Perioperative Myocardial Injury and Acute Kidney Injury in Patients Undergoing Hepatic Resection: Incidence, Risk Factors, and Effects on Outcomes
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Inclusion
2.2. Perioperative Management
2.3. Surgical Procedure
2.4. Study Endpoints, Definitions, and Calculations
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AKI | Acute Kidney Injury |
PMI | Perioperative Myocardial Injury |
POI | Perioperative Organ Injury |
ROC | Receiver Operating Characteristics |
ICU | Intensive Care Unit |
HPB | Hepatobiliary and Pancreas |
PSI | Patient State Index |
CVP | Central Venous Pressure |
MAP | Mean Arterial Pressure |
CKD | Chronic Kidney Disease |
PLF | Postoperative Liver Failure |
References
- Fujii, T.; Takakura, M.; Taniguchi, T.; Tamura, T.; Nishiwaki, K. Intraoperative hypotension affects postoperative acute kidney injury depending on the invasiveness of abdominal surgery: A retrospective cohort study. Medicine 2023, 102, e36465. [Google Scholar] [CrossRef] [PubMed]
- Wisén, E.; Almazrooa, A.; Bown, L.S.; Rizell, M.; Ricksten, S.; Kvarnström, A.; Svennerholm, K. Myocardial, renal and intestinal injury in liver resection surgery-A prospective observational pilot study. Acta Anaesthesiol. Scand. 2021, 65, 886–894. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.; Audureau, E.; Salloum, C.; Levesque, E.; Lahat, E.; Merle, J.C.; Compagnon, P.; Dhonneur, G.; Feray, C.; Azoulay, D. Acute kidney injury following hepatectomy for hepatocellular carcinoma: Incidence, risk factors and prognostic value. HPB 2016, 18, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Joliat, G.-R.; Labgaa, I.; Demartines, N.; Halkic, N. Acute kidney injury after liver surgery: Does postoperative urine output correlate with postoperative serum creatinine? HPB 2020, 22, 144–150. [Google Scholar] [CrossRef]
- Lee, K.F.; Lo, E.Y.J.; Wong, K.K.C.; Fung, A.K.Y.; Chong, C.C.N.; Wong, J.; Ng, K.K.C.; Lai, P.B.S. Acute kidney injury following hepatectomy and its impact on long-term survival for patients with hepatocellular carcinoma. BJS Open 2021, 5, zrab077. [Google Scholar] [CrossRef]
- Zarbock, A.; Weiss, R.; Albert, F.; Rutledge, K.; Kellum, J.A.; Bellomo, R.; Grigoryev, E.; Candela-Toha, A.M.; Demir, Z.A.; Legros, V.; et al. EPIS-AKI Investigators. Epidemiology of surgery associated acute kidney injury (EPIS-AKI): A prospective international observational multi-center clinical study. Intensive Care Med. 2023, 49, 1441–1455. [Google Scholar] [CrossRef]
- Halvorsen, S.; Mehilli, J.; Cassese, S.; Hall, T.S.; Abdelhamid, M.; Barbato, E.; De Hert, S.; de Laval, I.; Geisler, T.; Hinterbuchner, L.; et al. 2022 ESC Guidelines on cardiovascular assessment and management of patients undergoing non-cardiac surgery. Eur. Heart J. 2022, 43, 3826–3924. [Google Scholar] [CrossRef]
- Ruetzler, K.; Khanna, A.K.; Sessler, D.I. Myocardial Injury After Noncardiac Surgery: Preoperative, Intraoperative, and Postoperative Aspects, Implications and Directions. Anesth. Analg. 2020, 131, 173–186. [Google Scholar] [CrossRef]
- Smilowitz, N.R.; Redel-Traub, G.B.; Hausvater, A.; Armanious, A.; Nicholson, J.; Puelacher, C.; Berger, J.S. Myocardial Injury After Noncardiac Surgery: A Systematic Review and Meta-Analysis. Cardiol. Rev. 2019, 27, 267–273. [Google Scholar] [CrossRef]
- Abdullah, T.; Gökduman, H.C.; Enişte, İ.A.; Kudaş, İ.; Ali, A.; Kinaci, E.; Özden, I.; Özcan, F.G. Mean arterial pressure versus cardiac index for haemodynamic management and myocardial injury after hepatopancreatic surgery: A randomised controlled trial. Eur. J. Anaesthesiol. 2024, 41, 831–840. [Google Scholar] [CrossRef]
- Ishikawa, S.; Tanaka, M.; Maruyama, F.; Fukagawa, A.; Shiota, N.; Matsumura, S.; Makita, K. Effects of acute kidney injury after liver resection on long-term outcomes. Korean J. Anesth. 2017, 70, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin. Pract. 2012, 120, c179–c184. [Google Scholar] [CrossRef]
- Strasberg, S.M.; Belghiti, J.; Clavien, P.-A.; Gadzijev, E.; Garden, J.; Lau, W.-Y.; Makuuchi, M.; Strong, R. The Brisbane 2000 terminology of liver anatomy and resections. HPB 2000, 2, 333–339. [Google Scholar] [CrossRef]
- Lopez-Picado, A.; Albinarrate, A.; Barrachina, B. Determination of Perioperative Blood Loss: Accuracy or Approximation? Anesth. Analg. 2017, 125, 280–286. [Google Scholar] [CrossRef]
- Coste, J.; Pouchot, J. A grey zone for quantitative diagnostic and screening tests. Int. J. Epidemiol. 2003, 32, 304–313. [Google Scholar] [CrossRef]
- Green, S.B. How Many Subjects Does It Take To Do A Regression Analysis. Multivar. Behav. Res. 1991, 26, 499–510. [Google Scholar] [CrossRef] [PubMed]
- Reese, T.; Kröger, F.; Makridis, G.; Drexler, R.; Jusufi, M.; Schneider, M.; Brüning, R.; von Rittberg, Y.; Wagner, K.C.; Oldhafer, K.J. Impact of acute kidney injury after extended liver resections. HPB 2021, 23, 1000–1007. [Google Scholar] [CrossRef]
- Miller, T.E.; Mythen, M.; Shaw, A.D.; Hwang, S.; Shenoy, A.V.; Bershad, M.; Hunley, C. Association between perioperative fluid management and patient outcomes: A multicentre retrospective study. Br. J. Anaesth. 2021, 126, 720–729. [Google Scholar] [CrossRef]
- Frogel, J.; Galusca, D. Anesthetic considerations for patients with advanced valvular heart disease undergoing noncardiac surgery. Anesth. Clin. 2010, 28, 67–85. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Zhang, C.; Zhang, F.; Liu, C.; Li, H.; Lou, J.; Xu, Z.; Liu, Y.; Cao, J.; Mi, W. Development and validation of a risk nomogram for postoperative acute kidney injury in older patients undergoing liver resection: A pilot study. BMC Anesth. 2022, 22, 22. [Google Scholar] [CrossRef]
- Ida, S.; Morita, Y.; Matsumoto, A.; Muraki, R.; Kitajima, R.; Furuhashi, S.; Takeda, M.; Kikuchi, H.; Hiramatsu, Y.; Takeuchi, H. Prediction of postoperative complications after hepatectomy with dynamic monitoring of central venous oxygen saturation. BMC Surg. 2023, 23, 343. [Google Scholar] [CrossRef]
- Gaspari, R.; Teofili, L.; Ardito, F.; Adducci, E.; Vellone, M.; Mele, C.; Orlando, N.; Iacobucci, T.; Antonelli, M.; Giuliante, F. High Arterial Lactate Levels after Hepatic Resection Are Associated with Low Oxygen Delivery and Predict Severe Postoperative Complications. Biomedicines 2022, 10, 1108. [Google Scholar] [CrossRef] [PubMed]
- Lemke, M.; Karanicolas, P.J.; Habashi, R.; Behman, R.; Coburn, N.G.; Hanna, S.S.; Law, C.H.; Hallet, J. Elevated Lactate is Independently Associated with Adverse Outcomes Following Hepatectomy. World J. Surg. 2017, 41, 3180–3188. [Google Scholar] [CrossRef] [PubMed]
- Recknagel, S.; Rademacher, S.; Höhne, C.; Lederer, A.A.; Lange, U.G.; Herta, T.; Seehofer, D.; Sucher, R.; Scheuermann, U. Prediction of the Postoperative Outcome in Liver Resection Using Perioperative Serum Lactate Levels. J. Clin. Med. 2023, 12, 2100. [Google Scholar] [CrossRef]
- Connolly, C.; Stättner, S.; Niederwieser, T.; Primavesi, F. Systematic review on peri-operative lactate measurements to predict outcomes in patients undergoing liver resection. J. Hepatobiliary Pancreat. Sci. 2020, 27, 359–370. [Google Scholar] [CrossRef] [PubMed]
All (128) | Injury + (48) | Injury − (80) | p Value | |
---|---|---|---|---|
Sex | 0.46 | |||
Male | 75 (59%) | 26 (54%) | 49 (61%) | |
Female | 53 (41%) | 22 (46%) | 31 (39%) | |
Age (years) | 57 ± 13 | 59 ± 13 | 56 ± 13 | 0.30 |
Weight (kg) | 75 ±12 | 76 ± 12 | 75 ± 12 | 0.60 |
Height (cm) | 167 ± 9 | 166 ± 9 | 167 ± 9 | 0.70 |
Comorbidities | ||||
Hypertension | 58 (45%) | 27 (56%) | 31 (39%) | 0.06 |
Diabetes mellitus | 30 (23%) | 13 (27%) | 17 (21%) | 0.45 |
Coronary artery disease | 20 (16%) | 6 (13%) | 14 (18%) | 0.45 |
Systolic/Valvular Heart Disease | 7 (6%) | 6 (13%) | 1 (1%) | 0.007 |
Systolic heart disease | 2 (1.6%) | 2 (4%) | 0 (0%) | 0.07 |
Valvular heart disease | 5 (4%) | 4 (8%) | 1 (1%) | 0.04 |
Cerebrovascular disease | 2 (2%) | 1 (2%) | 1 (1%) | 0.71 |
Pulmonary disease | 2 (2%) | 1 (2%) | 1 (1%) | 0.71 |
Thyroid disease | 17 (113%) | 6 (13%) | 11 (14%) | 0.84 |
Chronic Kidney Disease | 9 (7%) | 7 (15%) | 2 (3%) | 0.01 |
Chronic hsTnT Elevation | 19 (15%) | 10 (21%) | 9 (11%) | 0.14 |
ASA Score | 0.48 | |||
1 | 25 (20%) | 6 (12%) | 19 (24%) | |
2 | 81 (63%) | 33 (69%) | 48 (60%) | |
3 | 19 (15%) | 8 (17%) | 11 (14%) | |
4 | 3 (2%) | 1 (2%) | 2 (2%) | |
Medications | ||||
Beta blocker | 27 (21%) | 13 (27%) | 14 (18%) | 0.20 |
ACEi/ARB | 33 (26%) | 16 (33%) | 17 (21%) | 0.13 |
CCB | 32 (25%) | 15 (31%) | 17 (21%) | 0.21 |
Statin | 12 (9%) | 7 (15%) | 5 (6%) | 0.12 |
Antiplatelet Therapy | 20 (16%) | 7 (15%) | 13 (16%) | 0.80 |
NOACs | 1 (1%) | 1 (2%) | 0 (0%) | 0.20 |
OAD | 30 (23%) | 13 (27%) | 17 (21%) | 0.45 |
Insulin | 5 (4%) | 1 (2%) | 4 (5%) | 0.41 |
Surgical Diagnosis | 0.19 | |||
Hepatocellular carcinoma | 55 (43%) | 19 (40%) | 36 (45%) | |
Hepatic metastasis | 37 (29%) | 16 (33%) | 21 (26%) | |
Colangiocellular carcinoma | 26 (20%) | 12 (25%) | 14 (18%) | |
Gallbladder malignancy | 10 (8%) | 1 (2%) | 9 (11%) |
All (128) | Injury + (48) | Injury − (80) | p Value | |
---|---|---|---|---|
Number of segments resected | 0.01 | |||
1–2 segments | 41 (32%) | 9 (19%) | 32 (40%) | |
3–5 segments | 87 (68%) | 39 (81%) | 48 (60%) | |
Duration of anesthesia (min) | 398 (300–470) | 403 (350–480) | 390 (300–458) | 0.13 |
Duration of surgery (min) | 360 (270–420) | 373 (303–433) | 345 (245–420) | 0.08 |
Use of the Pringle maneuver (min) | 26 (0–60) | 38 (0–64) | 17 (0–64) | 0.04 |
Anesthesia management | ||||
×MAC of Sevoflurane (%) | 0.70 ± 0.13 | 0.72–0.15 | 0.74 ± 0.11 | 0.26 |
Total remifentanil dose (mcg/kg/min) | 1280 (1000–2000) | 1490 (1000–2070) | 1200 (920–1800) | 0.15 |
Mean remifentanil dose (mcg/kg/min) | 0.05 (0.04–0.06) | 0.05 (0.04–0.06) | 0.05 (0.04–0.07) | 0.56 |
Fluids | ||||
Crystalloids during surgery (mL) | 3500 (3000–5000) | 4500 (3500–6000) | 3000 (2500–4500) | <0.001 |
Total fluids (mL) | 3975 (3000–5500) | 5050 (3500–6600) | 3500 (2500–4500) | <0.001 |
Urine output (mL) | 650 (434–1000) | 650 (435–1038) | 650 (473–1000) | 0.82 |
Estimated blood loss (mL) | 288 (100–760) | 750 (1000–1311) | 208 (100–593) | 0.003 |
Fluid Balance (mL) | 2453 (1928–3802) | 3155 (2385–4481) | 2269 (1544–3223) | <0.001 |
Fluid balance per hour (mL) | 406 (297–495) | 478 (384–581) | 353 (278–472) | <0.001 |
Patients received colloids (n) | 34 (27%) | 18 (38%) | 16 (20%) | 0.03 |
Patients received PRBC (n) | 29 (23%) | 18 (38%) | 11 (14%) | 0.003 |
Vasopressors and Inotropes | ||||
Noradrenaline (n) | 82 (64%) | 37 (77%) | 45 (56%) | 0.02 |
Noradrenaline # (mcg/kg/min) | 0.14 ± 0.08 | 0.18 ± 0.08 | 0.10 ± 0.06 | 0.07 |
Dobutamine (n) | 24 (19%) | 9 (19%) | 15 (19%) | 1.00 |
Dobutamine # (mcg/kg/min) | 2.9 ± 1.3 | 3.4 ± 1.6 | 2.4 ± 0.7 | 0.22 |
Odds Ratio | 95% CI | p Value | |
---|---|---|---|
Fluid Balance (FB) | |||
FB ≤ 300 (mL/h) | 1 | reference | |
300 < FB ≤ 365 (mL/h) | 5.5 | 0.6–52 | 0.07 |
365 < FB ≤ 550 (mL/h) | 13 | 2–84.7 | 0.007 |
FB > 550 (mL/h) | 20.7 | 2.3–185 | 0.007 |
Estimated Blood Loss (BL) | |||
BL < 750 (mL) | 1 | reference | |
750 ≤ BL ≤ 950 (mL) | 3 | 0.4–24 | 0.30 |
BL > 950 (mL) | 7.8 | 2.2–26.9 | 0.001 |
pRBC Transfusion (n) | |||
0–1 | 1 | reference | |
≥2 | 0.5 | 0.1–2.6 | 0.43 |
Noradrenaline infusion | 1.5 | 0.5–4.8 | 0.49 |
Duration of Pringle maneuver | |||
0–45 min | 1 | reference | |
>45 min | 2.1 | 0.8–6.1 | 0.15 |
Major Hepatectomy | 1.4 | 0.4–4.7 | 0.59 |
Chronic Kidney Disease | 28.8 | 1.7–486.4 | 0.02 |
Systolic/Valvular heart disease | 14.7 | 1.4–159.3 | 0.03 |
All (91) | Injury + (48) | Injury − (80) | p Value | |
---|---|---|---|---|
Hemoglobinpre (g/dL) | 11.7 ± 1.7 | 11.5 ± 2 | 11.9 ± 1.5 | 0.21 |
Hemoglobinpost (g/dL) | 11.4 ± 1.5 | 10.8 ± 1.4 | 11.8 ± 1.5 | <0.001 |
Hemoglobinlowest (g/dL) | 10.8 ± 1.6 | 10.1 ± 1.5 | 11.2 ± 1.6 | <0.001 |
Hemoglobinpre-post (g/dL) | 0.1 (−0.6–1) | 0.3 (−0.35–1.4) | −0.1 (−0.75–0.75) | 0.02 |
Hemoglobinpre-lowest (g/dL) | 0.5 (0–1.6) | 1.1 (0.1–1.9) | 0.3 (0–1.1) | 0.01 |
Lactatepre (mmol/L) | 0.9 (0.6–1.2) | 1 (0.7–1.2) | 0.8 (0.6–1.3) | 0.47 |
Lactatepost (mmol/L) | 2.8 (1.7–4.2) | 3.4 (2.6–5) | 2.5 (1.4–3.4) | <0.001 |
Lactatehighest (mmol/L) | 3.3 (2–4.9) | 3.9 (2.7–5.2) | 3 (1.8–4.5) | 0.01 |
Lactatepost-pre (mmol/L) | 1.9 (0.7–3.2) | 2.5 (1.4–4.1) | 1.5 (0.4–2.5) | <0.001 |
Lactatehighest-pre (mmol/L) | 2.2 (1–3.8) | 3 (1.5–4.3) | 2.1 (0.7–3.4) | 0.01 |
ScvO2pre (%) | 78 ± 7 | 78 ± 6 | 77 ± 7 | 0.47 |
ScvO2post (%) | 80 ± 6 | 81 ± 6 | 80 ± 6 | 0.45 |
ScvO2lowest (%) | 75 ± 7 | 75 ± 6 | 76 ± 7 | 0.23 |
ScvO2pre-lowest (%) | 0 (0–3.3) | 2.2 (0–6) | 0 (0–2) | <0.001 |
ScvO2post-pre (%) | 2 (−0.7–6.2) | 0.9 (−2.5–5.1) | 2.1 (0.2–6.5) | 0.20 |
Δv-aPco2pre (mmHg) | 6 (5–7.3) | 5.8 (5–6.9) | 6.5 (5.3–7.7) | 0.10 |
Δv-aPco2post (mmHg) | 5.5 (4.6–6.5) | 5.5 (4.7–6.5) | 5.5 (4.5–6.8) | 0.67 |
Δv-aPco2highest (mmHg) | 6.9 (5.9–9) | 6.8 (5.7–9) | 7 (6–8.8) | 0.80 |
Δv-aPco2highest-pre (mmHg) | 0.3 (0–1.8) | 0.5 (0–2.2) | 0.2 (0–1.5) | 0.18 |
Δv-aPco2post-pre (mmHg) | −0.5 (−1.9–0.7) | −0.3 (−2–1.5) | −0.5 (−1.9–0.3) | 0.40 |
Base excesspre (mmol/L) | 1.3 (−0.2–2.7) | 0.8 (−0.4–2.5) | 1.3 (−0.2–2.9) | 0.78 |
Base excesspost (mmol/L) | 1.2 (−0.2–2.8) | 0.5 (−0.5–2) | 1.3 (0–3.3) | 0.06 |
Base excesslowest (mmol/L) | −0.9 (−3–0.8) | −1.6 (−3.3–0) | −0.5 (−3–1.1) | 0.08 |
Base excesspre-lowest (mmol/L) | 1.6 (0.2–3.4) | 2.1 (0.8–3.7) | 1.3 (0–3.2) | 0.07 |
Base excesspre-post (mmol/L) | −0.2 (−1.3–1.7) | 0.5 (−1.2–2.2) | −0.6 (−1.5–1.2) | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdullah, T.; Şentürk, M.; Gökduman, H.C.; Enişte, İ.A.; Kudaş, İ.; Bostancı, Ö.; Kınacı, E.; Özden, İ.; Gümüş Özcan, F. Perioperative Myocardial Injury and Acute Kidney Injury in Patients Undergoing Hepatic Resection: Incidence, Risk Factors, and Effects on Outcomes. J. Clin. Med. 2025, 14, 6080. https://doi.org/10.3390/jcm14176080
Abdullah T, Şentürk M, Gökduman HC, Enişte İA, Kudaş İ, Bostancı Ö, Kınacı E, Özden İ, Gümüş Özcan F. Perioperative Myocardial Injury and Acute Kidney Injury in Patients Undergoing Hepatic Resection: Incidence, Risk Factors, and Effects on Outcomes. Journal of Clinical Medicine. 2025; 14(17):6080. https://doi.org/10.3390/jcm14176080
Chicago/Turabian StyleAbdullah, Taner, Mert Şentürk, Hürü Ceren Gökduman, İşbara Alp Enişte, İlyas Kudaş, Özgür Bostancı, Erdem Kınacı, İlgin Özden, and Funda Gümüş Özcan. 2025. "Perioperative Myocardial Injury and Acute Kidney Injury in Patients Undergoing Hepatic Resection: Incidence, Risk Factors, and Effects on Outcomes" Journal of Clinical Medicine 14, no. 17: 6080. https://doi.org/10.3390/jcm14176080
APA StyleAbdullah, T., Şentürk, M., Gökduman, H. C., Enişte, İ. A., Kudaş, İ., Bostancı, Ö., Kınacı, E., Özden, İ., & Gümüş Özcan, F. (2025). Perioperative Myocardial Injury and Acute Kidney Injury in Patients Undergoing Hepatic Resection: Incidence, Risk Factors, and Effects on Outcomes. Journal of Clinical Medicine, 14(17), 6080. https://doi.org/10.3390/jcm14176080