Prognostic Significance of Albumin in Modern Left Ventricular Assist Device Therapy: Relevance in the HeartMate 3 Era?
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Population
2.2. Evaluation of Albumin Status
2.3. Outcome Definition and Definition of Hemocompatibility-Related Adverse Events (HRAEs)
2.4. Risk Factor Assessment
2.5. Statistical Analysis
3. Results
3.1. Patient Demographics and Baseline Characteristics
3.2. Albumin Cut-Off Determination
3.3. Hemocompatibility-Related Adverse Events
3.4. Survival Outcomes
3.5. HRAEs: Risk Factor Analysis
3.6. Longitudinal Changes in Albumin
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
ALAT | Alanin-aminotransferase |
AUC | Area under the curve |
BIVAD | Biventricular assist device |
BMI | Body mass index |
CABG | Coronary artery bypass grafting |
CI | Confidence interval |
CONUT | Controlling nutritional status |
CRP | C-reactive protein |
HM3 | HeartMate 3 |
HR | Hazard ratio |
HRAE | Hemocompatibility-related adverse events |
ICU | Intensive care unit |
LVAD | Left ventricular assist device |
MDRD-GFR | Modification of diet in renal disease glomerular filtration rate |
NRI | Nutritional risk index |
OPCB | Off-pump coronary artery bypass |
PNI | Prognostic nutritional index |
ROC | Receiver operating characteristic |
RVAD | Right ventricular assist device |
VAD | Ventricular assist device |
WBC | White blood count |
Appendix A
Variable | HR | 95% CI | p-Value |
---|---|---|---|
Age (years) | 1.00 | [0.98; 1.03] | 0.930 |
Gender (female vs. male) | 1.03 | [0.47; 2.23] | 0.946 |
BMI | 0.97 | [0.93; 1.02] | 0.266 |
INTERMACS | |||
Level 1 (Reference) | 1.00 | - | - |
Level 2 | 0.82 | [0.43; 1.57] | 0.547 |
Level 3 | 0.58 | [0.29; 1.15] | 0.120 |
Level 4–7 | 0.56 | [0.32; 1.01] | 0.055 |
Hypertension | 0.66 | [0.40; 1.10] | 0.111 |
Peripheral artery disease | 0.92 | [0.34; 2.51] | 0.868 |
Chronic kidney disease | 1.63 | [1.02; 2.59] | 0.04 |
Diabetes type 2 | 1.00 | [1.00; 1.00] | 0.225 |
Cardiac infarction | 1.01 | [0.64; 1.59] | 0.954 |
Atrial fibrillation | 1.43 | [0.93; 2.21] | 0.103 |
Peripheral edema | 1.55 | [0.95; 2.54] | 0.080 |
Stroke history | 1.72 | [0.89; 3.33] | 0.107 |
Serum-albumin (pre-operative) | |||
<32 g/L | 1.00 | - | - |
≥32 g/L | 0.43 | [0.26; 0.71] | <0.001 |
Previous cardiac surgery | 1.17 | [0.60; 2.28] | 0.638 |
Concomitant procedures | 0.92 | [0.59; 1.41] | 0.692 |
Bypass support type | |||
Off-pump vs. CPB (Reference) | 0.89 | [0.36; 2.20] | 0.792 |
ECMO vs. CPB (Reference) | 1.43 | [0.62; 3.31] | 0.398 |
Less invasive implant method | 0.58 | [0.34; 0.97] | 0.038 |
LVAD anastomosis site | |||
Ascending Aorta (Reference) | 1.00 | - | - |
Other (Subclavian/Descending Aorta) | 2.03 | [0.93; 4.42] | 0.074 |
Temporary RVAD support | 3.91 | [2.47; 6.16] | <0.001 |
PNI | 1.00 | [1.00; 1.00] | 0.186 |
CONUT Score | 0.96 | [0.84; 1.09] | 0.522 |
CONUT categorial | |||
Normal (Reference) vs. Mild | 1.04 | [0.14; 7.86] | 0.972 |
Normal (Reference) vs. Moderate | 0.59 | [0.08; 4.50] | 0.614 |
Normal (Reference) vs. Severe | 0.91 | [0.11; 7.30] | 0.931 |
Central venous pressure (mmHg) | 1.01 | [0.97; 1.04] | 0.735 |
Mean pulmonary artery pressure (mmHg) | 0.99 | [0.97; 1.02] | 0.553 |
Bilirubin (mg/dL) | 0.98 | [0.86; 1.12] | 0.742 |
Creatine (mg/dL) | 1.07 | [0.84; 1.35] | 0.586 |
MDRD-GFR (mL/min) | 0.99 | [0.99; 1.00] | 0.066 |
WBC (G/L) | 1.02 | [0.98; 1.07] | 0.356 |
CRP (mg/dL) | 1.00 | [0.97; 1.04] | 0.878 |
Cholesterol (mg/dL) | 1.00 | [0.99; 1.01] | 0.780 |
Creatine kinase (U/L) | 1.00 | [1.00; 1.00] | 0.590 |
ALAT (U/L) | 1.00 | [1.00; 1.00] | 0.304 |
Sodium (mmol/L) | 1.00 | [0.96; 1.05] | 0.902 |
References
- Jorde, U.P.; Saeed, O.; Koehl, D.; Morris, A.A.; Wood, K.L.; Meyer, D.M.; Cantor, R.; Jacobs, J.P.; Kirklin, J.K.; Pagani, F.D.; et al. The Society of Thoracic Surgeons Intermacs 2023 Annual Report: Focus on Magnetically Levitated Devices. Ann. Thorac. Surg. 2024, 117, 33–44. [Google Scholar] [CrossRef]
- Kato, T.S.; Kitada, S.; Yang, J.; Wu, C.; Takayama, H.; Naka, Y.; Farr, M.; Mancini, D.M.; Schulze, P.C. Relation of preoperative serum albumin levels to survival in patients undergoing left ventricular assist device implantation. Am. J. Cardiol. 2013, 112, 1484–1488. [Google Scholar] [CrossRef] [PubMed]
- Go, P.H.; Hodari, A.; Nemeh, H.W.; Borgi, J.; Lanfear, D.E.; Williams, C.T.; Paone, G.; Morgan, J.A. Effect of Preoperative Albumin Levels on Outcomes in Patients Undergoing Left Ventricular Device Implantation. Asaio J. 2015, 61, 734–737. [Google Scholar] [CrossRef]
- Mehra, M.R.; Goldstein, D.J.; Cleveland, J.C.; Cowger, J.A.; Hall, S.; Salerno, C.T.; Naka, Y.; Horstmanshof, D.; Chuang, J.; Wang, A.; et al. Five-Year Outcomes in Patients with Fully Magnetically Levitated vs Axial-Flow Left Ventricular Assist Devices in the MOMENTUM 3 Randomized Trial. JAMA 2022, 328, 1233–1242. [Google Scholar] [CrossRef]
- Mehra, M.R.; Uriel, N.; Naka, Y.; Cleveland, J.C.; Yuzefpolskaya, M.; Salerno, C.T.; Walsh, M.N.; Milano, C.A.; Patel, C.B.; Hutchins, S.W.; et al. A Fully Magnetically Levitated Left Ventricular Assist Device—Final Report. N. Engl. J. Med. 2019, 380, 1618–1627. [Google Scholar] [CrossRef]
- Kato, T.S.; Cheema, F.H.; Yang, J.; Kawano, Y.; Takayama, H.; Naka, Y.; Farr, M.; Lederer, D.J.; Baldwin, M.R.; Jin, Z.; et al. Preoperative serum albumin levels predict 1-year postoperative survival of patients undergoing heart transplantation. Circ. Heart Fail. 2013, 6, 785–791. [Google Scholar] [CrossRef]
- de la Cruz, K.I.; Bakaeen, F.G.; Wang, X.L.; Huh, J.; LeMaire, S.A.; Coselli, J.S.; Chu, D. Hypoalbuminemia and long-term survival after coronary artery bypass: A propensity score analysis. Ann. Thorac. Surg. 2011, 91, 671–675. [Google Scholar] [CrossRef]
- Engelman, D.T.; Adams, D.H.; Byrne, J.G.; Aranki, S.F.; Collins, J.J., Jr.; Couper, G.S.; Allred, E.N.; Cohn, L.H.; Rizzo, R.J. Impact of body mass index and albumin on morbidity and mortality after cardiac surgery. J. Thorac. Cardiovasc. Surg. 1999, 118, 866–873. [Google Scholar] [CrossRef] [PubMed]
- Don, B.R.; Kaysen, G. Serum albumin: Relationship to inflammation and nutrition. Semin. Dial. 2004, 17, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Gabay, C.; Kushner, I. Acute-phase proteins and other systemic responses to inflammation. N. Engl. J. Med. 1999, 340, 448–454. [Google Scholar] [CrossRef]
- Critsinelis, A.C.; Kurihara, C.; Kawabori, M.; Sugiura, T.; Lee, V.-V.; Civitello, A.B.; Morgan, J.A. Predictive value of preoperative serum albumin levels on outcomes in patients undergoing LVAD implantation. J. Card. Surg. 2018, 33, 469–478. [Google Scholar] [CrossRef]
- Mehra, M.R.; Goldstein, D.J.; Uriel, N.; Cleveland, J.C.; Yuzefpolskaya, M.; Salerno, C.; Walsh, M.N.; Milano, C.A.; Patel, C.B.; Ewald, G.A.; et al. Two-Year Outcomes with a Magnetically Levitated Cardiac Pump in Heart Failure. N. Engl. J. Med. 2018, 378, 1386–1395. [Google Scholar] [CrossRef]
- Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Koertzen, M.; Punjabi, P.; Lockwood, G. Pre-operative serum albumin concentration as a predictor of mortality and morbidity following cardiac surgery. Perfusion 2013, 28, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Padkins, M.; Breen, T.; Anavekar, N.; Barsness, G.; Kashani, K.; Jentzer, J.C. Association Between Albumin Level and Mortality Among Cardiac Intensive Care Unit Patients. J. Intensiv. Care Med. 2021, 36, 1475–1482. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Hao, M.; Zhou, W.; Liu, M.; Wei, Y.; Xu, J.; Zhang, W. Preoperative hypoalbuminemia in patients undergoing cardiac surgery: A meta-analysis. Surg. Today 2023, 53, 861–872. [Google Scholar] [CrossRef]
- Lee, E.H.; Chin, J.H.; Choi, D.K.; Hwang, B.-Y.; Choo, S.-J.; Song, J.-G.; Kim, T.-Y.; Choi, I.-C. Postoperative hypoalbuminemia is associated with outcome in patients undergoing off-pump coronary artery bypass graft surgery. J. Cardiothorac. Vasc. Anesth. 2011, 25, 462–468. [Google Scholar] [CrossRef]
- Critsinelis, A.C.; Kurihara, C.; Kawabori, M.; Sugiura, T.; Civitello, A.B.; Morgan, J.A. Preoperative Prealbumin Level as a Predictor of Outcomes in Patients Who Underwent Left Ventricular Assist Device Implantation. Am. J. Cardiol. 2017, 120, 1998–2002. [Google Scholar] [CrossRef]
- Imamura, T.; Combs, P.; Siddiqi, U.; Mirzai, S.; Stonebraker, C.; Bullard, H.; Simone, P.; Jeevanandam, V. Perioperative improvement in serum albumin level in patients with left ventricular assist device. J. Card. Surg. 2020, 35, 3070–3077. [Google Scholar] [CrossRef]
- George, T.J.; Van Dinter, T.; Rawitscher, D.; DiMaio, J.M.; Kabra, N.; Afzal, A. Impact of Preoperative Liver Function on Short-Term HeartMate 3 Outcomes. Am. J. Cardiol. 2022, 183, 62–69. [Google Scholar] [CrossRef]
- Gopal, D.J.; Hanff, T.C.; Mazurek, J.A.; Grandin, W.E.; Howard, J.; Forde-McLean, R.; Wald, J.; King, K.; Acker, M.A.; Goldberg, L.R.; et al. Prognostic Implications of Changes in Albumin Following Left Ventricular Assist Device Implantation in Patients with Severe Heart Failure. Am. J. Cardiol. 2017, 120, 2003–2007. [Google Scholar] [CrossRef]
- Cowger, J.A.; Castle, L.; Aaronson, K.D.; Slaughter, M.S.; Moainie, S.; Walsh, M.; Salerno, C. The HeartMate II Risk Score: An Adjusted Score for Evaluation of All Continuous-Flow Left Ventricular Assist Devices. Asaio J. 2016, 62, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Mehra, M.R.; Nayak, A.; Morris, A.A.; Lanfear, D.E.; Nemeh, H.; Desai, S.; Bansal, A.; Guerrero-Miranda, C.; Hall, S.; Cleveland, J.C.; et al. Prediction of Survival After Implantation of a Fully Magnetically Levitated Left Ventricular Assist Device. JACC Heart Fail. 2022, 10, 948–959. [Google Scholar] [CrossRef]
- Yost, G.; Tatooles, A.; Bhat, G. Preoperative Nutritional Assessment with the Prognostic Nutrition Index in Patients Undergoing Left Ventricular Assist Device Implantation. Asaio J. 2018, 64, 52–55. [Google Scholar] [CrossRef] [PubMed]
- Milaniak, I.; Tomaszek, L.; Wiśniowska-Śmiałek, S.; Górkiewicz-Kot, I.; Wasilewski, G.; Kurleto, P.; Kaleta, M.; Sobczyk, D.; Wierzbicki, K. Nutritional Risk Assessment and Adverse Events in Patients Undergoing Left Ventricular Assist Device Implantation-A Retrospective Cohort Study Using Hospital Information System. J. Clin. Med. 2023, 12, 7181. [Google Scholar] [CrossRef]
- Contreras, F.J.; Pinsker, B.L.; Katz, J.N.; Russell, S.D.; Schroder, J.; Bryner, B.; Gunn, A.H.; Amin, K.; Milano, C. Value of nutritional indices in predicting survival free from pump replacement and driveline infections in centrifugal left ventricular assist devices. JTCVS Open 2024, 19, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Uribarri, A.; Rojas, S.V.; Hanke, J.S.; Dogan, G.; Siemeni, T.; Kaufeld, T.; Ius, F.; Goecke, T.; Rojas-Hernandez, S.; Warnecke, G.; et al. Prognostic Value of the Nutritional Risk Index in Candidates for Continuous Flow Left Ventricular Assist Device Therapy. Rev. Esp. Cardiol. (Engl. Ed.) 2019, 72, 608–615. [Google Scholar] [CrossRef]
- Saito, A.; Amiya, E.; Hatano, M.; Shiraishi, Y.; Nitta, D.; Minatsuki, S.; Maki, H.; Hosoya, Y.; Tsuji, M.; Bujo, C.; et al. Controlling Nutritional Status Score as a Predictive Marker for Patients with Implantable Left Ventricular Assist Device. Asaio J. 2020, 66, 166–172. [Google Scholar] [CrossRef]
- Felpel, K.; Palmese, L.; Urrutia, L.; Zhang, Z.; Shapero, M.; Esbenshade, J.; Hamid, S.; Vest, M.T. Nutritional assessment and comparison of nutritional indices in predicting adverse outcomes in patients undergoing left ventricular assist device implantation. Nutrition 2021, 89, 111287. [Google Scholar] [CrossRef]
- Holdy, K.; Dembitsky, W.; Eaton, L.L.; Chillcott, S.; Stahovich, M.; Rasmusson, B.; Pagani, F. Nutrition assessment and management of left ventricular assist device patients. J. Heart Lung Transplant. 2005, 24, 1690–1696. [Google Scholar] [CrossRef]
Variable n (%), Mean ± SD or Median (IQR) | Albumin < 32 g/L N = 119 | Albumin ≥ 32 g/L N = 86 | p-Value |
---|---|---|---|
Patient characteristics | |||
Age (years) | 63 ± 10.6 | 61 ± 8.8 | 0.905 |
Gender | 0.465 | ||
male | 106 (89.1) | 80 (93.0) | |
female | 13 (10.9) | 6 (7.0) | |
BMI (kg/m2) | 26.8 ± 4.8 | 27.8 ± 4.6 | 0.365 |
Cardiomyopathy | 0.269 | ||
Dilated | 47 (39.5) | 27 (31.4) | |
Ischemic | 70 (58.8) | 55 (64.0) | |
Other | 2 (1.6) | 4 (4.6) | |
INTERMACS | <0.001 | ||
Level 1 | 38 (31.9) | 6 (7.0) | |
Level 2 | 25 (21.0) | 15 (17.4) | |
Level 3 | 19 (16.0) | 23 (26.7) | |
Level 4–7 | 37 (31.1) | 42 (48.8) | |
Hypertension | 38 (32.5) | 29 (33.7) | 0.881 |
Peripheral artery disease | 7 (6.0) | 4 (4.7) | 0.763 |
Chronic kidney disease | 35 (30.2) | 24 (27.9) | 0.756 |
Diabetes Type 2 | 38 (32.8) | 32 (38.1) | 0.605 |
Atrial fibrillation | 53 (49.1) | 34 (40.0) | 0.244 |
Stroke history | 12 (10.1) | 5 (5.8) | 0.320 |
Peripheral edema | 22 (19.1) | 17 (20.2) | 0.860 |
Cardiac infarction | 36 (30.3) | 27 (31.4) | 0.880 |
Surgical implant data | |||
Previous cardiac surgery | 14 (11.8) | 10 (11.6) | 1.000 |
Less invasive implant method | 31 (26.1) | 37 (43.0) | 0.016 |
Bypass support | 0.130 | ||
CPB | 100 (84.9) | 77 (89.5) | |
ECMO | 11 (9.2) | 1 (1.2) | |
Off-pump | 6 (6.7) | 7 (8.1) | |
LVAD anastomosis site | 0.845 | ||
Ascending aorta | 112 (94.1) | 82 (95.3) | |
Descending aorta | 1 (0.8) | 1 (1.2) | |
Left subclavian artery | 6 (5.0) | 3 (3.5) | |
Temporary RVAD | 52 (43.7) | 20 (23.3) | 0.003 |
Concomitant procedures | 48 (40.3) | 30 (34.9) | 0.468 |
Pre-operative laboratory parameters | |||
Creatine kinase (U/L) | 62.0 (59.0) | 66.0 (111) | 0.921 |
Creatine (mg/dL) | 1.35 (0.74) | 1.29 (0.96) | 0.994 |
MDRD-GFR (ml/min) | 57.8 (35.3) | 56.4 (44.9) | 0.941 |
Cholesterol (mg/dL) | 122.4 ± 36.8 | 116.7 ± 49.5 | 0.941 |
Sodium (mmol/L) | 138.9 ± 4.5 | 138.5 ± 5.4 | 0.618 |
ALAT (U/L) | 29.0 (31.0) | 40.5 (103.5) | 0.002 |
Bilirubin (mg/dL) | 0.92 (0.86) | 1.09 (1.33) | 0.286 |
WBC (G/L) | 8.0 (4.0) | 8.4 (4.5) | 0.402 |
CRP (mg/dL) | 1.3 (4.2) | 2.8 (5.0) | 0.197 |
Nutritional Scores | |||
PNI | 39.1 (7.6) | 39.2 (11.0) | 0.598 |
CONUT | 5 (4) | 6 (4) | 0.377 |
Pre-operative hemodynamics | |||
Central venous pressure (mmHg) | 14.5 (9.0) | 15.0 (7.0) | 0.377 |
Mean pulmonary artery pressure (mmHg) | 32.9 ± 11.4 | 33.1 ± 10.5 | 0.922 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moayedifar, R.; Celik, M.; Karner, B.; Schaefer, A.-K.; Al Asadi, H.; Marko, C.; Ruoff, L.; Zimpfer, D.; Riebandt, J.; Schlöglhofer, T. Prognostic Significance of Albumin in Modern Left Ventricular Assist Device Therapy: Relevance in the HeartMate 3 Era? J. Clin. Med. 2025, 14, 6193. https://doi.org/10.3390/jcm14176193
Moayedifar R, Celik M, Karner B, Schaefer A-K, Al Asadi H, Marko C, Ruoff L, Zimpfer D, Riebandt J, Schlöglhofer T. Prognostic Significance of Albumin in Modern Left Ventricular Assist Device Therapy: Relevance in the HeartMate 3 Era? Journal of Clinical Medicine. 2025; 14(17):6193. https://doi.org/10.3390/jcm14176193
Chicago/Turabian StyleMoayedifar, Roxana, Muhammed Celik, Barbara Karner, Anne-Kristin Schaefer, Hebe Al Asadi, Christiane Marko, Lukas Ruoff, Daniel Zimpfer, Julia Riebandt, and Thomas Schlöglhofer. 2025. "Prognostic Significance of Albumin in Modern Left Ventricular Assist Device Therapy: Relevance in the HeartMate 3 Era?" Journal of Clinical Medicine 14, no. 17: 6193. https://doi.org/10.3390/jcm14176193
APA StyleMoayedifar, R., Celik, M., Karner, B., Schaefer, A.-K., Al Asadi, H., Marko, C., Ruoff, L., Zimpfer, D., Riebandt, J., & Schlöglhofer, T. (2025). Prognostic Significance of Albumin in Modern Left Ventricular Assist Device Therapy: Relevance in the HeartMate 3 Era? Journal of Clinical Medicine, 14(17), 6193. https://doi.org/10.3390/jcm14176193