Assessment of Landing Parameters in Patients with Chronic Ankle Instability
Abstract
1. Introduction
2. Material and Method
- Study population I—14 individuals with instability of one ankle,
- Study population II—15 individuals with instability of both ankles,
- Control group—31 individuals, without joint instability.
- Young adults (below 35 years old);
- Minimum of 2 ankle torsions to the same extremity within the past 3 years (with a minimum of one serious torsion causing impossibility to sport participation ≥ 21 days);
- Tear of anterior talofibular ligament and/or talocalcaneal ligament III°, confirmed by ultrasound and/or MRI;
- Minimum 60 points on The Foot & Ankle Disability Index Score (FADI) and on the sports module (FADI-S);
- Return to sport on previous level for over 6 months;
- Participation in an endurance sport a minimum of twice a week.
- Young adults (below 35 years old);
- No ankle injuries in history;
- Participation in an endurance sport a minimum of twice a week.
2.1. Study Protocol
- Correct landing;
- Landing with a slight shift during landing (up to 1/2 foot width);
- Landing with a significant shift during landing (>1 foot width);
- Unstable landing.
2.2. Time to Stability—Quantitative Assessment
- (1)
- Determining the global COP shift (Figure 2);
- (2)
- Based on the obtained path, determination of the contact point of the extremity with the platform (a sudden increase of COP shift—red dot on of Figure 3);
- (3)
- Establishing a divide of the path into time windows (window size—20 samples) with blue rectangles on and within each window, determining a value that was greater than 95% of samples within a window;
- (4)
- A comparison of the value obtained in the previous step with the threshold (orange line on Figure 3); the beginning of a window for which the value was lower than the threshold was determined to be the time to stability.
3. Results
3.1. Qualitative Assessment of Landing Before and After Fatigue Test
3.2. Time to Stability—Quantitative Assessment Before and After Fatigue Test
4. Discussion
Limitation of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kobayashi, T.; Gamada, K. Lateral Ankle Sprain and Chronic Ankle Instability—A Critical Review. Foot Ankle Spec. 2014, 7, 298–326. [Google Scholar] [CrossRef] [PubMed]
- McLeod, M.M.; Gribble, P.A.; Pietrosimone, B.G. Chronic ankle instability and neural excitability of the lower extremity. J. Athl. Train. 2015, 50, 847–853. [Google Scholar] [CrossRef]
- Hong, C.C.; Tan, K.J.; Calder, J. Chronic lateral ankle ligament instability—Current evidence and recent management advances. J. Clin. Orthop. Trauma 2024, 48, 102328. [Google Scholar] [CrossRef]
- Alghadir, A.H.; Iqbal, Z.A.; Iqbal, A.; Ahmed, H.; Ramteke, S.U. Effect of chronic ankle sprain on pain, range of motion, proprioception, and balance among athletes. Int. J. Environ. Res. Public Health 2020, 17, 5318. [Google Scholar] [CrossRef] [PubMed]
- Pourkazemi, F.; Hiller, C.E.; Raymond, J.; Nightingale, E.J.; Refshauge, K.M. Predictors of chronic ankle instability after an index lateral ankle sprain: A systematic review. J. Sci. Med. Sport 2014, 17, 568–573. [Google Scholar] [CrossRef]
- Wikstrom, E.A.; Naik, S.; Lodha, N.; Cauraugh, J.H. Bilateral balance impairments after lateral ankle trauma: A systematic review and meta-analysis. Gait Posture 2010, 31, 407–414. [Google Scholar] [CrossRef]
- Han, J.; Yang, Z.; Adams, R.; Ganderton, C.; Witchalls, J.; Waddington, G. Ankle inversion proprioception measured during landing in individuals with and without chronic ankle instability. J. Sci. Med. Sport 2021, 24, 665–669. [Google Scholar] [CrossRef]
- Gottlieb, U.; Hoffman, J.R.; Springer, S. Dynamic postural control in individuals with and without chronic ankle instability-do the modified star-excursion balance test and jump-landing stabilization have the same control mechanism? Phys. Ther. Sport 2023, 60, 104–111. [Google Scholar] [CrossRef]
- Hertel, J. Functional anatomy, pathomechanics, and pathophysiology of lateral ankle instability. J. Athl. Train. 2022, 37, 364–375. [Google Scholar] [CrossRef]
- Wikstrom, E.A.; Tillman, M.D.; Chmielewski, T.L.; Cauraugh, J.H.; Naugle, K.E.; Borsa, P.A. Self-assessed disability and functional performance in individuals with and without ankle instability: A case control study. J. Orthop. Sports Phys. Ther. 2009, 39, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Chappell, J.D.; Herman, D.C.; Knight, B.S.; Kirkendall, D.T.; Garrett, W.E.; Yu, B. Effect of fatigue on knee kinetics and kinematics in stop-jump tasks. Am. J. Sports Med. 2005, 33, 1022–1029. [Google Scholar] [CrossRef]
- Borotikar, B.S.; Newcomer, R.; Koppes, R.; McLean, S.G. Combined effects of fatigue and decision making on female lower limb landing postures: Central and peripheral contributions to ACL injury risk. Clin. Biomech. 2008, 23, 81–92. [Google Scholar] [CrossRef]
- Webster, C.A.; Nussbaum, M.A. Localized ankle fatigue development and fatigue perception in adults with or without chronic ankle instability. J. Athl. Train. 2016, 51, 491–497. [Google Scholar] [CrossRef]
- Watanabe, K.; Koshino, Y.; Nakagawa, K.; Ishida, T.; Kasahara, S.; Samukawa, M.; Tohyama, H. The relationship between joint kinematic patterns during single-leg drop landing and perceived instability in individuals with chronic ankle instability. Clin. Biomech. 2024, 114, 106237. [Google Scholar] [CrossRef]
- Sagawa, Y.; Yamada, T.; Ohmi, T.; Moriyama, Y.; Kato, J. Differences in lower extremity kinematics during single-leg lateral drop landing of healthy individuals, injured but asymptomatic patients, and patients with chronic ankle instability- a cross-sectional observational study. PLoS ONE 2024, 19, e0297660. [Google Scholar] [CrossRef]
- Herb, C.C.; Shank, K. Ankle kinematics during a drop-vertical jump in patients with chronic ankle instability and healthy controls: A bivariate confidence interval comparison. Gait Posture 2023, 104, 147–150. [Google Scholar] [CrossRef]
- Ross, S.E.; Guskiewicz, K.M. Time to Stabilization: A Method for Analyzing Dynamic Postural Stability. Int. J. Athl. Ther. Train. 2003, 8, 37–39. [Google Scholar] [CrossRef]
- Quammen, D.; Cortes, N.; Van Lunen, B.L.; Lucci, S.; Ringleb, S.I.; Onate, J. Two different fatigue protocols and lower extremity motion patterns during a stop-jump task. J. Athl. Train. 2012, 47, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, M.; Truszczyńska-Baszak, A. The impact of fatigue on static balance in people with chronic ankle instability. Acta Bioeng. Biomech. 2023, 25, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Coventry, E.; O’Connor, K.M.; Hart, B.A.; Earl, J.E.; Ebersole, K.T. The effect of lower extremity fatigue on shock attenuation during single-leg landing. Clin. Biomech. 2006, 21, 1090–1097. [Google Scholar] [CrossRef]
- Caulfield, B.; Garrett, M. Changes in ground reaction force during jump landing in subjects with functional instability of the ankle joint. Clin. Biomech. 2004, 19, 617–621. [Google Scholar] [CrossRef]
- Wychowan, M. Wybrane Metody Oceny Dynamiki Układu Ruchu Człowieka; Wydawnictwo AWF: Warszawa, Poland, 2008. [Google Scholar]
- Doherty, C.; Bleakley, C.; Hertel, J.; Caulfield, B.; Ryan, J.; Delahunt, E. Single-leg drop landing movement strategies in participants with chronic ankle instability compared with lateral ankle sprain ‘copers’. Knee Surg. Sport. Traumatol. Arthrosc. 2016, 24, 1049–1059. [Google Scholar] [CrossRef]
- Bernier, J.N.; Perrin, D.H. Effect of coordination training on proprioception of the functionally unstable ankle. J. Orthop. Sports Phys. Ther. 1998, 27, 264–275. [Google Scholar] [CrossRef]
- Wright, C.J.; Arnold, B.L.; Ross, S.E. Altered kinematics and time to stabilization during drop-jump landings in individuals with or without functional ankle instability. J. Athl. Train. 2016, 51, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Caulfield, B.M.; Garrett, M. Functional instability of the ankle: Differences in patterns of ankle and knee movement prior to and post landing in a single leg jump. Int. J. Sports Med. 2002, 23, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Steib, S.; Zech, A.; Hentschke, C.; Pfeifer, K. Fatigue-induced alterations of static and dynamic postural control in athletes with a history of ankle sprain. J. Athl. Train. 2013, 48, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Steib, S.; Hentschke, C.; Welsch, G.; Pfeifer, K.; Zech, A. Effects of fatiguing treadmill running on sensorimotor control in athletes with and without functional ankle instability. Clin. Biomech. 2013, 28, 790–795. [Google Scholar] [CrossRef]
- Goldie, P.A.; Evans, O.M.; Bach, T.M. Postural Control Following Inversion Injuries of the Ankle. Arch. Phys. Med. Rehabil. 1994, 75, 969–975. [Google Scholar] [CrossRef]
- Ross, S.E.; Guskiewicz, K.M.; Yu, B. Single-leg jump-landing stabilization times in subjects with functionally unstable ankles. J. Athl. Train. 2006, 40, 298–304. [Google Scholar]
- Wikstrom, E.A.; Fournier, K.A.; McKeon, P.O. Postural control differs between those with and without chronic ankle instability. Gait Posture 2010, 32, 82–86. [Google Scholar] [CrossRef]
- Santamaria, L.J.; Webster, K.E. The effect of fatigue on lower-limb biomechanics during single-limb landings: A systematic review. J. Orthop. Sports Phys. Ther. 2010, 40, 464–473. [Google Scholar] [CrossRef] [PubMed]
- McLean, S.G.; Felin, R.E.; Suedekum, N.; Calabrese, G.; Passerallo, A.; Joy, S. Impact of fatigue on gender-based high-risk landing strategies. Med. Sci. Sports Exerc. 2007, 39, 502–514. [Google Scholar] [CrossRef] [PubMed]
- Ross, S.E.; Guskiewicz, K.M. Examination of static and dynamic postural stability in individuals with functionally stable and unstable ankles. Clin. J. Sport Med. 2004, 14, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Cortes, N.; Greska, E.; Kollock, R.; Ambegaonkar, J.; Onate, J.A. Changes in lower extremity biomechanics due to a short-term fatigue protocol. J. Athl. Train. 2013, 48, 306–313. [Google Scholar] [CrossRef]
- Forestier, N.; Teasdale, N.; Nougier, V. Alteration of the position sense at the ankle induced by muscular fatigue in humans. Med. Sci. Sports Exerc. 2002, 34, 117–122. [Google Scholar] [CrossRef]
- Mohammadi, F.; Roozdar, A. Effects of Fatigue Due to Contraction of Evertor Muscles on the Ankle Joint Position Sense in Male Soccer Players. Am. J. Sports Med. 2010, 38, 824–828. [Google Scholar] [CrossRef]
Variable | Study Population I (n = 14; 5 K, 9 M) | Study Population II (n = 15; 5 K, 10 M) | Control Group (n = 31; 10 K, 21 M) |
---|---|---|---|
Age (years) | 29.8 ± 4.6 21.0 ÷ 35.0 | 30.3 ± 5.0 18.0 ÷ 35.0 | 29.8 ± 3.4 24.0 ÷ 35.0 |
Body height (cm) | 180.0 ± 9.0 160.0 ÷ 189.0 | 180.0 ± 10.0 170.0 ÷ 192.0 | 176.4 ± 9.1 161.0 ÷ 195.0 |
Body mass (kg) | 70.0 ± 11.2 54.0 ÷ 82.0 | 76.1 ± 13.5 55.0 ÷ 100.0 | 74.5 ± 13.0 50.0 ÷ 107.0 |
BMI | 22.8 ± 2.0 18.7 ÷ 25.2 | 22.3 ± 3.6 18.0 ÷ 30.2 | 23.8 ± 2.9 18.4 ÷ 32.0 |
Variable | Study Population I (n = 14) | Study Population II (n = 15) | Control Group (n = 31) |
---|---|---|---|
Weekly physical activity (hours) | 4.1 ± 1.9 2.0 ÷ 8.0 | 4.8 ± 3.2 2.0 ÷ 12.0 | 5.3 ± 2.6 2.0 ÷ 15.0 |
FADI | 96.4 ± 3.6 90.4 ÷ 100.0 | 97.1 ± 4.0 88.5 ÷ 100.0 | 99.4 ± 2.4 86.5 ÷ 100.0 |
FADI-S | 90.6 ± 8.5 * 75.0 ÷ 100.0 | 91.4 ± 10.4 * 71.9 ÷ 100.0 | 98.7 ± 5.1 * 71.9 ÷ 100.0 |
Before Fatigue Test | |||||||||
---|---|---|---|---|---|---|---|---|---|
Jump 1 n (%) | Jump 2 n (%) | Jump 3 n (%) | |||||||
Study Group I | Study Group II | Control Group | Study Group I | Study Group II | Control Group | Study Group I | Study Group II | Control Group | |
Correct landing | 0 a | 5 a (38.5) | 23 b (79.3) | 2 (50.0) | 9 (69.2) | 24 (82.8) | 3 (75.0) | 8 (61.5) | 20 (69.0) |
Slight shift | 1 a (25.0) | 1 a (7.7) | 5 a (17.2) | 1 (25.0) | 2 (15.4) | 3 (10.3) | 0 | 2 (15.4) | 6 (20.7) |
Significant shift | 2 a (50.0) | 1 a,b (7.7) | 0 b | 0 | 1 (7.7) | 1 (3.4) | 1 (25.0) | 2 (15.4) | 2 (6.9) |
Unstable | 1 a,b (25.0) | 6 b (46.2) | 1 a (3.4) | 1 (25.0) | 1 (7.7) | 1 (3.4) | 0 | 1 (7.7) | 1 (3.4) |
Test result | p < 0.001; V = 0.56 | p = 0.376; V = 0.22 | p = 0.739; V = 0.18 |
Before Fatigue Test | |||||||||
---|---|---|---|---|---|---|---|---|---|
Jump 1 n (%) | Jump 2 n (%) | Jump 3 n (%) | |||||||
Study Group I | Study Group II | Control Group | Study Group I | Study Group II | Control Group | Study Group I | Study Group II | Control Group | |
Correct landing | 4 (66.7) | 3 (25.0) | 13 (44.8) | 4 (66.7) | 7 (53.8) | 18 (62.1) | 4 (66.7) | 8 (61.5) | 22 (78.6) |
Slight shift | 1 (16.7) | 4 (33.3) | 12 (41.4) | 0 | 3 (23.1) | 8 (27.6) | 0 | 2 (15.4) | 4 (14.3) |
Significant shift | 0 | 3 (25.0) | 3 (10.3) | 0 | 2 (15.4) | 1 (3.4) | 0 | 3 (23.1) | 2 (7.1) |
Unstable | 1 (16.7) | 2 (16.7) | 1 (3.4) | 2 (33.3) | 1 (7.7) | 2 (6.9) | 2 (33.3) | 0 | 0 |
Test result | p = 0.251; V = 0.28 | p = 0.299; V = 0.28 | p = 0.057; V = 0.44 |
After Fatigue Test | |||||||||
---|---|---|---|---|---|---|---|---|---|
Jump 1 n (%) | Jump 2 n (%) | Jump 3 n (%) | |||||||
Study Group I | Study Group II | Control Group | Study Group I | Study Group II | Control Group | Study Group I | Study Group II | Control Group | |
Correct landing | 3 (75.0) | 5 (41.7) | 16 (55.2) | 2 (50.0) | 7 (53.8) | 19 (65.5) | 4 (100.0) | 12 (92.3) | 20 (78.3) |
Slight shift | 0 | 1 (8.3) | 7 (24.1) | 1 (25.0) | 1 (7.7) | 7 (24.1) | 0 | 1 (7.7) | 4 (13.8) |
Significant shift | 0 | 3 (25.0) | 1 (3.4) | 1 (25.0) | 2 (15.4) | 3 (10.3) | 0 | 0 | 3 (10.3) |
Unstable | 1 (25.0) | 3 (25.0) | 5 (17.2) | 0 | 3 (23.1) | 0 | 0 | 0 | 2 (6.9) |
Test result | p = 0.311; V = 0.29 | p = 0.113; V = 0.33 | p = 0.800; V = 0.22 |
After Fatigue Test | |||||||||
---|---|---|---|---|---|---|---|---|---|
Jump 1 n (%) | Jump 2 n (%) | Jump 3 n (%) | |||||||
Study Group I | Study Group II | Control Group | Study Group I | Study Group II | Control Group | Study Group I | Study Group II | Control Group | |
Correct landing | 3 (50.0) | 6 (50.0) | 17 (58.6) | 3 (50.0) | 7 (53.8) | 17 (63.0) | 5 (83.3) | 9 (69.2) | 17 (63.0) |
Slight shift | 1 (16.7) | 2 (16.7) | 7 (24.1) | 2 (33.3) | 2 (15.4) | 3 (11.1) | 1 (16.7) | 0 | 5 (18.5) |
Significant shift | 0 | 2 (16.7) | 3 (10.3) | 0 | 3 (23.1) | 7 (25.9) | 0 | 2 (15.4) | 3 (11.1) |
Unstable | 2 (33.3) | 2 (16.7) | 2 (6.9) | 1 (16.7) | 1 (7.7) | 0 | 0 | 2 (15.4) | 2 (7.4) |
Test result | p = 0.656; V = 0.22 | p = 0.250; V = 0.28 | p = 0.604; V = 0.23 |
95% CI | ||||||
---|---|---|---|---|---|---|
M | SD | SE | LL | UL | ||
TTS—before fatigue test | Study group I | 1.34 | 0.18 | 0.17 | 1.01 | 1.67 |
Study group II | 1.65 | 0.28 | 0.10 | 1.46 | 1.84 | |
Control group | 1.42 | 0.36 | 0.06 | 1.30 | 1.54 | |
TTS—after fatigue test | Study group I | 1.46 | 0.57 | 0.25 | 0.96 | 1.96 |
Study group II | 1.50 | 0.49 | 0.14 | 1.21 | 1.79 | |
Control group | 1.52 | 0.49 | 0.09 | 1.34 | 1.71 |
95% CI | ||||||
---|---|---|---|---|---|---|
M | SD | SE | LL | UL | ||
TTS [s] before fatigue test | Study group I | 1.31 | 0.43 | 0.18 | 0.96 | 1.66 |
Study group II | 1.62 | 0.35 | 0.12 | 1.37 | 1.87 | |
Control group | 1.47 | 0.45 | 0.08 | 1.32 | 1.63 | |
TTS [s] after fatigue test | Study group I | 1.36 | 0.27 | 0.19 | 0.98 | 1.74 |
Study group II | 1.50 | 0.60 | 0.14 | 1.23 | 1.77 | |
Control group | 1.45 | 0.44 | 0.09 | 1.27 | 1.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalczyk, M.; Truszczyńska-Baszak, A.; Dudziński, K.; Łysoń-Ukłańska, B. Assessment of Landing Parameters in Patients with Chronic Ankle Instability. J. Clin. Med. 2025, 14, 6074. https://doi.org/10.3390/jcm14176074
Kowalczyk M, Truszczyńska-Baszak A, Dudziński K, Łysoń-Ukłańska B. Assessment of Landing Parameters in Patients with Chronic Ankle Instability. Journal of Clinical Medicine. 2025; 14(17):6074. https://doi.org/10.3390/jcm14176074
Chicago/Turabian StyleKowalczyk, Małgorzata, Aleksandra Truszczyńska-Baszak, Krzysztof Dudziński, and Barbara Łysoń-Ukłańska. 2025. "Assessment of Landing Parameters in Patients with Chronic Ankle Instability" Journal of Clinical Medicine 14, no. 17: 6074. https://doi.org/10.3390/jcm14176074
APA StyleKowalczyk, M., Truszczyńska-Baszak, A., Dudziński, K., & Łysoń-Ukłańska, B. (2025). Assessment of Landing Parameters in Patients with Chronic Ankle Instability. Journal of Clinical Medicine, 14(17), 6074. https://doi.org/10.3390/jcm14176074