon, G.J.; Janssen, S.M.; Barco, S.; Bogaard, H.J.; Ghanima, W.; Kroft, L.J.; Meijboom, L.J.; Ninaber, M.K.; Nossent, E.J.; Spruit, M.A.; et al. Efficacy and safety of a 12-week outpatient pulmonary rehabilitation program in Post-PE Syndrome. Thromb. Res. 2021, 206, 66–75. [Google Scholar] [CrossRef]
- Nolan, C.M.; Polgar, O.; Schofield, S.J.; Patel, S.; Barker, R.E.; Walsh, J.A.; Ingram, K.A.; George, P.M.; Molyneaux, P.L.; Maher, T.M.; et al. Pulmonary Rehabilitation in Idiopathic Pulmonary Fibrosis and COPD. Chest 2022, 161, 728–737. [Google Scholar] [CrossRef]
- Nilsson, L.T.; Andersson, T.; Larsen, F.; Lang, I.M.; Liv, P.; Söderberg, S. Dyspnea after pulmonary embolism: A nation-wide population-based case–control study. Pulm. Circ. 2021, 11, 1–9. [Google Scholar] [CrossRef]
- Nopp, S.; Klok, F.A.; Moik, F.; Petrovic, M.; Derka, I.; Ay, C.; Zwick, R.H. Outpatient Pulmonary Rehabilitation in Patients with Persisting Symptoms after Pulmonary Embolism. J. Clin. Med. 2020, 9, 1811. [Google Scholar] [CrossRef]
- Azzarito, M.; Fabiano, C.; Bellini, R.; Ruzzolini, M. Rehabilitation post pulmonary embolism: Preliminary data. Int. J. Cardiol. Cardiovasc. Risk Prev. 2024, 21, 200269. [Google Scholar] [CrossRef]
- Elizalde-González, J.J. La persistente incidencia del tromboembolismo venoso en la práctica médica fuera y dentro de la UCI. Med. Crítica 2023, 37, 164–165. [Google Scholar] [CrossRef]
- Agudo, M.; Moura, P.; Santos, F.; Robalo, C.; Carvalho, A.; Serra, S. Pulmonary Embolism of COVID-19: A Year of Reflection. Cureus 2023, 15, e40638. [Google Scholar] [CrossRef]
- Tong, J.; Wan, C.; Wang, A.; Chen, M.; Ruan, B.; Shen, J. Causal association between epigenetic age acceleration and two pulmonary vascular diseases: Pulmonary arterial hypertension and pulmonary embolism-a bidirectional Mendelian study. Clin. Epigenetics 2024, 16, 172. [Google Scholar] [CrossRef]
- Wang, L.L.; Lu, H.W.; Li, L.L.; Gao, Y.H.; Xu, Y.H.; Li, H.X.; Xi, Y.Z.; Jiang, F.S.; Ling, X.F.; Wei, W.; et al. Pseudomonas aeruginosa isolation is an important predictor for recurrent hemoptysis after bronchial artery embolization in patients with idiopathic bronchiectasis: A multicenter cohort study. Respir. Res. 2023, 24, 84. [Google Scholar] [CrossRef]
- Barnikel, M.; Milger, K.; Mertsch, P.; Arnold, P.; Leuschner, G.; Veit, T.; Gerckens, M.; Mümmler, C.; Barton, J.; Ghiani, A.; et al. Classification and course of pulmonary hypertension associated with end-stage COPD. ERJ Open Res. 2025, 11, 01141–02024. [Google Scholar] [CrossRef]
- Manfredini, R.; Gallerani, M.; Boari, B.; Salmi, R.; Mehta, R.H. Seasonal variation in onset of pulmonary embolism is independent of patients’ underlying risk comorbid conditions. Clin. Appl. Thromb. Hemost. 2004, 10, 39–43. [Google Scholar] [CrossRef]
- Raj, R.; Paturi, A.; Ahmed, M.A.; Thomas, S.E.; Gorantla, V.R. Obstructive Sleep Apnea as a Risk Factor for Venous Thromboembolism: A Systematic Review. Cureus 2022, 14, e22729. [Google Scholar] [CrossRef]
- Lin, H.Y.; Lin, C.Y.; Shen, M.C. Review article inferior vena cava thrombosis: A case series of patients observed in Taiwan and literature review. Thromb. J. 2021, 19, 43. [Google Scholar] [CrossRef]
- Panahi, L.; Udeani, G.; Horseman, M.; Weston, J.; Samuel, N.; Joseph, M.; Mora, A.; Bazan, D. Review of Medical Therapies for the Management of Pulmonary Embolism. Medicina 2021, 57, 110. [Google Scholar] [CrossRef]
- Højen, A.A.; Nielsen, P.B.; Overvad, T.F.; Albertsen, I.E.; Klok, F.A.; Rolving, N.; Søgaard, M.; Ording, A.G. Long-Term Management of Pulmonary Embolism: A Review of Consequences, Treatment, and Rehabilitation. J. Clin. Med. 2022, 11, 5970. [Google Scholar] [CrossRef]
- Danielsbacka, J.S.; Rostberg, L.; Olsén, M.F.; Mannerkorpi, K. “Whole life changed”—Experiences of how symptoms derived from acute pulmonary embolism affects life. A qualitative interview study. Thromb. Res. 2021, 205, 56–62. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, X.; Guo, Z.; Jiang, X.; Zhang, W.; Wang, S.; Liu, Q.; Dong, X.; Li, Y.; Guo, L.; et al. Development of a clinically relevant rat model of chronic thromboembolic pulmonary hypertension by combining splenectomy with pulmonary thromboembolism. Thromb. Res. 2025, 249, 109310. [Google Scholar] [CrossRef]
- Henkin, S.; Piazza, G. Love for lysis in the time of catheters: Is it time to resurrect an old standby? J. Thromb. Haemost. 2025, 23, 401–403. [Google Scholar] [CrossRef]
- Baltsen, C.D.; Ellegaard, M.S.; Nørholt, C.; Dragsbaek, S.J.; Kabrhel, C.; Andersen, A.; Granfeldt, A.; Lyhne, M.D. Mechanical ventilation in acute pulmonary embolism: A randomized, experimental, crossover study. Eur. Heart J. Acute Cardiovasc. Care 2025, 14, 455–462. [Google Scholar] [CrossRef]
- Ivičić, T.; Hamzić, J.; Radulović, B.; Gornik, I. Right ventricular outflow tract doppler flow abnormalities suggestive of pulmonary embolism—Case series and review. Ultrasound J. 2024, 16, 51. [Google Scholar] [CrossRef]
- Chang, S.A.; Yang, J.H.; Jung, D.S.; Kim, N.H. Recent Advances in Chronic Thromboembolic Pulmonary Hypertension: Expanding the Disease Concept and Treatment Options. Korean Circ. J. 2025, 55, 365–381. [Google Scholar] [CrossRef]
- Eguchi, S.; Orihara, Y.; Eguchi, A.; Pfeiffer, M.; Peterson, B.; Ruzieh, M.; Gao, Z.; Boehmer, J.; Gorcsan, J.; Wilson, R. Additive Value of Right Ventricular Global Longitudinal Strain to a Conventional Echocardiographic Parameter to Improve Prognostic Value in Intermediate-Risk Pulmonary Embolism. J. Am. Heart Assoc. 2025, 14, e036294. [Google Scholar] [CrossRef]
- Karaçuha, A.F.; Memmedyarov, İ.; Kayan, A.; Baran, Ç.; Özçinar, E.; Dikmen, N.; Şirlak, M.; Eryilmaz, S. Retrospective evaluation of the results of ultrasound-accelerated catheter-directed tombolysis in acute-subacute pulmonary embolism patients. Phlebology 2025, 2683555251329766. [Google Scholar] [CrossRef]
- Atik, S.; Ergün, R.; Ergün, D.; Narin Çopur, E.; Kılınçer, A.; Körez, M.K. The Role of the Pulmonary Artery Obstruction Index Ratio in Predicting the Clinical Course of Pulmonary Embolism. J. Clin. Med. 2025, 14, 1673. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, Y.; Fu, Y.; Xiong, C.; Li, F.; Zhou, X. Global research trends on chronic thromboembolic pulmonary hypertension: A bibliometric analysis (January 2000–January 2024). J. Thorac. Dis. 2025, 17, 724–743. [Google Scholar] [CrossRef]
- Hanmandlu, A.; Mannari, A.; Abidov, A. Diagnostic and Prognostic Value of RV Strain Defined as RV/LV Ratio on Chest CT in Acute Pulmonary Embolism: A Systematic Review. Echocardiography 2025, 42, e70107. [Google Scholar] [CrossRef]
- Khairallah, R.; Mekov, E.V.; Mihalova, T.; Kurtelova, N.; Yamakova, Y.; Petkov, R.E. Multiorgan Ultrasound for the Diagnosis of Submassive Pulmonary Embolism in a Critically Ill Patient. Cureus 2025, 17, e77742. [Google Scholar] [CrossRef]
- Sonaglioni, A.; Lucidi, A.; Luisi, F.; Caminati, A.; Nicolosi, G.L.; Rispoli, G.A.; Zompatori, M.; Lombardo, M.; Harari, S. A Dynamic Multimodality Imaging Assessment of Right Ventricular Thrombosis in a Middle-Aged Man with Lymphocytic Interstitial Pneumonia: The Additive Role of Tissue Doppler Imaging. J. Clin. Med. 2025, 14, 2035. [Google Scholar] [CrossRef]
- Ye, W.; Chen, X.; Li, X.; Guo, X.; Gu, W. Oxygenation index and NT-proBNP as predictors of pulmonary hypertension and ventilation/perfusion mismatch in acute pulmonary embolism. Front. Cardiovasc. Med. 2023, 10, 1090805. [Google Scholar] [CrossRef]
- Andersson, T.; Nilsson, L.; Larsen, F.; Carlberg, B.; Söderberg, S. Long-term sequelae following acute pulmonary embolism: A nationwide follow-up study regarding the incidence of CTEPH, dyspnea, echocardiographic and V/Q scan abnormalities. Pulm. Circ. 2023, 13, e12306. [Google Scholar] [CrossRef]
- de Nijs, R.; Berg, R.M.G.; Lindskov Hansen, S.; Mortensen, J. Ventilation perfusion functional difference images in lung SPECT: A linear and symmetrical scale as an alternative to the ventilation perfusion ratio. Phys. Med. 2024, 119, 103306. [Google Scholar] [CrossRef]
- Lasloom, M.D.; Abuzaid, M. Enhanced Diagnostic Accuracy of Pulmonary Embolism: Integrating Low-Dose CT with V/Q SPECT. Tomography 2024, 10, 1294–1302. [Google Scholar] [CrossRef]
- Afşin, H.; Afşin, E.; Coşgun, Z. Comparison of ventilation/perfusion scintigraphy and pulmonary CT angiography: Findings in the diagnosis of CTEPH and CTED. Hell. J. Nucl. Med. 2024, 27, 188–197. [Google Scholar]
- Bollos, L.A.C.L.; Kasai, R.; Otsuka, H.; Otomi, Y.; Matsuura, T.; Otani, T.; Yamaguchi, K.; Bando, T.; Ueki, Y.; Matsuda, N.; et al. Ventilation/Perfusion Mismatch in Pulmonary Vein Stenosis Secondary to Atrial Fibrillation Ablation. Asia Ocean J. Nucl. Med. Biol. 2025, 13, 62–69. [Google Scholar] [CrossRef]
- Afşin, H.; Afşin, E. Ventilation/perfusion scintigraphy in patients with pulmonary vascular anomaly. Clin. Physiol. Funct. Imaging 2025, 45, e70008. [Google Scholar] [CrossRef]
- Babes, E.E.; Radu, A.F.; Babeş, V.V.; Tunduc, P.I.; Radu, A.; Bungau, G.; Bustea, C. The Prognostic Role of Hematological Markers in Acute Pulmonary Embolism: Enhancing Risk Stratification. Medicina 2025, 61, 1095. [Google Scholar] [CrossRef]
- Mermer, M.; Kaçer, İ.; Çağlar, A. Prognostic Value of Systemic Immune-inflammatory Index in Pulmonary Embolism. Glob. Emerg. Crit. Care 2024, 3, 93–98. [Google Scholar] [CrossRef]
- Haba, M.Ș.C.; Manole, O.M.; Buburuz, A.M.; Tudorancea, I.; Costache-Enache, I.I.; Onofrei, V. The Prognostic Value of Inflammatory Indices in Acute Pulmonary Embolism. Diagnostics 2025, 15, 312. [Google Scholar] [CrossRef]
- Zhao, W.; Liao, Q.; Feng, Y.; Du, F.; Liang, Z.; Chen, X.; Liao, X.; Gu, Y.; Zhang, M.; Zhang, Y.; et al. Association of pan-immune inflammation value with mortality in patients with pulmonary embolism: A cohort study. Sci. Rep. 2025, 15, 6571. [Google Scholar] [CrossRef] [PubMed]
- Imiela, A.M.; Kucharska, J.; Kukliński, F.; Moreno, T.F.; Dzik, K.; Pruszczyk, P. Advanced Research in the Pathophysiology of Venous Thromboembolism-Acute Pulmonary Embolism. Biomedicines 2025, 13, 906. [Google Scholar] [CrossRef] [PubMed]
- Alogna, A.; Koepp, K.E.; Sabbah, M.; Netto, J.M.E.; Jensen, M.D.; Kirkland, J.L.; Lam, C.S.; Obokata, M.; Petrie, M.C.; Ridker, P.M.; et al. Interleukin-6 in Patients With Heart Failure and Preserved Ejection Fraction. JACC Heart Fail. 2023, 11, 1549–1561. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Wu, Y.; Xu, S.; Yin, Y.; Ageno, W.; De Stefano, V.; Zhao, Q.; Qi, X. Clinical significance of neutrophil extracellular traps biomarkers in thrombosis. Thromb. J. 2022, 20, 63. [Google Scholar] [CrossRef]
- Özdemir, S.; Algin, A. The Role of Platelet Indices in Predicting Short-Term Mortality in Elderly Patients with Pulmonary Embolism. J. Contemp. Med. 2021, 11, 833–837. [Google Scholar] [CrossRef]
- Boon, G.J.A.M.; Huisman, M.V.; Klok, F.A. Determinants and Management of the Post–Pulmonary Embolism Syndrome. Semin. Respir. Crit. Care Med. 2021, 42, 299–307. [Google Scholar] [CrossRef]
- Tran, A.; Redley, M.; de Wit, K. The psychological impact of pulmonary embolism: A mixed-methods study. Res. Pract. Thromb. Haemost. 2021, 5, 301–307. [Google Scholar] [CrossRef]
- Valerio, L.; Barco, S.; Jankowski, M.; Rosenkranz, S.; Lankeit, M.; Held, M.; Gerhardt, F.; Bruch, L.; Ewert, R.; Faehling, M.; et al. Quality of Life 3 and 12 Months Following Acute Pulmonary Embolism: Analysis From a Prospective Multicenter Cohort Study. Chest 2021, 159, 2428–2438. [Google Scholar] [CrossRef]
- Klok, F.A.; Ageno, W.; Ay, C.; Bäck, M.; Barco, S.; Bertoletti, L.; Becattini, C.; Carlsen, J.; Delcroix, M.; van Es, N.; et al. Optimal follow-up after acute pulmonary embolism: A position paper of the European Society of Cardiology Working Group on Pulmonary Circulation and Right Ventricular Function, in collaboration with the European Society of Cardiology Working Group on Atherosclerosis and Vascular Biology, endorsed by the European Respiratory Society. Eur. Heart J. 2022, 43, 183–189. [Google Scholar] [CrossRef]
- Vela, A.M.; Carroll, A.J. Cardiac Psychology: Psychosocial and Behavioral Assessment and Treatment for Cardiovascular Conditions. J. Health Serv. Psychol. 2023, 49, 21–32. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, L.; Wang, L.; Li, H.; Tu, H.; Li, X.; Zhang, X.; Zhang, L.; Yang, M.; Sun, X.; et al. Development and Validation of the CHD-PEBBS: A Scale to Assess Perceived Exercise Benefits and Barriers in Coronary Heart Disease Patients. Patient Prefer. Adherence 2025, 19, 2147–2159. [Google Scholar] [CrossRef]
- Ski, C.F.; Taylor, R.S.; McGuigan, K.; Long, L.; Lambert, J.D.; Richards, S.H.; Thompson, D.R. Psychological interventions for depression and anxiety in patients with coronary heart disease, heart failure or atrial fibrillation: Cochrane systematic review and meta-analysis. Eur. J. Cardiovasc. Nurs. 2025, 24, 194–204. [Google Scholar] [CrossRef]
- Zuin, M.; Bikdeli, B.; Ballard-Hernandez, J.; Barco, S.; Battinelli, E.M.; Giannakoulas, G.; Jimenez, D.; Klok, F.A.; Krishnathasan, D.; Lang, I.M.; et al. International Clinical Practice Guideline Recommendations for Acute Pulmonary Embolism: Harmony, Dissonance, and Silence. J. Am. Coll. Cardiol. 2024, 84, 1561–1577. [Google Scholar] [CrossRef] [PubMed]
- Mehta, A.; Bansal, M.; Singh, A.; Kompella, R.; Chanda, A.; Mehta, C.; Mullin, C.J.; Abbott, J.D.; Vallabhajosyula, S. Hospital-Level Disparities in the Management and Outcomes of Pulmonary Embolism. Am. J. Cardiol. 2025, 240, 13–16. [Google Scholar] [CrossRef] [PubMed]
- Seemann, K.; Silas, U.; Bosworth Smith, A.; Münch, T.; Saunders, S.J.; Veloz, A.; Saunders, R. The burden of venous thromboembolism in ten countries: A cost-of-illness Markov model on surgical and ICU patients. J. Med. Econ. 2025, 28, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Raslan, I.A.; Solh, Z.; Kuo, K.H.M.; Abdulrehman, J. Venous Thromboembolism in Individuals with Sickle Cell Disease: A Narrative Review. Hemoglobin 2024, 48, 231–243. [Google Scholar] [CrossRef]
- Tsaftaridis, N.; Cholagh, A.; Kaatz, S.; Spyropoulos, A.C. Venous Thromboembolism Prevention in the Hospitalized Medical Patient. Med. Clin. North Am. 2025, 109, 749–765. [Google Scholar] [CrossRef]
- Suárez Del Villar Carrero, R.; Martínez-Urbistondo, D.; De la Serna Real de Asúa, M.; Cano Mazarro, Á.; Agud Fernández, M.; Rodríguez Cobo, A.; Villares Fernández, P. Influence of an Alternative Diagnosis on the Diagnosis of Pulmonary Thromboembolism. Healthcare 2024, 12, 2246. [Google Scholar] [CrossRef]
- Adedipe, I.; Marchand, T.; Aziz, S.; Matta, M.; Brindle, M.; Daodu, O. Understanding the impact of racism on surgical outcomes in settler nation-states USA and Canada: A protocol for a systematic review and meta-analysis. BMJ Open 2025, 15, e086461. [Google Scholar] [CrossRef]
- Rivera, C.; Oomrigar, S.; Fernandez, J.; Mawad, M.; Bonilla, D. Unraveling a Mediastinal Mass Enigma: A Rare Case of Young Adult Presenting with Thymoma. In C78 What’s That? Atypical and Rare Presentations in Thoracic Oncology; American Thoracic Society: New York, NY, USA, 2024; p. A6531. [Google Scholar] [CrossRef]
- Li, X.; Lin, P.; Qi, M.; Zhou, H.; Liang, Z. Impact of thyroid function on coagulation and venous thromboembolism: A two-sample mendelian randomization study. J. Thromb. Thrombolysis 2024, 57, 1145–1153. [Google Scholar] [CrossRef]
- Rosovsky, R.P.; Konstantinides, S.V.; Moriarty, J.M.; Dohad, S.Y.; Weinberg, I.; Parikh, S.A.; Channick, R.; Lookstein, R.A. A prospective, multicenter, randomized controlled trial evaluating anticoagulation alone vs anticoagulation plus computer assisted vacuum thrombectomy for the treatment of intermediate-high-risk acute pulmonary embolism: Rationale and design of the STORM-PE study. Am. Heart J. 2025, 288, 1–14. [Google Scholar] [CrossRef]
- Cueto-Robledo, G.; Roldan-Valadez, E.; Navarro-Vergara, D.I.; Garcia-Cesar, M.; Torres-Rojas, M.B. Management of Pulmonary Embolism With Thrombus in Transit: A Case Series and an Updated Clinical Insight Review. Cureus 2025, 17, e79982. [Google Scholar] [CrossRef]
- Aslan, R.; Arıkan, E.; Özel, F.; Ardahanlı, İ. Beyond N-terminal Prohormone of Brain Natriuretic Peptide and Right Ventricular to Left Ventricular: Refining Risk Stratification in Acute Pulmonary Embolism. Eurasian J. Emerg. Med. 2025, 24, 83–84. [Google Scholar] [CrossRef]
- Tripathy, A.; Saleem, D.; Gonuguntla, A.; Clarkson, S.; McElwee, S. Novel echocardiographic predictors of in-hospital pulmonary embolism mortality: A single center experience. J. Am. Coll. Cardiol. 2025, 85, 2204. [Google Scholar] [CrossRef]
- Mansour, E.; Ganz, M.P.; Scuderi, G.R. Risk Stratification for Venous Thromboembolism Prophylaxis. Orthop. Clin. N. Am. 2025, 56, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Seo, C.O.; Kim, Y.L.; Kim, H.; Kim, H.R.; Cho, Y.H.; Jang, J.Y.; Ahn, J.H.; Kang, M.G.; Kim, K.; et al. Predictive value and optimal cut-off level of high-sensitivity troponin T in patients with acute pulmonary embolism. Korean J. Intern. Med. 2025, 40, 65–77. [Google Scholar] [CrossRef]
- Goraya, S.R.; O’Hare, C.; Grace, K.A.; Schaeffer, W.J.; Hyder, S.N.; Barnes, G.D.; Greineder, C.F. Optimizing Use of High-Sensitivity Troponin for Risk-Stratification of Acute Pulmonary Embolism. Thromb. Haemost. 2024, 124, 1134–1142. [Google Scholar] [CrossRef]
- Liu, P.; Ren, Y. Prognostic value of SAPS II score for 28-day mortality in ICU patients with acute pulmonary embolism. Int. J. Cardiol. 2025, 430, 133201. [Google Scholar] [CrossRef]
- Qiao, Y.; Gao, Y.; Chen, Y.; Ye, X.; Yan, C.; Zeng, M. Quantitative assessment and risk stratification of random acute pulmonary embolism cases using a deep learning model based on computed tomography pulmonary angiography images. Quant. Imaging Med. Surg. 2025, 15, 1950–1962. [Google Scholar] [CrossRef]
- Iannaccone, M.; Sławek-Szmyt, S.; Gamardella, M.; Fumarola, F.; Mangione, R.; Savio, D.; Russo, F.; Boccuzzi, G.; Araszkiewicz, A.; Chieffo, A. The role of Pulmonary Artery Pulsatility Index to assess the outcomes following catheter directed therapy in patients with intermediate-to-high and high-risk pulmonary embolism. Cardiovasc. Revasc. Med. 2025, in press. [Google Scholar] [CrossRef]
- Kumbhani, D.J.; Cannon, C.P.; Beavers, C.J.; Bhatt, D.L.; Cuker, A.; Gluckman, T.J.; Marine, J.E.; Mehran, R.; Messe, S.R.; Patel, N.S.; et al. 2020 ACC Expert Consensus Decision Pathway for Anticoagulant and Antiplatelet Therapy in Patients with Atrial Fibrillation or Venous Thromboembolism Undergoing Percutaneous Coronary Intervention or with Atherosclerotic Cardiovascular Disease: A Report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 2021, 77, 629–658. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2023, 44, 3627–3639. [Google Scholar] [CrossRef] [PubMed]
- Tomaselli, G.F.; Mahaffey, K.W.; Cuker, A.; Dobesh, P.P.; Doherty, J.U.; Eikelboom, J.W.; Florido, R.; Gluckman, T.J.; Hucker, W.J.; Mehran, R.; et al. 2020 ACC Expert Consensus Decision Pathway on Management of Bleeding in Patients on Oral Anticoagulants: A Report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 2020, 76, 594–622. [Google Scholar] [CrossRef] [PubMed]
- Ortel, T.L.; Neumann, I.; Ageno, W.; Beyth, R.; Clark, N.P.; Cuker, A.; Hutten, B.A.; Jaff, M.R.; Manja, V.; Schulman, S.; et al. American Society of Hematology 2020 guidelines for management of venous thromboembolism: Treatment of deep vein thrombosis and pulmonary embolism. Blood Adv. 2020, 4, 4693–4738. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, A.; Shojaei, S.; Rahmati, S.; Dastjerdi, P.; Sabri, M.; Salehi, K.; Izadpanahi, K.; Pishraft-Sabet, H.; Afshar, E.J.; Arbatan, M.N.; et al. Direct Oral Anticoagulants Versus Low-Molecular-Weight Heparin in Patients With Cancer-Associated Thrombosis: A Meta-Analysis of Randomized Controlled Trials. Am. J. Cardiol. 2025, 254, 32–41. [Google Scholar] [CrossRef]
- Galanaud, J.P.; Laroche, J.P.; Righini, M. The History and Historical Treatments of Deep-Vein Thrombosis: Towards the Era of New Anticoagulants. J. Thromb. Haemost. 2025, in press. [CrossRef]
- Kholmukhamedov, A.; Subbotin, D.; Gorin, A.; Ilyassov, R. Anticoagulation Management: Current Landscape and Future Trends. J. Clin. Med. 2025, 14, 1647. [Google Scholar] [CrossRef]
- Turpie, A.G.G.; Farjat, A.E.; Haas, S.; Ageno, W.; Weitz, J.I.; Goldhaber, S.Z.; Goto, S.; Angchaisuksiri, P.; Kayani, G.; Lopes, R.D.; et al. 36-month clinical outcomes of patients with venous thromboembolism: GARFIELD-VTE. Thromb. Res. 2023, 222, 31–39. [Google Scholar] [CrossRef]
- Chayoua, W.; Nicolson, P.L.R.; Meijers, J.C.M.; Kardeby, C.; Garcia-Quintanilla, L.; Devreese, K.M.J.; de Laat, B.; Watson, S.P.; de Groot, P.G. Antiprothrombin antibodies induce platelet activation: A possible explanation for anti-FXa therapy failure in patients with antiphospholipid syndrome? J. Thromb. Haemost. 2021, 19, 1776–1782. [Google Scholar] [CrossRef]
- Noble, S. Cancer-Associated Venous Thromboembolism—Beyond 6 Months. N. Engl. J. Med. 2025, 392, 1439–1440. [Google Scholar] [CrossRef]
- Lee, Y.R.; Palmere, P.J.; Burton, C.E.; Benavides, T.M. Stratifying Therapeutic Enoxaparin Dose in Morbidly Obese Patients by BMI Class: A Retrospective Cohort Study. Clin. Drug Investig. 2020, 40, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Vrettou, C.S.; Dima, E.; Sigala, I. Pulmonary Embolism in Critically Ill Patients-Prevention, Diagnosis, and Management. Diagnostics 2024, 14, 2208. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.V.; O’Donoghue, M.L.; Ruel, M.; Rab, T.; Tamis-Holland, J.E.; Alexander, J.H.; Baber, U.; Baker, H.; Cohen, M.G.; Cruz-Ruiz, M.; et al. 2025 ACC/AHA/ACEP/NAEMSP/SCAI Guideline for the Management of Patients with Acute Coronary Syndromes: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2025, 151, e771–e862. [Google Scholar] [CrossRef] [PubMed]
- Shenoy, M.A.; Paul, V. Pulmonary Rehabilitation. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: http://www.ncbi.nlm.nih.gov/books/NBK563166/ (accessed on 21 August 2025).
- Jiang, Y.; Guo, J.; Sun, P.; Chen, Z.; Liu, F.; Wang, S.; Ding, Z. Perceptions and experiences of older patients and healthcare professionals regarding shared decision-making in pulmonary rehabilitation: A qualitative study. Clin. Rehabil. 2021, 35, 1627–1639. [Google Scholar] [CrossRef]
- Gleditsch, J.; Jervan, Ø.; Haukeland-Parker, S.; Tavoly, M.; Geier, O.; Holst, R.; Klok, F.A.; Johannessen, H.H.; Ghanima, W.; Hopp, E. Effects of pulmonary rehabilitation on cardiac magnetic resonance parameters in patients with persistent dyspnea following pulmonary embolism. Int. J. Cardiol. Heart Vasc. 2022, 40, 100995. [Google Scholar] [CrossRef]
- Arnedillo, A.; Gonzalez-Montesinos, J.L.; Fernandez-Santos, J.R.; Vaz-Pardal, C.; España-Domínguez, C.; Ponce-González, J.G.; Cuenca-García, M. Effects of a Rehabilitation Programme with a Nasal Inspiratory Restriction Device on Exercise Capacity and Quality of Life in COPD. Int. J. Environ. Res. Public Health 2020, 17, 3669. [Google Scholar] [CrossRef]
- McCreery, J.L.; Mackintosh, K.A.; Mills-Bennett, R.; McNarry, M.A. The Effect of a High-Intensity PrO2Fit Inspiratory Muscle Training Intervention on Physiological and Psychological Health in Adults with Bronchiectasis: A Mixed-Methods Study. Int. J. Environ. Res. Public Health 2021, 18, 3051. [Google Scholar] [CrossRef]
- Zampogna, E.; Zappa, M.; Spanevello, A.; Visca, D. Pulmonary Rehabilitation and Asthma. Front. Pharmacol. 2020, 11, 542. [Google Scholar] [CrossRef]
- Sánchez-Milá, Z.; Abuín-Porras, V.; Romero-Morales, C.; Almazán-Polo, J.; Velázquez Saornil, J. Effectiveness of a respiratory rehabilitation program including an inspiration training device versus traditional respiratory rehabilitation: A randomized controlled trial. PeerJ 2023, 11, e16360. [Google Scholar] [CrossRef]
- Hopkins-Rossabi, T.; Rowe, M.; McGrattan, K.; Rossabi, S.; Martin-Harris, B. Respiratory-Swallow Training Methods: Accuracy of Automated Detection of Swallow Onset, Respiratory Phase, Lung Volume at Swallow Onset, and Real-Time Performance Feedback Tested in Healthy Adults. Am. J. Speech Lang. Pathol. 2020, 29, 1012–1021. [Google Scholar] [CrossRef] [PubMed]
- Fekete, M.; Kerti, M.; Fazekas-Pongor, V.; Balazs, P.; Csizmadia, Z.; Nemeth, A.N.; Tarantini, S.; Varga, J.T. Effect of interval training with non-invasive ventilation in severe chronic obstructive pulmonary disease-a prospective cohort study with matched control group. Ann. Palliat. Med. 2021, 10, 5289–5298. [Google Scholar] [CrossRef] [PubMed]
- McGuire, W.C.; Sullivan, L.; Odish, M.F.; Desai, B.; Morris, T.A.; Fernandes, T.M. Management Strategies for Acute Pulmonary Embolism in the ICU. Chest 2024, 166, 1532–1545. [Google Scholar] [CrossRef] [PubMed]
- Roberts, N.J.; Kidd, L.; Kirkwood, K.; Cross, J.; Partridge, M.R. How is the education component of pulmonary rehabilitation delivered in practice—Is it patient-centred? Clin. Respir. J. 2021, 15, 835–842. [Google Scholar] [CrossRef]
- Janssen, S.M.; Vliet Vlieland, T.P.; Volker, G.; Spruit, M.A.; Abbink, J.J. Pulmonary Rehabilitation Improves Self-Management Ability in Subjects with Obstructive Lung Disease. Respir. Care 2021, 66, 1271–1281. [Google Scholar] [CrossRef]
- Habib, G.M.M.; Rabinovich, R.; Divgi, K.; Ahmed, S.; Saha, S.K.; Singh, S.; Uddin, A.; Uzzaman, M.N.; Pinnock, H. Systematic review of clinical effectiveness, components, and delivery of pulmonary rehabilitation in low-resource settings. NPJ Prim. Care Respir. Med. 2020, 30, 52. [Google Scholar] [CrossRef]
- Wierenga, K.L.; Fresco, D.M.; Alder, M.; Sattar, A.; Moore, S.M. Preliminary Efficacy of an Emotion Regulation Intervention on Physical Activity and Depressive and Anxious Symptoms in Individuals in Cardiac Rehabilitation. J. Cardiovasc. Nurs. 2022, 37, 296–305. [Google Scholar] [CrossRef]
- Zheng, X.; Jia, R.; Li, Y.; Liu, T.; Wang, Z. Omega-3 fatty acids reduce post-operative risk of deep vein thrombosis and pulmonary embolism after surgery for elderly patients with proximal femoral fractures: A randomized placebo-controlled, double-blind clinical trial. Int. Orthop. 2020, 44, 2089–2093. [Google Scholar] [CrossRef]
- Zhang, Y.; Ding, J.; Guo, H.; Liang, J.; Li, Y. Associations of Fish and Omega-3 Fatty Acids Consumption with the Risk of Venous Thromboembolism. A Meta-Analysis of Prospective Cohort Studies. Front. Nutr. 2020, 7, 614784. [Google Scholar] [CrossRef]
- Ricci, H.; Gaeta, M.; Franchi, C.; Poli, A.; Battino, M.; Dolci, A.; Schmid, D.; Ricci, C. Fish Intake in Relation to Fatal and Non-Fatal Cardiovascular Risk: A Systematic Review and Meta-Analysis of Cohort Studies. Nutrients 2023, 15, 4539. [Google Scholar] [CrossRef]
- Szewc, M.; Markiewicz-Gospodarek, A.; Górska, A.; Chilimoniuk, Z.; Rahnama, M.; Radzikowska-Buchner, E.; Strzelec-Pawelczak, K.; Bakiera, J.; Maciejewski, R. The Role of Zinc and Copper in Platelet Activation and Pathophysiological Thrombus Formation in Patients with Pulmonary Embolism in the Course of SARS-CoV-2 Infection. Biology 2022, 11, 752. [Google Scholar] [CrossRef]
- Charkowick, S.V.; Logothetis, C.N.; Tsay, K.; Jordan, A.; Hanna, C.; Zhang, S.; Coughlin, E.; Weppelmann, T.A.; Mhaskar, R.; Oxner, A. A Retrospective Analysis of Vitamin D Levels in Hospitalized COVID-19 Patients with Suspected Pulmonary Embolism. Cureus 2023, 15, e41805. [Google Scholar] [CrossRef] [PubMed]
- Aygun, H. Vitamin D can prevent COVID-19 infection-induced multiple organ damage. Naunyn Schmiedebergs Arch. Pharmacol. 2020, 393, 1157–1160. [Google Scholar] [CrossRef] [PubMed]
- Ojaroodi, A.F.; Jafarnezhad, F.; Eskandari, Z.; Keramat, S.; Stanek, A. Recent Updates and Advances in the Association Between Vitamin D Deficiency and Risk of Thrombotic Disease. Nutrients 2024, 17, 90. [Google Scholar] [CrossRef] [PubMed]
- Matthaiou, A.M.; Tomos, I.; Chaniotaki, S.; Liakopoulos, D.; Sakellaropoulou, K.; Koukidou, S.; Gheorghe, L.M.; Eskioglou, S.; Paspalli, A.; Hillas, G.; et al. Association of Broad-Spectrum Antibiotic Therapy and Vitamin E Supplementation with Vitamin K Deficiency-Induced Coagulopathy: A Case Report and Narrative Review of the Literature. J. Pers. Med. 2023, 13, 1349. [Google Scholar] [CrossRef]
- An, Q.Y.; Wang, L.; Yuan, P.; Zhao, Q.H.; Gong, S.G.; Zhang, R.; He, J.; Luo, C.J.; Qiu, H.L.; Li, H.T.; et al. Effectiveness and safety of exercise training and rehabilitation in chronic thromboembolic pulmonary hypertension: A systematic review and meta-analysis. Ann. Palliat. Med. 2021, 10, 8134–8146. [Google Scholar] [CrossRef]
- Kagioglou, O.; Mouratoglou, S.A.; Giannakoulas, G.; Kapoukranidou, D.; Anifanti, M.; Deligiannis, A.; Skarbaliene, A.; Razbadauskas, A.; Kouidi, E. Long-Term Effect of an Exercise Training Program on Physical Functioning and Quality of Life in Pulmonary Hypertension: A Randomized Controlled Trial. BioMed Res. Int. 2021, 2021, 8870615. [Google Scholar] [CrossRef]
- Tran, D.; Munoz, P.; Lau, E.M.T.; Alison, J.A.; Brown, M.; Zheng, Y.; Corkery, P.; Wong, K.; Lindstrom, S.; Celermajer, D.S.; et al. Inspiratory Muscle Training Improves Inspiratory Muscle Strength and Functional Exercise Capacity in Pulmonary Arterial Hypertension and Chronic Thromboembolic Pulmonary Hypertension: A Pilot Randomised Controlled Study. Heart Lung Circ. 2021, 30, 388–395. [Google Scholar] [CrossRef]
- Moy, M.L. Maintenance Pulmonary Rehabilitation: An Update and Future Directions. Respir. Care 2024, 69, 724–739. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, D.; Xu, Y.; Wu, L.; Lou, L. Effect of pulmonary rehabilitation in patients with chronic obstructive pulmonary disease: A systematic review and meta-analysis of randomized controlled trials. Ann. Med. 2022, 54, 262–273. [Google Scholar] [CrossRef]
- VanAken, G.; Rubick, D.; Wieczorek, D.; Chatterjee, S.; Moles, V.M.; Agarwal, P.P.; Haft, J.W.; Cascino, T.M.; Visovatti, S.H.; Aggarwal, V. Exercise Training in Patients with Chronic Thromboembolic Pulmonary Hypertension and Pulmonary Arterial Hypertension: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Heart Fail. Clin. 2025, 21, 137–148. [Google Scholar] [CrossRef]
- Ozcan Kahraman, B.; Tanriverdi, A.; Savci, S.; Odaman, H.; Akdeniz, B.; Sevinc, C.; Ozsoy, I.; Acar, S.; Balci, A.; Baran, A.; et al. Effects of Inspiratory Muscle Training in Patients with Pulmonary Hypertension. Am. J. Cardiol. 2023, 203, 406–413. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Q.; Liu, L.; Cao, J.; Liang, Q.; Zhang, X. High-intensity interval training improves the outcomes of patients with chronic obstructive pulmonary disease: A meta-analysis of randomized controlled trials. Respir. Med. 2023, 208, 107128. [Google Scholar] [CrossRef] [PubMed]
- Singam, A. Mobilizing Progress: A Comprehensive Review of the Efficacy of Early Mobilization Therapy in the Intensive Care Unit. Cureus 2024, 16, e57595. [Google Scholar] [CrossRef] [PubMed]
- TEAM Study Investigators and the ANZICS Clinical Trials Group; Hodgson, C.L.; Bailey, M.; Bellomo, R.; Brickell, K.; Broadley, T.; Buhr, H.; Gabbe, B.J.; Gould, D.W.; Harrold, M.; et al. Early Active Mobilization during Mechanical Ventilation in the ICU. N. Engl. J. Med. 2022, 387, 1747–1758. [Google Scholar] [CrossRef]
- Wang, L.; Hua, Y.; Wang, L.; Zou, X.; Zhang, Y.; Ou, X. The effects of early mobilization in mechanically ventilated adult ICU patients: Systematic review and meta-analysis. Front. Med. 2023, 10, 1202754. [Google Scholar] [CrossRef]
- Matsubara, H. Multidisciplinary Team Approach for the Management of Chronic Thromboembolic Pulmonary Hypertension. Korean Circ. J. 2024, 54, 422. [Google Scholar] [CrossRef]
- Yang, B.; Zaki, A.; Oh, N.; Umana-Pizano, J.; Haddadin, I.; Goyanes, A.; Smedira, N.; Elgharably, H.; Zhen-Yu Tong, M.; Heresi, G.A. Role of a multidisciplinary team approach in the management of chronic thromboembolic pulmonary hypertension. JTCVS Open 2025, 24, 147–155. [Google Scholar] [CrossRef]
- Christopher Malaisrie, S.; Chiu, S.; Schimmel, D.; Samant, M.; Avery, R.; Rahsepar, A.; Allen, B.; Raza, Y.; Freed, B.; Mylvaganam, R.; et al. Outcomes of Multidisciplinary Care at a Chronic Thromboembolic Pulmonary Hypertension Center. Pulm. Circ. 2025, 15, e70085. [Google Scholar] [CrossRef]
- Thomas, R.J. Cardiac Rehabilitation—Challenges, Advances, and the Road Ahead. N. Engl. J. Med. 2024, 390, 830–841. [Google Scholar] [CrossRef]
- Subedi, N.; Rawstorn, J.C.; Gao, L.; Koorts, H.; Maddison, R. Implementation of Telerehabilitation Interventions for the Self-Management of Cardiovascular Disease: Systematic Review. JMIR Mhealth Uhealth 2020, 8, e17957. [Google Scholar] [CrossRef]
- Wen, J.; Milne, S.; Sin, D.D. Pulmonary rehabilitation in a postcoronavirus disease 2019 world: Feasibility, challenges, and solutions. Curr. Opin. Pulm. Med. 2022, 28, 152–161. [Google Scholar] [CrossRef]
- Li, S.; Xu, X.; Hu, J.; Wang, Y. The effect of early rehabilitation on therapeutic outcomes in ICU patients on mechanical ventilation: A meta-analysis. Int. J. Artif. Organs 2025, 48, 105–122. [Google Scholar] [CrossRef]
- Formenti, P.; Menozzi, A.; Sabbatini, G.; Gotti, M.; Galimberti, A.; Bruno, G.; Pezzi, A.; Umbrello, M. Combined Effects of Early Mobilization and Nutrition on ICU-Acquired Weakness. Nutrients 2025, 17, 1073. [Google Scholar] [CrossRef] [PubMed]
- Buyruk, H.M.; Buyruk, Y.; Ince, C. Acute Medical Rehabilitation in Intensive Care. In Annual Update in Intensive Care and Emergency Medicine 2022; Vincent, J.L., Ed.; Annual Update in Intensive Care and Emergency Medicine; Springer International Publishing: Cham, Switzerland, 2022; pp. 385–396. Available online: https://link.springer.com/10.1007/978-3-030-93433-0_29 (accessed on 22 August 2025).
- Adams, S.C.; Rivera-Theurel, F.; Scott, J.M.; Nadler, M.B.; Foulkes, S.; Leong, D.; Nilsen, T.; Porter, C.; Haykowsky, M.; Abdel-Qadir, H.; et al. Cardio-oncology rehabilitation and exercise: Evidence, priorities, and research standards from the ICOS-CORE working group. Eur. Heart J. 2025, 46, 2847–2865. [Google Scholar] [CrossRef] [PubMed]
- Young, R.W.C.; Heutlinger, O.; Dong, S.; Scott, B.; Kucera, J.; Antevil, J.L.; Trachiotis, G.D. Perioperative rehabilitation and the impact of multidisciplinary teams following video-assisted thoracoscopic pulmonary resection: A narrative review. Video-Assist. Thorac. Surg. 2025, 10, 19. [Google Scholar] [CrossRef]
- Guasti, L.; Fumagalli, S.; Afilalo, J.; Geisler, T.; Abreu, A.; Ambrosetti, M.; Gevaert, S.; Christodorescu, R.; Richter, D.; Aboyans, V.; et al. Cardiovascular diseases, prevention, and management of complications in older adults and frail patients treated for elective or post-traumatic hip orthopaedic interventions: A clinical consensus statement of the ESC Council for Cardiology Practice (CCP), the European Association of Preventive Cardiology (EAPC), the Association for Acute CardioVascular Care (ACVC), the Association of Cardiovascular Nursing & Allied Professions of the ESC (ACNAP), the ESC Working Group on Aorta and Peripheral Vascular Diseases (WG APVD), and the ESC Working Group on Thrombosis (WG T). Eur. J. Prev. Cardiol. 2025, zwaf010. [Google Scholar] [CrossRef]
- Yao, M.; Zhang, L.; Ai, M.; Chen, H.; Zhang, L.; Wei, Y.; Wang, D.; Jia, Y. Multidisciplinary collaborative approach to cardiopulmonary rehabilitation in cancer patients with intensive care unit-acquired weakness: A clinical efficacy and safety analysis. Am. J. Cancer Res. 2025, 15, 2427–2438. [Google Scholar] [CrossRef]
- Pietranis, K.A.; Izdebska, W.M.; Kuryliszyn-Moskal, A.; Dakowicz, A.; Ciołkiewicz, M.; Kaniewska, K.; Dzięcioł-Anikiej, Z.; Wojciuk, M. Effects of Pulmonary Rehabilitation on Respiratory Function and Thickness of the Diaphragm in Patients with Post-COVID-19 Syndrome: A Randomized Clinical Trial. J. Clin. Med. 2024, 13, 425. [Google Scholar] [CrossRef]
- Bertolaccini, L.; Mohamed, S.; Uslenghi, C.; Chiari, M.; Girelli, L.; Lo Iacono, G.; Spaggiari, L. A Practical Assessment of the Postoperative Management in Lung Cancer Surgery. J. Pers. Med. 2023, 13, 358. [Google Scholar] [CrossRef]
- Ichikawa, T.; Tsuchiya, A.; Tsutsumi, Y.; Okawa, T.; Kubo, D.; Horimizu, Y.; Tsutsui, R.; Shukumine, H.; Noda, K.; Mizuno, K. Effect of a generalized early mobilization and rehabilitation protocol on outcomes in trauma patients admitted to the intensive care unit: A retrospective pre-post study. Crit. Care 2025, 29, 337. [Google Scholar] [CrossRef]
- Zhong, J.; Trinh, I.; Raju, S.; Hsu, M. Pulmonary Rehabilitation in Patients with Operable Non-Small Cell Lung Cancer. J. Clin. Med. 2025, 14, 770. [Google Scholar] [CrossRef]
- Hardcastle, T.C.; Gaarder, C.; Balogh, Z.; D’amours, S.; Davis, K.A.; Gupta, A.; Mohseni, S.; Naess, P.A.; Naidoo, S.; Razek, T.; et al. Guidelines for Enhanced Recovery After Trauma and Intensive Care (ERATIC): Enhanced Recovery After Surgery (ERAS) Society and International Association of Trauma Surgery and Intensive Care (IATSIC) Recommendations: Paper 1: Initial Care-Pre and Intraoperative Care Until ICU, Including Non-Operative Management. World J. Surg. 2025, 49, 1997–2028. [Google Scholar] [CrossRef]
- Guecamburu, M.; Coquelin, A.; Rapin, A.; Le Guen, N.; Solomiac, A.; Henrot, P.; Erbault, M.; Morin, S.; Zysman, M. Pulmonary rehabilitation after severe exacerbation of COPD: A nationwide population study. Respir. Res. 2023, 24, 102. [Google Scholar] [CrossRef]
- Putot, A.; Garin, N.; Rello, J.; Prendki, V.; European Study Group of Infections in the Elderly Patients (ESGIE). Comprehensive management of pneumonia in older patients. Eur. J. Intern. Med. 2025, 135, 14–24. [Google Scholar] [CrossRef]
- Epelde, F. Current Status, Challenges, and Future Directions in Cardiac Rehabilitation. Medicina 2024, 60, 388. [Google Scholar] [CrossRef]
- Kenny, C.; Lennon, O.; Klok, F.A.; Matthews, J.; Ainle, F.N.; Rosovsky, R.; Donoghue, G.O. Effectiveness of rehabilitation programmes targeting quality of life, psychological wellbeing, and functional capacity in pulmonary embolism survivors; a systematic review and best evidence synthesis. Thromb. Res. 2025, 246, 109242. [Google Scholar] [CrossRef] [PubMed]
- Mueller, A.S.; Kim, S.M. Cardiac Rehabilitation in the Modern Era: Evidence, Equity, and Evolving Delivery Models Across the Cardiovascular Spectrum. J. Clin. Med. 2025, 14, 5573. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Kumar, M.; Sayyar, M.; Sapna, F.; John, C.; Memon, S.; Qureshi, K.; Agbo, E.C.; Ariri, H.I.; Chukwu, E.J.; et al. Revolutionizing Cardiac Care: A Comprehensive Narrative Review of Cardiac Rehabilitation and the Evolution of Cardiovascular Medicine. Cureus 2023, 15, e46469. [Google Scholar] [CrossRef] [PubMed]
- Cires-Drouet, R.S.; Mayorga-Carlin, M.; Toursavadkohi, S.; White, R.; Redding, E.; Durham, F.; Dondero, K.; Prior, S.J.; Sorkin, J.D.; Lal, B.K. Safety of exercise therapy after acute pulmonary embolism. Phlebology 2020, 35, 824–832. [Google Scholar] [CrossRef]
- Rolving, N.; Brocki, B.C.; Bloch-Nielsen, J.R.; Larsen, T.B.; Jensen, F.L.; Mikkelsen, H.R.; Ravn, P.; Frost, L. Effect of a Physiotherapist-Guided Home-Based Exercise Intervention on Physical Capacity and Patient-Reported Outcomes Among Patients With Acute Pulmonary Embolism: A Randomized Clinical Trial. JAMA Netw. Open 2020, 3, e200064. [Google Scholar] [CrossRef]
- Sandal, A.; Korkmaz, E.T.; Aksu, F.; Köksal, D.; Toros Selçuk, Z.; Demir, A.U.; Emri, S.; Çöplü, L. Performance of pulmonary embolism severity index in predicting long-term mortality after acute pulmonary embolism. Anatol. J. Cardiol. 2021, 25, 544–554. [Google Scholar] [CrossRef]
- Xu, L.; Fu, C.; Zhang, Q.; He, C.; Wei, Q. The effectiveness of exercise training in treating venous thromboembolism: A systematic review. Phys. Sportsmed. 2021, 49, 1–11. [Google Scholar] [CrossRef]
- Alsabri, M.; Attalla, A.; Abdelrahman, S.T.; Elsnhory, A.B.; Abo-Elnour, D.E.; Aderinto, N.; Ukoaka, B.M.; Alqeeq, B.F.; Gamboa, L.L. Systematic review of case series and case reports on pediatric pulmonary embolism. J. Med. Case Rep. 2025, 19, 76. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.; Maraka, P.; Gaballa, M. Catheter-directed thrombolysis of massive pulmonary embolism in high risk bleeding patients (local experience in kenya, single centre study). Eur. Heart J. Cardiovasc. Imaging 2025, 26 (Suppl. 1). [Google Scholar] [CrossRef]
- Anghele, A.D.; Marina, V.; Dragomir, L.; Moscu, C.A.; Anghele, M.; Anghel, C. Predicting Deep Venous Thrombosis Using Artificial Intelligence: A Clinical Data Approach. Bioengineering 2024, 11, 1067. [Google Scholar] [CrossRef]
- Raya-Benítez, J.; Heredia-Ciuró, A.; Calvache-Mateo, A.; Martín-Núñez, J.; Valenza-Peña, G.; López-López, L.; Valenza, M.C. Effectiveness of non-instrumental early mobilization to reduce the incidence of deep vein thrombosis in hospitalized patients: A systematic review and meta-analysis. Int. J. Nurs. Stud. 2025, 161, 104917. [Google Scholar] [CrossRef]
- De Alencar Martins, A.R.; Rodrigues Junior, L.F.; De Oliveira, J.R. Benefits of early mobilization in patients with deep venous thrombosis: A scope review. Hear. Vessel. Transplant. 2023, 7, 52. [Google Scholar] [CrossRef]
- Al-Dorzi, H.M.; AlQahtani, S.; Al-Dawood, A.; Al-Hameed, F.M.; Burns, K.E.A.; Mehta, S.; Jose, J.; Alsolamy, S.J.; Abdukahil, S.A.I.; Afesh, L.Y.; et al. Association of early mobility with the incidence of deep-vein thrombosis and mortality among critically ill patients: A post hoc analysis of PREVENT trial. Crit. Care 2023, 27, 83. [Google Scholar] [CrossRef]
- Rook, B.; van Rijn, M.J.E.; Jansma, E.P.; van Montfrans, C. Effect of exercise after a deep venous thrombosis: A systematic review. J. Eur. Acad. Dermatol. Venereol. 2024, 38, 289–301. [Google Scholar] [CrossRef]
- Bhalla, U. Move against thrombosis. Curr. Med. Res. Pract. 2025, 15, 118–119. [Google Scholar] [CrossRef]
- Tolentino Júnior, D.S.; Carlos De Oliveira, R. Thromboprophylaxis Measures to Prevent Venous Thromboembolism in Hospitalized Patients. Int. J. Basic Sci. Med. 2020, 5, 118–124. [Google Scholar] [CrossRef]
- Speth, J. Guidelines in Practice: Prevention of Venous Thromboembolism. AORN J. 2023, 118, 321–328. [Google Scholar] [CrossRef]
- Hillegass, E.; Lukaszewicz, K.; Puthoff, M. Role of Physical Therapists in the Management of Individuals at Risk for or Diagnosed with Venous Thromboembolism: Evidence-Based Clinical Practice Guideline 2022. Phys. Ther. 2022, 102, pzac057. [Google Scholar] [CrossRef]
- Cersosimo, A.; Longo Elia, R.; Condello, F.; Colombo, F.; Pierucci, N.; Arabia, G.; Matteucci, A.; Metra, M.; Adamo, M.; Vizzardi, E.; et al. Cardiac rehabilitation in patients with atrial fibrillation. Minerva Cardiol. Angiol 2025, in press. [Google Scholar] [CrossRef]
Inclusion Parameters | Exclusion Parameters |
---|---|
Articles published (2020–2025) | Articles published before 2020 or after 2025 |
Editorial and peer-reviewed publications | Non-peer-reviewed works, editorials, letters, and abstracts without full text |
Studies on rehabilitation and early rehabilitation after PE | Studies not directly or indirectly related to PE |
Articles consistent with current evidence-based guidelines | Articles lacking adherence to current management or rehabilitation guidelines after PE |
Original research: RCTs, cohorts, observational studies, structured reviews | Low-quality studies lacking defined design or analytical rigor |
Articles published in English | Non-English version of publications |
Full-text articles available for appraisal and synthesis | Articles without accessible full text or evaluable methodology |
Intervention | Source Disease Population | Evidence Level * | Applicability to Acute PE |
---|---|---|---|
Aerobic exercise training [112,113] | COPD, CTEPH | Moderate: multiple RCTs, meta-analyses (2020–2024) | Conditional: may improve exercise tolerance, requires cautious intensity titration under anticoagulation |
Inspiratory muscle training [110,114] | COPD, CTEPH | Moderate: RCTs, systematic reviews | Possible benefit for dyspnea and ventilatory efficiency; limited direct PE evidence |
Interval training [115] | COPD | Moderate: RCTs, observational | Useful for graded recovery; safety in acute PE requires validation |
Early mobilization (bed-to-chair, ambulation) [116,117,118] | ICU patients with critical illness (mixed) | Strong: meta-analyses, ICU rehabilitation studies | Applicable with hemodynamic stability; direct PE evidence lacking |
Multidisciplinary pulmonary rehab programs [119,120,121] | COPD, interstitial lung disease, CTEPH | Strong for COPD/ILD; emerging for CTEPH | Framework applicable to PE, but must be adapted for acute and anticoagulated patients |
Risk Category of PE | Initiation of Rehabilitation | Therapeutic Modalities | Progression Criteria |
---|---|---|---|
High risk (massive, post-thrombolysis, ECMO, hemodynamic instability) | ≥7–10 days post-diagnosis; only after full hemodynamic stabilization (MAP ≥ 65 mmHg, HR < 110 bpm, SpO2 ≥ 90% on FiO2 ≤ 0.6, stable anticoagulation, no active bleeding) | Respiratory muscles manual stimulation; Development of spatial body schema; Passive joint mobilization; Low-intensity inspiratory muscle training; Neurophysiological techniques; Psychological support; Delirium prevention. | Continuous ECG, invasive/non-invasive BP, SpO2, HR, Borg dyspnea scale; daily bleeding risk assessment. Progression allowed once hemodynamic and oxygenation remain stable ≥48 h; gradual transition to standing/active-assisted mobility if SpO2 ≥ 92% and no arrhythmias. |
Intermediate risk (submassive, RV dysfunction but stable) | 3–5 days post-diagnosis; after therapeutic anticoagulation stabilization and improved RV function on ECHO imaging | Active-assisted mobilization; Bedside sitting to standing; Corridor ambulation under active supervision; Breathing retraining (pursed-lip, diaphragmatic); Moderate inspiratory muscle training; Psycho-educational counseling. | SpO2 and HR telemetry, RR, Borg scale for dyspnea/exertion, INR or anti-Xa monitoring. Progression to ≥5–10 min corridor ambulation if Borg <5 and no desaturation >4% from baseline; Add resistance training with elastic bands if stable. |
Low risk (no RV dysfunction, hemodynamically stable) | 24–48 h post-diagnosis; after first therapeutic anticoagulation dose and no bleeding | Early ambulation; Progressive walking; Low-resistance training; Inspiratory muscle training; Airway clearance techniques; Psycho-educational support; Adaptive strategies. | HR and SpO2 pre/post activity, Borg scale, perceived exertion; anticoagulation monitoring. Escalate every 48–72 h by increasing intensity/duration; transition to formal outpatient pulmonary rehabilitation at discharge. |
Authors | Year | Country | Type of Research | Specificity | Results |
---|---|---|---|---|---|
Cires-Drouet et al. [143] | 2020 | Netherlands | Prospective study | A structured 3-month physical conditioning regimen. | Exercise therapy at differentiated levels demonstrated safety following acute PE episodes. |
Rolving et al. [144] | 2020 | Denmark | Randomized clinical trail | A short nursing-guided consultation combined with an 8-week home-based physical conditioning regimen. | No improvement was observed in physical performance or dyspnea symptoms. Furthermore, no additional adverse effects were recorded. |
Nopp et al. [7] | 2020 | Austria | Prospective study | A structured rehabilitation program involving different types training lasting a minimum of 6 weeks. | The 6-minute walk test indicated enhanced outcomes. Significant positive motor function increases were also recorded. Additionally, 78% of patients exhibited improved health status during extended follow-up. |
Boon et al. [4] | 2021 | Netherlands | Observational cohort study | A 12-week outpatient pulmonary rehabilitation program with consultations from a pulmonologist and physiotherapist. | Enhanced training intensity resulted in improvements in PE-specific quality of life, reduced fatigue, and better functional status. |
Gleditsch et al. [88] | 2022 | Norway | Cohort sub-study | An outpatient pulmonary rehabilitation program supervised during 1-hour training sessions, twice a week, for 8 weeks. | CMR parameters were compared before and after the intervention. Both absolute RV global longitudinal strain and RV lateral longitudinal strain showed significant reductions. |
Azzarito et al. [8] | 2024 | Italy | Prospective study | A 4-week inpatient cardiopulmonary rehabilitation program began 8 days following the pulmonary event. | All patients demonstrated improvements in both dyspnea and physical performance. No adverse effects related to the rehabilitation program were reported. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salwa, K.; Kaziród-Wolski, K.; Rębak, D.; Sielski, J. The Role of Early Rehabilitation in Treatment of Acute Pulmonary Embolism—A Narrative Review. J. Clin. Med. 2025, 14, 6230. https://doi.org/10.3390/jcm14176230
Salwa K, Kaziród-Wolski K, Rębak D, Sielski J. The Role of Early Rehabilitation in Treatment of Acute Pulmonary Embolism—A Narrative Review. Journal of Clinical Medicine. 2025; 14(17):6230. https://doi.org/10.3390/jcm14176230
Chicago/Turabian StyleSalwa, Kamil, Karol Kaziród-Wolski, Dorota Rębak, and Janusz Sielski. 2025. "The Role of Early Rehabilitation in Treatment of Acute Pulmonary Embolism—A Narrative Review" Journal of Clinical Medicine 14, no. 17: 6230. https://doi.org/10.3390/jcm14176230
APA StyleSalwa, K., Kaziród-Wolski, K., Rębak, D., & Sielski, J. (2025). The Role of Early Rehabilitation in Treatment of Acute Pulmonary Embolism—A Narrative Review. Journal of Clinical Medicine, 14(17), 6230. https://doi.org/10.3390/jcm14176230